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Preface

On first thought, it might seem strange that another book on the 8080 and
Z-80 should appear at this time. Z-80 CPU cards generally became available
in 1977 and the 8080 CPU is even older. But the Z-80 computer seems to
‘become more popular with time. For example, the TRS-80 Model II an-
nounced recently by Radio Shack, and Heath’s H-89 both use the CPU.
High-level languages such as Pascal, APL, BASIC, FORTRAN, and C are now
run on the 8080 and Z-80. Furthermore, Microsoft has available a Z-80 CPU
card that can be easily inserted into the Apple II computer. There should be
an increasing interest in the 8080 and Z-80 CPUs in the coming years, and I
believe, a great increase in the number of 8080 and Z-80 programmers. So,
there is a growing need for a book that covers programming for the 8080
and Z-80 assembly languages.

The combination of 8080 and Z-80 programming concepts into a single
work is quite natural. The Z-80 CPU is upward compatible from the 8080
so that all commercially available 8080 software will run on the Z-80.
Furthermore, 8080 assemblers, such as ASM provided with CP/M, can be
used to create programs that will run on either an 8080 system or a Z-80
system.

The purpose of this book is twofold. First, I want to provide a single
reference source for both 8080 and Z-80 assembly language programmers.
The appendixes are designed with this goal in mind. They begin with the
ASCII character set and a 64K memory map. These two appendixes are as
useful to those using higher level languages as they are to assembly language
programmers.

The 8080 and Z-80 instruction sets are listed both alphabetically and
numerically in the next four appendixes. This is followed by a cross refer-
ence between the 8080 and the Z-80 mnemonics. An appendix describing
each instruction in detail then follows. Common acronyms are identified
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next in Appendix I, and some undocumented Z-80 instructions are dis-
cussed in the final appendix. Collectively, the appendixes contain all of the
reference material needed to write 8080 or Z-80 assembly language programs.

The second purpose of this work is to demonstrate some useful tech-
niques of assembly language programming. As an editor for Interface Age, I
have seen numerous examples of inefficient or improper programming.
General principles of assembly language programming are discussed in
Chapters One through Five; specific programming examples are given in
Chapters Five through Ten. The reader can actually assemble the programs
and try them out.

The organization and operation of the 8080 and Z-80 CPUs is covered
in Chapter One. This includes a discussion of the general-purpose registers,
the flag registers, logical operations, branching, double-register operations,
rotation and shifting. The concepts of hexadecimal, octal, and binary num-
bers, one’s and two’s complement arithmetic, and the use of logical opera-
tions are presented in Chapter Two.

Stack operations with PUSH, POP, CALL and RET commands and the
passing of data between calling program and subroutine are given in Chapter
Three. Chapter Four is devoted to input and output techniques, including
an interrupt-dirven keyboard routine and a telephone transmission program.
Assembler macros are discussed in Chapter Five. Examples show how to
generate Z-80 instructions with an 8080 macro assembler, and how to emu-
late Z-80 instructions on an 8080 CPU.

The reader can develop a small, powerful monitor in Chapter Six using
the top-down programming method. The monitor contains the usual com-
mands of dump, load, and go. In addition, there is a memory test, a routine
to search for one or two hex bytes or ASCII characters, a routine to replace
all occurrences of one byte with another, and a routine to perform input

and output through any port.
' In Chapter Seven the monitor is converted to Z-80 instructions and
some additional features are added. Assembly-language subroutines for inter-
converting between binary numbers and ASCII characters coded in one of
the common number bases are given in Chapter Eight. These routines per-
form all of the input and output through the system monitor developed in
Chapter Six. Paper tape and magnetic tape routines are given in Chapter
Nine. This method of data transfer is still very popular. I frequently am
asked to read information on paper tape into our Z-80 computer so that it
can be transmitted over the telephone line to our campus Dec-20 computer.

CP/M is currently the most popular 8080/Z-80 operating system.
Chapter Ten demonstrates how assembly language programs can utilize CP/M
for all input and output by presenting three programs. One of these pro-
grams allows the user to branch to any address from the system level. Never-
theless, the use of CP/M is not the subject of this book. More information on
the use of the CP/M operating system can be obtained from Using CP/M: A
Self-Teaching Guide by Judi Fernandez and Ruth Ashley (John Wiley and
Sons, Inc., 1980).
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The assembly language programs in this book have all been assembled
on an Altair 8800, with an Ithaca Z-80 CPU card and North Star double-
density disks. The Lifeboat 2.0 version of CP/M was used as the operating
system. The system monitor given in Chapter Six was additionally pro-
grammed to run on a TRS-80 Model II, using a Lifeboart 2.2 version CP/M
operating system. The alternate version of the input and output routines was
used in this case. The Digital Research assembler MAC was used for the 8080
instructions and the Microsoft assembler MACRO-80 was used for the Z-80
code. All of the assembly listings have been reproduced directly from the
original computer printouts. The manuscript was created and edited with
MicroPro’s Word-Master and formatted with Organic Software’s Textwriter.

Thanks to Heidi for typing the manuscript. Also, I should like to
acknowledge the programmers at Microsoft, Digital Research, and Lifeboat
Associates for the many things they have taught me about programming.

Alan R. Miller
June 1980
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CHAPTER ONE

Introduction

There was a time when computers were gigantic machines containing racks
upon racks of vacuum tubes. The invention of the transistor and the devel-
opment of the integrated circuit (IC) changed all that. Today, it is possible
to place tens of thousands of transistors on a single “chip” of silicon that is
smaller than a quarter of an inch square. As a result of this technology. com-
puters have become smaller and cheaper.

Computers are commonly classified into three categories, based on size
and capability. The largest are known as main frame computers, the middle-
sized ones are called minicomputers, and the smallest are termed microcom-
puters. A computer consists of three parts: the central processing unit
(CPU), the main memory, and the peripherals.

The CPU directs the activities of the computer by interpreting a set of
instructions called operation codes, or op codes for short. These instructions
are located in the main memory. The memory is also used for the storage
of data.

; Cruy | S=momsnmmon

The CPU communicates with the user through such peripherals as the
console, the printer, the disks, and so on. There are several electrical lines
which are used to connect the CPU to the memory and to the perlpherals
These lines are collectively known as the buss, or bus.

The CPU contains a set of registers, which are internal memory locations
used for data storage and manipulation. One of these is a special register
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called the accumulator. Tt receives the results of certain CPU operations.
The CPU will also have a status register to indicate the nature of a previous
operation, e.g., whether the result is zero or negative or positive. It will also
indicate whether a carry or a borrow occurred during the operation.

Additional registers are used for auxiliary storage. They may contain
general information such as a number that is about to be added to the
accumulator. Alternately, a register may contain a number that refers to an
address in the main memory. The value is called a memory pointer in this
case. A special portion of main memory may be set aside for storing data.
This area is called a stack. A special register called a stack pointer refers to
this region. Another register, the program counter, tells the CPU where to
find the next instruction in memory.

Computer operations are controlled by a computer program. Those
programs which are used to solve engineering and physics problems are called
application programs. On the other hand, computer programs which deal
with the operation of the computer’s own peripherals are known as systems
programs.

The instruction set used by the CPU can be very large and difficult to
use. Consequently, symbolic programming languages are commonly used
instead. An application program may be written in a language such as BASIC,
FORTRAN, or Pascal. This is called a source program. Then a separate pro-
cessor program called a compiler or an interpreter is used to convert the
user’s source program into an object program that corresponds to the in-
structions needed by the computer.

A microcomputer’s instruction set is relatively small compared to that
of a larger computer. But even so, it is more convenient to write systems
programs in a symbolic language called assembly language, rather than in the
machine language of the computer. A processor program, called an assem-
bler, is then utilized to translate the source program into the corresponding
instructions of the computer. A major difference between assembly language
and higher-level languages such as Pascal is that each line of an assembly
language program represents one computer instruction. By contrast, one line
of a Pascal source program might represent many computer instructions.

A line of an assembly language program can contain up to four ele-
ments: the label, the mnemonic, one or two operands, and a comment.

Label Mnemonic Orerand Comment
START? CALL FIRST finitialize dats

The label, which is usually terminated by a colon, is used to transfer control
from one portion of the source program to another. The mnemonic repre-
sents the desired CPU instruction. The operand might reference a CPU
register, a memory location, or simply a constant. Finally, a comment, pre-
ceded by a semicolon, can be used to explain the instruction. The comment,
of course, is ignored by the assembler.

The remainder of this chapter is devoted to a general discussion of some
of the features of the 8080 and Z-80 CPUs. The complete instruction sets
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for these CPUs are listed in the appendix. Spécific details of each instruction
are given in Appendix H. If you are already familiar with these instruction
sets, then you might want to go on to the next chapter.

THE 8080 CPU

The 8080 CPU is an integrated circuit that has 40 pins (legs). It requires
three power supply voltages—12 V, 5 V, and =5 V, and a two-phase clock
that runs at 2 Megahertz (MHz). There is an accumulator, a flag register, six
general-purpose registers, a stack pointer, and a program counter. The
accumulator is sometimes known as register A. The flag register is usually
called the PSW (the letters being an acronym for program status word). The
general-purpose registers are designated by the letters B, C, D, E, H, and L.
Sometimes the registers are paired into 16-bit double registers known as BC,
DE, and HL. The accumulator and flag register may also be paired. There are
78 different instruction types that produce a total of 245 different op codes.

Accumilator B oo e § oo o o e e ! Fladg Redister

(Redister A) i 8 bits E 8 bits i (PSW)
Redister B i 8 ;its i 8 b;ts_"i Redgister C
Resister I | © bits | 8 bits | Resister E
Redister H ;_~;*;;;;~”“§~—§*;;€;NM; Redister L
Stack Fointer i i 1; biis ;

Prosran T e bies 3

Counter o e !

Figure 1.1. The 8080 CPU registers.

Some of the 8080 instructions explicitly refer to the accumulator or to
one of the general-purpose registers (B, C, D, E, H, and L).

mnemonic orerand comment
INR A jincrement accumulstor
neR B jdecrement register B
MOV HyD imove contents of It to H
MVUI Cré srut value of 4 into C

When there are two operands, data moves from the right operand (the
source) into the left operand (the destination). There are additional 8080
commands that implicitly refer to the accumulator.

mnemonic orerand comment
RAR # rotate asccumulazator right
RAL. § rotate accumulator left
IN 0 § inrut 3 bute to A from rort 0O
ouT 1 i outrut 2 buyte from A to rort 1
ANI 7 § logical AND with A and 7
ORI 3 i lodical OR with A and 3
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Tor certain 8-bit operations, the accumulator is implicitly one of the
source registers and will contain the result of the operation.

mnemonic orerand comment
ADD C $ add C to A
SURB D ¢ subtract I from A
ANA H $ logical AND of A with H
ORA B $# logical OR of A and R

Other instructions refer to coupled pairs of 8-bit registers. These
extended operations treat the BC, the DE, and the HL register pairs as 16-bit
entities. Sometimes the stack pointer and program counter are included in
these instructions. The X symbol in the mnemonic refers to these extended
16-bit operations.

mnemonic operand comment
INX H increment HL redister rair
nex SP decrement stack rointer
LXI D0 load zero into DE rair

e @y @r

Additional instructions deal specifically with the HL register pair. The
following two instructions move two bytes of data between memory and
the HL double register.

‘mnemonic orerand comment
LHLD 3 $ addr 3 4 to L and H
SHLD 3 # LsyH to addr 3» 4

The LHLD instruction copies the value at memory location 3 into the L
register and the value at location 4 into the H register. The SHLD operation
reverses the process.

‘ The XCHG operation interchanges the 16-bit HL register pair with the
16-bit DE register pair. ‘

XCHG ! HL redister ! «==z=3> | DE redister !
. T oo o nt s et sars e dnit oot 1ats e b s | .I......m...m.m__..._.‘....,‘.«....._
. | [y — !

SPHL. ! HL redister ! e ! gtack rointer !
§ e o e e e e ! e e e o e ]

§ o e e 1 1 e e e e |

PCHL ! HL redister ! === | prodgram !
1 o e e ! ! counter !

The SPHL command copies the HL register into the stack pointer register.
“The PCHL instruction copies the HL register pair into the program counter
register.
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There are several instructions that perform double-register addition.
The number in one of the 16-bit registers is added to the number in HL. The
sum appears in the HL register pair. ,

DAD n sadd DE to HL
DAD Sk istack rointer + HL
THE MEMORY REGISTER

There is another 8-bit register for the 8080 that is not shown in Figure 1.1.
It is located in main memory. The 16-bit address contained in HL defines
the location of this memory register, i.e., HL is a memory pointer. The
instruction '

MOV MrE fmove E to memory

will copy the contents of register E into the memory location pointed to by
the HL register pair. The instruction

INR M , fincrement memorw

will increment this byte in memory.

THE FLAG REGISTER

Four bits of the PSW register can be used to control program flow. The bits
or flags are used in conjunction with conditional jump, conditional call, and
conditional return instructions. We say that a flag is set if it has a value of 1
or is reset if it has a value of zero. ‘

The CPU sets the sign flag (S) if the result of a previous operation is
positive; the flag is reset if the result is negative. The CPU sets a second flag,
the zero flag (Z), if the result is zero; it is reset if not zero. A third flag, the
carry flag (C), is set if there is a carry on addition or borrow on subtraction;
it is reset otherwise. A fourth flag, the parity flag (P), indicates the parity of
the result. Parity is even if there is an even number of ones (or zeros) and
odd otherwise.

) bt ST R EERy Ry By Ry

- B A N B A

Figure 1.2, The PSW (flag) register.

The use of the flag register can be demonstrated with a simple routine.
Suppose that a group of instructions is to be executed eight times. The fol-
lowing code will do this. :
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MVI By 8 srut 8 into R
LOOF$ e+ 0

ICR B idecrement B

JNZ LOOF §loor if not =ero

The B register is initialized to the value of 8. The DCR B instruction near
the end of the loop decrements the B register each time the loop is executed.
This will reset the zero flag on each of the first seven passes through the
loop since B has not reached zero. The following conditional jump instruc-
tion, JNZ LOOP, causes the CPU to return to the line labeled LOOP in
this case.

On the eighth pass through the loop the original value of 8 in the B
register will have been decremented to zero. Now the zero flag will be set
and the conditional jump instruction will not cause a branch. The instruction
immediately following the jump will be executed instead.

FLAGS AND ARITHMETIC OPERATIONS

The results of addition and subtraction operations can be characterized from
the PSW flags. Three of the flags are of interest here:"the carry flag, the zero
flag, and the sign flag. If the sum of two numbers exceeds 255 (1 less than 2
to the eighth power), then the result is too large to fit into the 8-bit accumu-
lator. The carry flag will be set to reflect this overflow. During subtraction,
the carry flag is set when a larger number is subtracted from a smaller one.
In this case, the flag becomes an indication that borrowing has taken place.

Sometimes all eight bits of a register or memory location are used to
represent a number. This is then an unsigned number. At other times it is
convenient to utilize only the low-order seven bits (bits 0-6) for the mag-
nitude of a number. The remaining high-order bit (bit 7) is then used to
indicate the sign.

madnitude sidn masgnitude
B e e e o e e ! R !
! g8 bits i o 7 bits !
B (R T T T T I T Y |
[ Sy Wy Ry Y [ Sy | [P Py Y RSy N ey oy |
765432120 765 43210
unsigdned number sidned number

‘Numbers represented in this way are known as signed numbers. A 0 in bit 7
means that the number is positive and a 1 means that the number is negative.
An 8-bit signed number can range in magnitude from -128 to 127, whereas
an unsigned 8-bit number can range from 0 to 255.

The sign flag is set after certain operations if the value of bit 7 is 1 and
it is reset if bit 7 is 0. If the sum of two numbers is exactly 256, the result in
the 8-bit accumulator will be a zero. This occurs because 256 is 1 greater
than the largest 8-bit number (255). The zero flag will be set in this case.
In addition, the carry flag will be set because there is an overflow. The parity
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flag will be set, since there is an even number of ones. (Zero is an even num-
ber.) Finally, the sign flag will be reset because bit 7 is a zero.

FLAGS AND LOGICAL OPERATIONS

In the case of arithmetic operations such as addition and subtraction, there
can be a carry or borrow from one bit to another. But the logical operations
AND, OR, and XOR (exclusive OR) operate on each bit separately; there is
never a carry from one bit to the next. These logical operations, therefore,
always reset the carry flag. The zero and parity flags, however, will be set or
reset according to the result of the particular operation. We will discuss
logical operations more fully in Chapter 2.

A value in the accumulator can be compared to a value in another
register or to the byte immediately following the instruction byte in mem-
ory. The CPU performs the comparison by subtracting the value of the
operand from the value in the accumulator. In the case of a regular subtrac-
tion, the difference is placed in the accumulator. For example, the arithmetic
instruction

SuUR c

subtracts the value in register C from the accumulator and places the differ-
ence into the accumulator. The logical comparison operation

CHP [»

also subtracts the value in register C from the value in the accumulator.
However, unlike the regular subtraction operation, the difference in this case
is not actually saved. The flags, of course, will reflect the result of the opera-
tion. If the value in C is equal to the value in the accumulator the difference
between them will be zero. In this case the zero flag is set indicating the
equality. The carry flag will be reset since there was no borrow during the
subtraction.

If the two values are not equal, then A is either larger or smaller. If A
is larger, the comparison operation will reset the carry flag (and, of course,
the zero flag). If A is smaller, then the carry flag will be set, because a larger
number has been subtracted from a smaller one. Thus, if the carry flag has
been set after a comparison, then the value originally in the accumulator
must have been smaller than the value with which it was compared.

The following instructions can be used to determine if the value in
register C is less than, greater than, or equal to the value in the accumulator.

CMF C i subtract A from C

JZ ZERO # if A eauals C

Jc LESS # if A less than C
§

if A dreater than C

¢ * *
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The comparison instruction is executed first. This operation subtracts the
“value of C from the value in the accumulator. If the two numbers are equal,
then their difference is zero. In this case, the zero flag is set and the JZ
instruction causes a branch to the label ZERO. Otherwise, the next instruc-
tion is executed. Another possibility is that the value in C is greater than the
value in the accumulator. The subtraction in this case requires a borrow so
. the carry (borrow) flag is set. The JC instruction then causes a branch to the
label LESS. The last possibility is that the value in the accumulator is larger
than that in register C. For this case, both the zero and the carry flags are
reset, and the program continues.

INCREMENT, DECREMENT, AND ROTATE INSTRUCTIONS

The 8-bit increment and decrement instructions present an interesting case.
Mathematically, the increment operation simply adds 1 to the current value
in a register. Likewise, the decrement operation subtracts 1 from the present
value. Thus, the two instructions

INR A and
- ADI 1

both increase the value in the accumulator by 1 and the operations

DCR A and
SUI 1

both decrease the value in the accumulator by 1. The zero, parity, and sign
flags correctly reflect the result in all cases. -

The carry flag, however, responds differently for the two cases. The
flag correctly reflects the result of the operation in the case of addition, but
it is unaffected in the case of an increment or decrement operation. Thus, if
you need to increment or decrement a value without disturbing the carry
flag, then you should use the INR or DCR instructions. On the other hand,
if you need to know whether a carry or borrow occurred during an incre-
ment or decrement, then use an add or subtract operation.

The instructions following the label GETCH in Listing 6.1 (in Chapter
6) are used to set ASCII characters from the console input buffer. As each
character is obtained, the count of the remaining characters is decremented.
When the count has been decremented past 0, then the routine is finished.
Subtracting 1 from 0 requires a borrow so the carry flag should be set. But
since the regular decrement operation doesn’t alter the carry flag, the sub-
tract instruction must be used instead.
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ROTATION OF BITS IN THE ACCUMULATOR

There are four 8080 instructions that rotate the bits in the accumulator. The
operations move each bit by one position. Two instructions rotate the bits
to the right and two rotate them to the left. The right circular rotation

RRC

moves each bit one position to the right. The rightmost (low-order) bit is
moved to the high-order bit and into the carry flag.

., -, " >, % _"H._..... rons e sver vose ot
- - - - - - R R !

b i ‘; l

fmmm o Lo i o f i | f e | o |

asccumulator carry

The left circular rotation
RLC

moves the bits the other way.

§ o e 3 o !

! !
pomemm ! R e R B el RS BRSPS !
ik L L A T S G L bt !
fowmm e R e R e e alatl Kbt
carry accumulator

Each bit is moved one position to the left. The high-order bit goes to both
the low-order bit and to the carry flag.
The rotate accumulator right instruction

RAR

moves each bit one position to the right. But this time, the carry flag moves
into the high-order bit and the low-order bit moves into the carry flag.

] e o o o e e e |
i |
! fom f o o e o f e f e | e | P=mm1 1
e e - - T S S s A T P
R et e L B Rty Ry gy Pt

accumulator carry

The instruction

RAL




10 8080/Z-80 ASSEMBLY LANGUAGE

moves each bit one position to the left. The carry flag moves into the low-
order bit and the high-order bit moves into the carry flag.

B o T e et e s e o e e e o e s s i o s o e e o o s s ot ot o st i e :y, ....... !

! !

- e el R e R e Rkt Rt !

I~ | mmim e L T S A R ot
=1 e e R e e Bl Rl Bt

carry accumulator

FLAGS AND DOUBLE-REGISTER OPERATIONS

Double-register, or extended, operations involving HL, DE, and BC affect the
flags very differently from the single-register operations. We saw that single-
register increment and decrement operations did not alter the carry flag. The
extended increment and decrement commands never alter any of the flags.
This means that if a program is to loop until a double register has been
decremented to zero, the following set of instructions will not work.

LOOF o o o
nex H $16~bit decrement
JNZ LOOP $if not zero

The proper procedure is to compare the two 8-bit halves with each other.
This can be done by moving one of the registers to the accumulator.

MOV Asl

Then the accumulator is compared to the other half by performing a logical
OR. The result of this operation will set the zero flag only if both halves are
zero. The complete operation looks like this.

LUOP: ° L ¢

DCx H $16~bit decrement
MoV Asl imove L to A

ORA H JOR with H

JNZ LOOF iif not zero

The double-register add instruction correctly sets the carry flag if there
is an overflow from the 16 bits, but zero, parity, and sign flags are not
altered.

THE Z-80 CPU
The Z-80 CPU is a 40-pin IC just like the 8080. All of the 8080 instructions

are common to the Z-80, thus we say the Z-80 is upward compatible from
the 8080. In general, any program that runs on an 8080 will also run on a
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Z-80. The one exception is that the 8080 parity flag is affected by arithmetic
operations, while the Z-80 parity flag is not. Thus, one can use an 8080
assembler to generate 8080 code on a Z-80.

The Z-80 requires only a single 5-volt power supply and a single-phase
clock that can run as fast as 6 MHz. There are 158 instruction types that
give a very large number of total commands with all variations. These are
given briefly in Appendixes E and F and in more detail in Appendix H. The
Z-80 contains all of the 8080 general-purpose registers, plus an alternate set
for easy interrupt processing. The alternate set is indicated with a prime
symbol: A’, B’, and so on. Only one of the two general sets of registers can
be used at any time, therefore, data cannot be transferred directly from one
set to the other. There are also two 16-bit index registers called IX and IY,
an 8-bit interrupt register (I), and an 8-bit refresh register (R). ’

Frimarg redisters Alternate registers

]

! 8 bits ! PSW A’ ! 8 bits 8 bits | PSW’

!
i 1 ! 8 bits ! C7
o e o ! R it !

! 8 bits | E’

i

]

8 bits ! L*

1
i
i
§
¥
i
i
i

Index e ittt o !
Redister X ! 16 bits i

Indes | 16 bits !
Redister Y § o o !

Interrurt [ t
Redister I !' 8 bits !

Refresh I 8 bits |
Redister R e e !

Figure 1.3. The Z-80 CPU registers.

An operand for an assembly-language instruction may consist of a value
that is used directly, or it may refer to a location that contains the value. For
example, the command

LI Ard

instructs the CPU to place the value of 6 into register A. Similarly, the
instruction

Lo AsD
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will move the contents of register D into register A. Alternately, the operand
may be a pointer to another location. Thus the command

LD Ay (6)

will move the byte located at address 6 into the accumulator. Similarly, the
instruction

LD Ay (HL)

tells the CPU to move the byte pointed to by the HL register into the
accumulator. The Z-80 mnemonics clearly differentiate a pointer by means
of the parentheses, whereas the corresponding 8080 mnemonics do not make
such a clear distinction.

Z-80 RELATIVE JUMPS

Computer instructions are generally executed in order, one after the other.
But it is sometimes necessary to branch out of the normal sequence of state-
ments. Branching statements can be classified as either conditional or uncon-
ditional. An unconditional or absolute branch always causes the computer
to execute instructions at a new location, out of the normal flow. Condi-
tional branching, on the other hand, is based upon the condition of one of
the flags.

_ Programs utilizing the Z-80 instruction set can be significantly shorter
than those written with 8080 operation codes, especially if the relative jump
instructions are used. Relative jumps are performed by branching forward or
backward relative to the present position. Absolute jumps, on the other
hand, are made to a specific memory location. Furthermore, there are both
unconditional and conditional branch instructions. The absolute, uncondi-
tional jump op code and the conditional jump codes based on the state of
the zero and parity flags are all three-byte instructions.

JP ADDR1 i unconditional Jume

JP ZyADDR2 i Jumr if zero fladg set

JP NZsADDRZ § Jdumr if zero flag reset
JF CrADDR4 § Jdumr if carrw flad set
JP NCyABDRS ¢ Jumr if carrye flag reset

The above instructions are available on both the 8080 and the Z-80 CPUs.
In addition, the Z-80 has a relative, unconditional jump and five relative,
conditional jumps.

JR ADDR # unconditional Jume
JR ZyADIIR6 5 zero
JR NZ»ADDR7 % not zero
JR CsADDR8 § carrwy
JR NCsADDR? ¢ not carry
9

DJUNZ ADDR10O decry Jumr not zervo




INTRODUCTION 13

The relative jumps are only two bytes long as opposed to three bytes
for the regular jumps, but the relative jump is limited to a displacement of
less than 126 bytes forward or 128 bytes backward from the address of the
current instruction. These numbers derive from the magnitude of the signed
8-bit displacement. Bit 7 is used for the sign of the number. A 0 in bit posi-
tion 7 means a forward or positive displacement, a 1 in this bit position
means a backward or negative displacement. The remaining seven bits are
used for the magnitude of the jump.

Absolute jumps are specified with a 16-bit address that gives the new
location. Relative jumps on the other hand are position-independent. The
resulting code can be placed anywhere in memory. The last operation above,
DJINZ, is a combination of two instructions. The B register is decremented.
If the result is not zero, then there is a relative jump to the given argument
ADDR10. This two-byte instruction requires four bytes on an 8080 CPU.

Z-80 DOUBLE-REGISTER OPERATIONS

While some of the Z-80 instructions appear to be shorter than their 8080
counterparts, they may not actually reduce the program size. Suppose, for
example, that we want to move a block of data from one memory location
to another. There is a single Z-80 instruction for accomplishing this task.
The problem is that no verification is performed during the move. Thus, if
there were no memory at the new location, or if the memory were defective,
this fact would not immediately be discovered. If you want to check each
location as the data are moved, then the Z-80 block-move instruction cannot
be used.

A better way to move data is to define the beginning of the original
memory block with HL and the end with DE. The BC register defines the
beginning of the new block. We can work our way through the original block
by incrementing HL and BC at each step along the way.

The end of the block can be detected when HL exceeds DE. We sub-
tract the two 16-bit registers and observe the carry flag. The HL register pair
will initially be less than the DE pair. Therefore, if we subtract DE from HL,
we will set the carry (borrow) flag.

Eventually, the number in the HL register will equal the value in the
DE pair. This time, the subtraction will not set the carry flag and the task
will be completed. Since the 8080 doesn’t have a 16-bit subtract instruc-
tion, the routine might look like this.

LOOF o s o # 8080 version
MOVE Asl i GET L
SUB E # SUBTRACT E
MOV AsH § GET H
SBR o i SUBTRACT I' AND EORROW .
JC LOoOP i IF NOT DONE
RET 5 DNONE
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As long as HL is less than DE, the subtraction will set the carry flag and the
loop will be repeated. But as soon as HL equals DE, the carry flag will be
reset and the subroutine is finished.

The Z-80 has a 16-bit subtract instruction that can simplify the opera-
tion. But since the result of the subtraction is placed in the HL register pair
rather than in the accumulator, the data originally present in HL will have to
be saved somewhere else, say, on the stack. The Z-80 code is:

LOOP: .+ . . 5 Z-BO version
ORrR A 3 RESET CARRY
FPUSH HL i SAVE HL ON STACK
SBC HL s DE 5 SURTRACT DE FROM HL
FOP HL. i RESTORE ORIGINAL HL PAIR
JR CrLOOF $ IF NOT DONE
RET

The necessary Z-80 instructions require just as many bytes as the corre-
sponding 8080 code. And if the carry flag on the Z-80 has not been reset by
a previous instruction, it will have to be reset at the beginning with a logical
OR instruction. This latter problem occurs because the Z-80 16-bit subtrac-
tion includes the carry flag in its calculations.

Z-80 INPUT AND OUTPUT (1I/0) INSTRUCTIONS

A useful pair of Z-80 instructions deals with input and output, i.e., the
transfer of data between the CPU and peripherals such as the console, the
printer, and the disk. The 8080 can only input and output data from the
accumulator, and the address of the peripheral device must immediately
follow the IN or OUT instruction in memory.

ouT 10
IN i1

This usually means that for read-only memory (ROM), there must be sepa-
rate input and output routines for each peripheral.

In contrast, the Z-80 can input or output a byte from any of the
general-purpose registers when the peripheral address is in the C register.
In this case, it may be possible to use a single set of I/O routines for all
peripherals. This approach is discussed more fully in Chapter 4.

SHIFTING BITS

The Z-80 CPU extends the four 8080 rotate instructions to the general-
purpose registers B, C, D, E, H, and L. The memory byte referenced by HL,
IX, and IY is also included.

The Z-80 instruction set includes three shift operations. Shifts are
similar to rotations since each bit moves one position and the bit that is
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shifted out of the register is moved into the carry flag. The difference is in
the bit that is shifted into the register.
The arithmetic shift left .

sLA

shifts all bits to the left. A zero bit moves into the low-order bit.

P i Al I TSI Y DRSSy Ry pay
N e dm e e de de e gm ] G
Pt R L e B P e e e

carry accumylator

The operation doubles the original 8-bit value. This operation can be per-
formed on the accumulator of an 8080 by using an

ALD A

instruction.
A logical shift right

SRL

is the inverse of the arithmetic shift left operation. Each bit shifts one posi-
tion to the right. A zero bit is shifted into the high-order position.

0 ._._‘::,. | ....} ..}. ._.:;,. _:.';, ..::;. .._::;. ._.::‘ ...:;;._.........4.....‘::;. I !

P o o f e f o | e f i f e | P |

accumulator carry

This operation halves the original 8-bit value. The carry flag is set if the
original value was odd, that is, if there is a remainder from the division.
The arithmetic shift right

SRA

shifts each bit one position to the mght but the original high-order bit is
unchanged.

b e o o | e | | | e | .

b ] - - - - ) - - R e | |
] !mu~!~—_!___!__~!_~~!*m_!~m"!~**! [T |

! ! accumulator carry

Pmmmgmem

This operation can be used to divide a signed number in half. The high-order
bit, the sign bit, is unchanged. As with the logical shift right, the carry flag is
set if the original number was odd.




CHAPTER TWO

Number Bases
and Logical Operations

In this chapter we will consider how numbers are stored in a computer. We
will also look at some of the operations that can be performed on these
numbers. But first we will review the representation of numbers in general.
When we write a number such as 245, we usually mean the quantity 5 plus
40 plus 200.

4 5 (decimal)
| L 5X 1= b
4 X 10= 40 (4 X the base)
- 2 X 100 = 200 (2 X the base squared)
245 (decimal)

2

This is the ordinary decimal or base-10 representation of a number. The
rightmost digit gives the number of units. The digit immediately to the left
is the number of tens (the base). The next digit to the left is the number of
100s (the base squared).

In assembly language programs it is sometimes convenient to represent
numbers with a base of 2, 8, or 16. In the octal, or base-8, system, for exam-
ple, the number 245 is equivalent to the decimal number 165 (5 plus 32
plus 128).

2 4 5 (octal)

| L s5x 1= 5
4X 8= 32 (4 X the base)

2 X 64 =128 (2 X the base squared)
165 (decimal)

16
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This example demonstrates how to convert numbers from other bases into
the decimal representation by adding up the decimal equivalent of each digit.
In the binary, or base-2, system, only the digits 0 and 1 are used. The
individual digits are called bits, an acronym for binary digits. The rightmost
bit represents the units. The bit immediately to the left is the number of 2s
(the base). The next bit to the left is the number of 4s (the base squared).
We continue in this way through all of the bits. For example, the binary
number .

10100101

is equivalent to the decimal number 165. The conversion is obtained in the
following way. '

101 0 0 1 0 1 (binary)

L"IT;

=t
>

w

1 I I A

ot
Do
XoONOOROH

HOHOOKHO
XXX X XXX
0O ™ DN O 0O W DD =

—
DN O O

|

165 (decimal)

We have seen that the decimal system utilizes ten different digits (0-9).
The octal system, however, utilizes only eight digits (0-7), and the binary
system uses only two (0-1). The hexadecimal, or base-16, system is also
commonly used in computer programs. With this method, we need 16 differ:
ent digits. The problem is that if we use all of the digits (0-9) from the
decimal system, we will still be six digits short. The solution is to use the
letters A through F to represent the digits beyond 9. Thus, the hexadecimal
number Ab is equivalent to the decimal number 165. We can convert a hexa-
decimal number into decimal in the usual way if we remember that A stands
for decimal 10, B for 11, and so on.

A 5 (hexadecimal)
L~——- 5X 1= 5
—— 10 X 16 = 160 (10 times the base)
165 (decimal)

The first 16 integers of the decimal, binary, octal, and hexadecimal systems
are shown in Table 2.1.
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Table 2.2. The first 16 integers represented
in various number systems.

decimal binary octal hex
0 0000 000 00
1 0001 001 01
2 0010 002 02
3 0011 003 03
4 0100 004 04
5 0101 005 05
6 0110 006 06
7 0111 007 07
8 1000 010 08
9 1001 011 09
10 1010 012 0A
11 1011 013 0B
12 1100 014 0C
13 1101 015 0D
14 1110 016 OE
15 1111 017 oF

Table 2.1 shows the common practice of displaying leading zeros on
numbers expressed in bases other than 10. Thus we write 5 for a decimal
number, but we may write 005 if it is an octal number or 05 if it is a hexa-
decimal number. We may explicitly represent the base by a suffix. In books,
for example, we typically utilize a subscript in smaller size type. Thus we
will write:

1010, (binary)
174 (octal)
1740 (decimal)
176 (hexadecimal)

Alternately, we use suffixes of B, Q, D, and H to designate, respectively,
binary, octal, decimal, or hexadecimal mode in computer programs where
subscripts are not available.

1010B (binary)

17Q (octal)

17D (decimal)
17H (hexadecimal)

(The letter Q is used instead of an O for an octal number to avoid confusion
with zero.)
Binary numbers such as

011001101111
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can be difficult to read, so it is common practice to repreéent them in octal
or hexadecimal form. Conversion to octal is easy if the bits are grouped by
threes.

011 001 101 111 (binary)
3 1 5 7 (octal)

Grouping by fours facilitates the conversion to hexadecimal.

0110 0110 1111 (binary)
6 6 F (hexadecimal)

NUMBER REPRESENTATION IN BINARY, BCD, AND ASCII

All information is ultimately stored in computers as a series of binary digits.
There are, however, several different coding schemes for representing the
original data. The simplest method is to use straight binary coding, as shown
in Table 2.1. Notice that we might choose to represent a binary value in
decimal, octal, or hexadecimal notation. The number itself is unchanged by
this. The decimal number 12, for example, is stored as the binary number
1100.

A different method of representing data is called binary coded decimal
(BCD). Actually, there are two types of BCD: unpacked and packed. With
unpacked BCD, each byte contains a single decimal digit from 0 to 9. Packed
BCD can have one or two decimal digits in each byte. Thus, a packed BCD
number can range from 0 to 99. By comparison, an 8-bit binary number can
range from O to 255. Table 2.2 shows the first 16 integers in BCD. The first
column gives the decimal equivalent, the second column the corresponding
bit pattern.

Table 2.2. The first 16 integers represented in
decimal and binary-coded decimal (BCD).

decimal BCD

0000 0000
0000 0001
0000 0010
0000 0011
0000 0100
0000 0101
0000 0110
0000 0111
0000 1000
0000 1001
10 0001 0000
11 0001 0001
12 0001 0010
13 0001 0011
14 0001 0100
15 0001 0101

OO Uk W RO
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Notice that the binary representation for the decimal numbers O through 9
is the same for both binary and for BCD.

A third method for encoding data is called ASCIIL. This scheme is com-
monly used with peripherals such as printers and video terminals. When the
key labeled 2 of an ASCII console is pressed, the bit pattern

0011 0010

is generated. Table 2.3 gives the bit patterns for the ASCII digits 0-9 in
binary and hexadecimal notation.

Table 2.3. The bit pattern for the ASCII digits 0-9.

digit binary hexadecimal
0 0011 0000 30
1 0011 0001 31
2 0011 0010 . 32
3 0011 0011 33
4 0011 0100 34
5 0011 0101 35
6 0011 0110 36
7 0011 0111 37
8 0011 1000 38
9 0011 1001 39
LOGICAL OPERATIONS

The fundamental operations of a computer involve electrical signals that can
‘have only one of two values. The two voltage levels might be zero and 5
volts, for example, or they might be something else. The actual value is
unimportant at this point. Instead, we refer to the two allowable states as
TRUE and FALSE. The TRUE state is also called a logical 1, or high state,
and the FALSE state is also known as a logical 0, or low state.

TRUE =1 (high)
FALSE =0 (low)

Computers store numbers in binary form as a series of 1s and Os. These two
possible values correspond to the two possible voltage levels of the electronic
circuitry. We can therefore utilize the expressions TRUE and FALSE to
describe the state of each bit.

: The collection of transistors, resistors, and so forth that makes up the
physical computer is called the hardware. The computer program used to
direct the activities of the computer is termed the software. In this sense, the
hardware and software are distinctly different. But sometimes we use these
terms a little differently. ‘
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Consider, for example, one of the major differences between minicom-
puters and microcomputers. Minicomputers contain electronic circuitry for
the multiplication of two numbers. Since microcomputers do not contain
such circuitry, multiplication is performed instead by executing a special
computer program. We say that minicomputers perform multiplication by
hardware, but that microcomputers must do multiplication by software.

Hardware operations are performed by electronic devices called gates.
The internal structure of the gate is unimportant if we are only interested in
the logic of its operation. There are input signal lines that are sampled by the
gate, and there is an output signal that is generated by the gate. When we
consider the logical operations that are performed by a computer, we can
imagine that they are accomplished either by hardware or by software. The
answer is the same. :

A common logical operation is the complement or inversion of a binary
digit. The complement of 0 is 1 and the complement of 1 is 0. The hardware
complement is performed with an inverter or NOT gate. The electronic
symbol for this gate, shown in Figure 2.1, is a triangle with one apex to the
right (usually) or to the left (sometimes). A small circle or triangle at this
apex completes the symbol.

N

Figure 2.1. The electronic symbol for the NOT or inverter gate.

Letters of the alphabet are used to designate input or output signals.
These binary signals can have one of two states, termed TRUE (1) or FALSE
(0). The letter A with a bar over it (A) represents the complement of A and
is called NOT A. A truth table is used to summarize the possible states.

A A or A A
0 1 FALSE TRUE
1 0 TRUE FALSE

THE TWO’S COMPLEMENT

If each bit of an 8-bit byte is complemented, we produce a result that is
termed the one’s complement of the byte.

0000 1001 = 9
1111 0110 = one’s complement of 9

Both the 8080 and the Z-80 CPUs provide an operation code for comple-
menting the accumulator. A slightly different operation is the two’s com-
plement. It is obtained by incrementing (adding 1 to) the one’s complement
of a number. For example: '
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0000 1001

i

9

I

1111 0110 one’s complement of 9
+ 0000 0001 add one

1111 0111

]

two’s complement of 9

It is interesting to note that the sum of a number and its two’s comple-
ment is zero.

1010 1010 = 170

0101 0101 = one’s complement of 170
+ 0000 0001 add one

0101 0110 = two’s complement of 170
0101 0110 = two’s complement of 170
= 170

+ 1010 1010
~ 0000 0000 sum
Adding the two’s complement of a number produces the same result as

subtracting the number itself. For example, we can subtract 170 from 223
by adding the two’s complement of 170. The result is the same.

1101 1111 = 223
- 1010 1010 = 170
0011 0101 = 53
or
1101 1111 = 223
+ 0101 0110 = 2’s complement of 170
0011 0101 = 53

The 8080 CPU can perform both addition and subtraction with 8-bit
numbers and it can add 16-bit numbers, but there is no 16-bit subtraction
operation. We can effectively perform a 16-bit subtraction, however, by
adding the two’s complement. Suppose that the HL register pair contains
the decimal value 10,005 and we want to subtract 10,000 from it. The dif-
ference between 10,005 and 10,000 can be obtained by adding the two’s
complement. Consider the bit pattern for the number 10,000.

0010 0111 0001 0000 = 10,000
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We first form the one’s complement, then increment the result to form the
two’s complement.

1101 1000 1110 1111 = one’s complement of 10,000
+ 0000 0000 0000 0001 add one

1101 1000 1111 0000 = two’s complement of 10,000
Finally, we add this two’s complement to the value in HL.

0010 0111 0001 0101 = 10,005 in HL
+ 1101 1000 1111 0000 = two’s complement of 10,000

0000 0000 0000 0101 difference (sum) is 5

When an assembler encounters a negative argument, it will automati-
cally calculate the corresponding two’s complement. Thus the 8080 ex-
pression

LXI = Dy-10000
will place the bit pattern
1101 1000 1111 0000
in the DE register pair. The instruction

nap D

will then effectively perform a 16-bit subtraction on the number in HL.

LOGICAL OR AND LOGICAL AND

In the previous section, we considered the logical operation of NOT. Two
other important logical operations are OR and AND. Both of these opera-
tions reflect the usual English meaning. The logical OR of two bits results in
a value of TRUE (1) if either or both the original values are TRUE. The
result is FALSE otherwise. The logical AND of two values gives an answer
of TRUE (1) if and only if both of the original values are TRUE. If elther or
both the original values are FALSE, then the answer is FALSE.

Equations of logical operations can be written using the appropriate
symbols. Two OR operators are in common use: a plus symbol and a V-
shaped symbol. The AND operator is either a dot or an inverted V. The
schematic representations of the OR and AND gates are shown with their
corresponding mathematical representations in Figure 2.2.
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A A
=A+
Bj>—XAB B

Figure 2.2. The OR and the AND gates.

The truth table is
(OR) (AND)
A B A+B A-B
0 0 0 0
0 1 1 0
1 0 1 0
1 1 1 1

where zero means FALSE and 1 means TRUE. The origin of the + symbol
for the OR operation and * symbol for the AND operation can be seen from
the truth table. Logical operations are performed separately on each bit, and
there is never a carry. The logical OR (sum) of A and B gives zero if both
bits are zero, but 1 otherwise. (Binary digits can’t be larger than 1.) The
logical AND (product) of A and B gives zero if either or both bits are zero
and unity otherwise.

SETTING A BIT WITH LOGICAL OR

Sometimes, we need to set one or more bits of the accumulator. We can use
the logical OR operation for this purpose. From the truth table in the pre-
vious section, we can see that a logical OR of 1 with either a 0 or a 1 will
give a result of 1.

A B A+B
1 0 1
1 1 1

Thus, a logical OR of any bit with a 1 will set that bit. On the other hand, a -
logical OR of 0 and another bit gives the result of that other bit.

A B A+B
0 0 0
0 1 1

In this case, the second bit is not changed.
" Suppose that the accumulator contains a binary 5 and we want to con-
vert it to an ASCII 5.

0000 0101
0011 0101

binary 5
ASCIL 5

Il
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If we compare the two bit patterns, we can see that they are the same except :
for bits 4 and 5. These bits can be set by executing a logical OR with an
ASCII zero.

0000 0101 = binary 5
OR 0011 0000 = ASCII zero

0011 0101

ASCII 5

I

The OR operation has set the bit corresponding to the location of the 1, but
it has left the other bits unchanged.
Alogical OR of a register with itself does not change the value.

0101 1010 5A hex
OR 0101 1010 = 5A hex

0101 1010

i

5A hex
But this operation can be used to set the flags. In this example, the zero,
carry, and sign flags are reset and the parity flag is set.
RESETTING A BIT WITH LOGICAL AND
A logical AND operation can be used to reset any particular bit of the

accumulator; the truth table shows how. A logical AND of 0 and either a 0
or a 1 will always give a result of 0.

A B A-B
0 0 0
0 1 0

Thus, the bit is reset. On the other hand, a logical AND of 1 and another bit
will give the value of the other bit.

A B A-B
1 0 0
1 1 1

Thus the AND instruction can be used to reset or “turn off” particular bits.
This step is sometimes called a masking AND operation.

When the CPU reads an ASCII character from the console, it gets an
8-bit byte. But since the ASCII code contains only 7 bits, the high-order bit
is not needed. The console-input routine typically resets this bit by per-
formmg a masking AND operation. Suppose that the console transmitted an
ASCII 5 with the high-order bit set. The bit pattern looks like this.

1011 o101
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The high-order bit can be reset with an AND operation.

1011 0101 (original byte)
AND 0111 1111 (mask)

0011 0101 (ASCII 5)

LOGICAL EXCLUSIVE OR

The ordinary OR operation is sometimes called an inclusive-or operation to
distinguish it from the exclusive OR (XOR) operation. For this latter opera-
tion, the result is TRUE only if the corresponding bits of both values are
different. Either A or B must be TRUE, but not both. The XOR operation
is represented by a plus symbol surrounded by a circle. The complement of
the XOR is the exclusive NOR or XNOR. It can be used as a comparator.
The hardware implementation is sometimes used in circuitry to enable

- memory boards. The result is TRUE if and only if both corresponding bits
are identical. The result is FALSE otherwise. The truth table is:

A B A®BB A®B
0 0 0 1
0 1 1 0
1 0 1 0
1 1 0 1

The exclusive OR of a bit with itself will always be FALSE. Therefore the
XOR of the accumulator with itself will set it to zero.

0111 1100 = 7Chex
XOR 0111 1100 = 7Chex
0000 0000 = zero

The corresponding electronic symbols for the hardware implementation of
the XOR and XNOR are shown in Figure 2.3.

'D_— = ’D— .
X A@B X——A@B
B B

Figure 2.3. The exclusive or (XOR) and comparator (XNOR) gates.

LOGICAL NAND AND NOR GATES

- By combining an inverter gate in series with the AND and OR gates, a new
set of gates is formed. The NOT AND gate is called a NAND gate; it is shown
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in Figure 2.4. The NOT OR gate is known as a NOR gate; it is shown in
Figure 2.5.

F{ >SO— X=A"B X=A"B
B— B

Figure 2.4. The NAND gate can be produced from an AND gate and a NOT gate.

A , A ' e
X=AFB X=AFB
B B

Figure 2.5. The NOR gate can be formed from the OR gate and the NOT gaté.

From the truth table, it can be seen that the outputs of the NOR and NAND
gates are the inverse of the corresponding OR and AND gates.

A B A+B AB
0 0 1 1
0 1 0 1
1 0 0 1
1 1 0 0

If both inputs of the NOR gate are connected together, then the gate
behaves like a NOT gate. The same is true for the NAND gate. This can be
seen by comparing the first and last rows of the truth tables. In this way,
two NOR gates can be combined serially to produce an OR gate. The result
is a NOT NOT OR gate that is equivalent to an OR gate. This is shown in
Figure 2.6. In a similar way, two NAND gates can be used to make an AND
gate as shown in Figure 2.7. Since OR and AND gates cannot be similarly
combined to produce the NOR and NAND gates, we Wﬂl find that NAND
and NOR gates are more common.

w o>
>
+
les!
>
I
=
]
=
il
b
+
o

Figure 2.6. An OR gate is formed from two NOR gates.

A-B '
A —
B—o| Do—x=:&*f‘§=A-B

Figure 2.7. Two NAND gateé are combined to produce an AND gate.
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MAKING OTHER GATES

NOR and NAND gates are very versatile. NOR gates or NAND gates can be
combined to produce all of the other gates. This can be seen from the fol-
lowing truth table.

A B A B A+B A‘B + AB A¥B A‘B
0 0 1 1 0 0 1 1 1 1
0 1 1 o0 1 0 1 0 0 1
1 0 0 1 1 0 1 0 0 1
i 1 0 0 1 1 0 0 0 0

Notice that column 7 of the truth table has the same values as the last
column. Similarly, columns 8 and 9 are identical. These relations follow
De Morgan’s theorem, which can be expressed mathematically as:

=A-B and

) e—a

B

Figure 2.8. A NAND gate is formed from four NOR gates.

=D L
T s

Figure 2.9. A NOR gate is obtained from four NAND gates.

The use of a small circle to represent inverted output brings up another
approach to the understanding of digital logic gates. In the more commonly
used system, the small circles are used only on the output side of the gate.

Another approach, however, is to always connect active-high outputs
to active-high inputs, and active-low outputs to active-low inputs. For this
latter system, NAND gates will sometimes appear as OR gates with inverted
inputs, and NOR gates will sometimes appear as AND gates with inverted
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inputs. According to De Morgan’s theorem, the NAND gate is equivalent to
the OR gate with inverted input signals. This is demonstrated in Figure 2.10.
The circuit shown is logically the same as the one shown in Figure 2.9.
Notice that the active-low outputs of the first NAND gates are connected to
the active-low inputs of the next OR gate. That is, there are small circles on
the outputs of the first gates and on the inputs of the second gate.

O

A

>l

-+

| |
@_}:_BE}X:MB
[ —

B

.
Figure 2.10. A NOR gate is produced from four NAND gates. The middle NAND
gate is shown in its alternate representation.




CHAPTER THREE

The Stack

When main memory is used to store a collection of data, each member of
the data set is individually accessible. This type of storage is termed random
access memory (RAM). Magnetic tape storage, by contrast, is serial or
sequential access memory. In this latter case, only one item of the set is
available at any one time. There are two ways of storing and retrieving the
items in a serial memory buffer: one is by means of a first-in, first-out
(FIFO) buffer, and the other is by means of a last-in, first-out (LIFO) buf-
fer. We can visualize the serial buffer as a long string of information. With
the FIFO buffer, items are added at one end and removed from the other.
This buffer is analogous to an escalator: the people who ride the escalator
are like the data—those who get on first, get off first.

Out

Figure 3.1. The first-in, first-out (FIFO) buffer.

With the LIFO buffer, on the other hand, the data are added and
removed at the same place. This arrangement is analogous to a very long,
narrow elevator. Those who get on first, have to wait until everyone else is

30
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off before they can get off. It can be seen that magnetic tape is a FIFO
medium.

In Out

Figure 3.2. The last-in, first-out (LIFO) buffer.

Sometimes, a special area of main memory is designated as a LIFO
buffer even though each member of the buffer is individually accessible.
This region is known as a stack. As an example, Hewlett-Packard calculators
utilize a very short LIFO stack, consisting of registers known by the letters
Y, Z, and T. An item in any of the registers is individually accessible, yet the
stack as a whole can be manipulated. As data is entered from the keyboard,
it is placed into the X register. This information can then be transferred to
the stack (register Y in this case) by pressing the ENTER key. We say that
the contents of the X register are pushed onto the stack. Items can be
retrieved from the stack and placed in the X register with the roll-down (R)
key. We say that data are popped from the stack into the X register by this
means. Another stack operation is performed by the EXCHANGE key which
is used to swap the contents of the X and Y registers. ,

STORING DATA ON THE STACK

We have seen in the previous chapters that the 8080 and Z-80 microprocessors
incorporate general-purpose registers for the storage of information. But
these registers are limited in number. Consequently, a special area of main
memory is designated for the additional storage of information. This area,
called the stack, is implemented on the Z-80 and 8080 as a last-in, first-out
serial buffer even though each item in the stack is individually accessible.
One of the CPU registers, the stack pointer, references the current location
in memory. This is the address of the most recently added item. The stack
pointer is decremented as items are added and incremented as items are re-
moved. The programmer may place the stack anywhere in memory by load-
ing the stack pointer with the desired address. For example, the instruction

Lo SFs4000H (Z-80) or
LXI SF s 4000H (8080)

initializes the stack to location 4000 hex.
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Data can be placed on the stack with one of the PUSH operations. A
command of

(Z-80) (8080)
PUSH HL PUSH H

will move a copy of HL to the stack. Since main memory is addressed eight
‘bits at a time, the PUSH operation is actually performed in two stages. The
stack pointer is decremented, then the H register (the high half) is copied to
the stack. The stack pointer is decremented a second time and the L register
(the low half) is copied to the stack. The stack pointer register now contains
the address of the low byte. Figure 3.3 demonstrates the action of aPUSH HL
command. The region of memory devoted to the stack is shown with higher
memory upward. The arrow represents the stack pointer.

Address
SF P e ! R ! e !
=== 1 ] 1 ] ! 1 4000
R et I 8P l-———e—- ! b e ]
! | ===» | high ! ! high ! 3FFF
L e ! b 1 gp e ]
! ! ! b o=m==k | low ! 3FFE
R ! R ] R et !

fmmmm e o !
HL ! high | low ! _J

Figure 3.3. The HL register is pushed onto the stack.

The POP instruction reverses the PUSH process. For example, a POP DE
command copies 16 bits from the stack into the DE register. Because the
stack operates in a LIFQ manner, the most recently added byte is removed
first. This is placed into register E (the low half of the DE pair). The stack
pointer is automatically incremented and the next byte is transferred from
memory to register D (the high half). The stack pointer is then incremented
a second time. Figure 3.4 demonstrates the operation. Notice that the data
originally pushed onto the stack is still present.

Address
fmmm e b e v s e !
§ | I 4000
| e e ot o e cn | o !
! ' high } 3FFF
SF | oo s e § o e e e !
=== ! I low ' 3FFE
[ [ i

DE

Figure 3.4. Two bytes are popped from the stack into DE.
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It can be seen that the stack grows downward in memory as data are
pushed into it, and it moves back up as data are popped off. For this reason,
it is common practice to initialize the stack pointer to the top of usable
memory. Actually, the stack pointer can start at one address above the top
of memory since the stack pointer is always decremented before use.

If the general-purpose registers contain important information but they
are needed for a calculation, it will be necessary to save the original data.
This can be easily done by pushing the contents onto the stack. The registers
are restored at the end of the calculation with the three corresponding POP
commands. The operation goes like this.

FUSH HL ssave HL

FUSH DE isave DE

PUSH RC ssave BC

o e o ido the calculation
FOP BC irestore BC

POP  DE irestore DE

FOF HL irestore HL

Notice that the order of the POP commands is reversed from that of the
PUSH sequence. This is necessary because of the stack’s LIFO operation.

STACK

T ! b e ! |
! H ! ! H ! ! H !
B8P femmmeme ! P ! | e !
=me e ] L i | L | ! L ]
e e ! T — ! [J— '
! 1] ! ! D !
GP  lmmmmmmeee I T—— !
T | E [ | E 1
R e | T e 1
f B ]
e '
=== | [ [}
| ]

FUSH H PUSH I FUSH B

Figure 3.5. The contents of the géneral-purpose registers are saved on the stack.
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STACK
TR ) . bGP e '
| } i ) o=l | !
R I f o e e o o e e | § o o o o o e e ]
' H ' ! H ' ' H !
b I8P g ! b o |
! L | oms=sy ) L ' ' L |
R ] B e e e e e e e ] b e o e e i
} il ! ] n ] I D ]
SP b o o e e | [ ! F o o e o e e 1
mmm | E I ] E | ] E ]
[ R —— ] § e e st s s ot ] | R repp——— ]
! B ! i R ! ] R i
B o e o e s e e i B e o o e o e e e ! b o e e o o e e i
} [N | ! C i i C §
b o e o e e ] [ et ! B o e e i s e |

Figure 3.6. The original contents of the general-purpose registers are restored
from the stack.

THE ACCUMULATOR AND PSW AS A DOUBLE REGISTER

The 8-bit accumulator and the 8-bit flag register are treated as a 16-bit
double register for the PUSH AF and POP AF instructions. In this case, the
accumulator is treated like the high byte since it is pushed onto the stack
first. The flag register is pushed onto the stack second. Figure 3.7 demon-
strates this.

stachk stack
SP e ! § oo e e !
=y i [ i
o ) F e o o s e !
| ! ! A -1
e b 8P e ! I
! | mm=lx | flads ! I
L atatalalaly ! Poele fommmm i | !
! !
§ ittt ! ¢
! ! A o=t
! 1 o o e e !
- | flags |
[ ]
FPUSH FSY FOF PSUW

Figure 3.7. Contents of the accumulator and flag registers are pushed onto the stack.
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Data can be moved from one register pair to another by using a
PUSH/POP combination. For example, the two 8080 commands

FUSH H
FOP I

will move H to D and L to E. This is not the most efficient way to accom-
plish the move, however. The sequence requires access to main memory and
so is slower than the direct register moves

MOV  DsH
MOV EsL

Z-80 INDEX REGISTERS

The Z-80 has two, 16-bit index registers that can participate in the PUSH
and POP operations. However, the instructions each require two bytes com-
pared to the other PUSH and POP instructions which only require one byte
each. As a result, the execution time is slower than the other PUSH and
POP instructions. There are no official instructions for moving data between
the index registers and the general-purpose registers. This transfer can be
performed, however, by use of the PUSH and POP commands. The two
instructions

FUSH IX
FOF BC

will copy the IX register into the BC register.

SUBROUTINE CALLS

We have seen that the PUSH instructions can be used by the programmer to
store data on the stack. The 8080 and Z-80 CPUs use the stack for a second
purpose: storing the return address when a subroutine is called. Subroutines
are used to efficiently code a set of instructions needed at several different
places in a computer program. A subroutine is called by using the assembly-
language mnemonic CALL. At the end of the subroutine, indicated by the
return statement, control is automatically returned to the calling program.

I eelling | ~—e—mmee— » 1 subroutine |
I prodram | <-———e———— R e |

The input and output routines which control the console may - be
needed at several locations in a program. Consequently, they are coded as
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subroutines. The 8080 assembly language subroutine for the console might
look like this.

QUTPUT: IN 8TATUS § CHECK STATUS
" ANI INMSK i INFUT MASK
JZ QUTPUT § NOT READY
MOV AsE 3 GET DATA
ouT DATA § SEND DATA
RET 5 DONE

Data can be output from anywhere in a program by placing the byte in the
B register and calling the output subroutine. The following examples of
8080 assembly language mnemonics show how a question mark and a colon
can be printed by calling the console output routine.

WHAT? MVI By T/ SOUTPUT A 7
CaLL QUTFUT

® ¢ *

°

COLON? MVI By’ 8/ $0UTPUT A COLON
CaLl OUTPUT

e o 2

The above examples utilize the unconditional subroutine call and
unconditional return instructions. Conditional call and return instructions
are also available. These commands perform the appropriate call or return
only if the referenced PSW flag is in the desired state. The four flags-—zero,
sign, carry, and parity —give rise to eight conditions.

Zero
not zero
plus

minus
carry

not carry
parity even
parity odd

These instructions are discussed in more detail in Appendix H.

The stack provides the mechanism for subroutine operation. When a
CALL instruction is encountered, the address immediately following the
CALL statement is automatically pushed onto the stack. The subroutine
address is then loaded into the program counter register. The program
counter tells the CPU which instruction to execute next. Since a subroutine
CALL uses the stack, the programmer must be sure that the stack is properly
defined prior to a subroutine CALL. When a return instruction is subse-
quently encountered, the return address is popped off the stack and placed
into the program counter. After return from a subroutine, program execu-
tion continues with the instruction following the CALL statement.
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PASSING DATA IMPROPERLY TO A SUBROUTINE

Since the stack can be used for storing both data and subroutine return
addresses, the programmer must ensure that there are no conflicts. First,
there should normally be as many POP instructions as PUSH instructions.
Second, one must be careful not to PUSH data onto the stack, CALL a sub-
routine, then POP data off the stack. The LIFO nature of the stack will
cause trouble in this case.

FUSH H
CALL ORDER »==--1
¢ * °* !

L . !

ORDER ¢ o o e DTN |
POP H
° L4 ¢ i
RET Fm——— PP?? CRASH !

Figure 3.8 shows an example of improper mixing of data and the return
address on the stack. Higher memory is upward and lower memory is down-
ward. The arrow indicates the current stack pointer position.

STACK

SP e it ! i I GF e !
EEE I date ! I dats I === | data i
e e i I 8P lewmmm——— I o v o e !

=== | address !

O '
! | o e e e !
f e HsL ! address |
R —— 1

PUSH H CalLL ORDER FOF H RET

Figure 3.8. Improper mixing of data and the return address on the stack.

In this example, the data is first pushed onto the stack while in the main
program. The return address is then pushed onto the stack next, when the

CALL instruction is encountered. The POP instruction in the subroutine will

actually load the HL register pair with the subroutine return address rather.
than the data that was expected. This occurs because the data was pushed

onto the stack before the return address. Worse yet, the RET instruction will

load the program counter with the data, rather than with a useful address.

Strange things are likely to happen when the CPU attempts to execute

instructions at an address defined by the data.

PASSING DATA PROPERLY TO A SUBROUTINE

This section demonstrates a proper way to pass data into a subroutine by
using the stack. The task can be accomplished with the 8080 XTHL instruction




38

8080/Z-80 ASSEMBLY LANGUAGE

or the Z-80 EX (SP),HL instruction. This operation exchanges the HL
register pair with the two bytes at the current stack position. The instruction

is analogous to the X/Y EXCHANGE key on an HP calculator.

The method works in the following way. The data is pushed onto the
stack while control is in the calling program. When the subroutine is called,
the return address is pushed onto the stack, just after the data. A POP
instruction, executed in the subroutine, delivers the return address to the HL
register. Now, the XTHL instruction exchanges the HL register with the
stack. The desired data is now in HL and the return address is on the stack.
Finally, a return instruction will correctly return control to the calling

program.
PUSH H
CALL ORDER
L3 ® *
ORDER: o+ o+ o
POF H
XTHL
* ® *
RET
STACK lemme e t 8P
! data b omme
8P - !
===3% | address !
) e e ]
HL
CALL POP H

§ main rrodram
# call subroutine

# start of subroutine
i det return address
i exchande with dats

$ return to main Frodram

o oo ot o o sain o b o000

XTHL

Figure 3.9. Proper mixing of data and return address on the stack.

It is important to note that the XTHL command only works with the

' HL register. There is no equivalent instruction for the DE or BC registers.




THE STACK 39

PASSING DATA BACK FROM A SUBROUTINE

A variation of the XTHL technique is also possible. Data can be pushed onto

the stack from within a subroutine, then retrieved after returning to the
calling program.

CalLL FETCH ,
FoP H $GET THE DATA

° * °

FETCH: .+ + o

LXI HyDATA FPUT IN HsL
XTHL FSWITCH STACK
PUSH H $RET ADDR

L4 e ¢

RET

DATA in this case is predefined and is part of the LXI instruction.

stack stack
SP e b 8P lemmmm——ee !
===3 | address | ===3 | data f
S ! . !
e it ! e e e I
ML ! data | ! address !
S | [ I
CALL XTHL
STACK
e bGP e I
I datsa | ===> | data §
SF 1 v et e e e § 1 e o e !
=== | address !
R etk !
PUSH H RET

Figure 3.10. Using the stack to pass data back from a subroutine.
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An extension of the XTHL technique allows additional data to be
passed on the stack.

CALL FETCH

Fop B sDATA 3
) POP D $DATA 2
1

FOF H iDATA
L ° - N

FETCHS o o+ o ,
LHLD  DATA1l  $5DATAL TO HsL

XTHL $SWITCH STACK

XCHG §STACK TO DE

LHLD DATAZ $BET DATAZ2

PUSH H SPUT ON STACK

LHLD DATA3 $GET DATA3Z

PUSH H $PUT ON STACK

PUSH D FRET ADDR TO STACK
RET

In this example, the return address is first moved to the HL pair with the
XTHL command. Then it is moved to the DE register pair with the XCHG
instruction. Three sets of 16-bit data are obtained from the memory ad-
dresses pointed to by the arguments of the LHLD instructions DATAI,
DATA2, and DATA3. The first set is placed on the stack with the XTHL
command. Then the other two are pushed onto the stack. Next, the return
address, previously saved in the DE register pair, is pushed onto the stack. A
final RET instruction pops the return address from the stack into the pro-
gram counter.

SETTING UP A NEW STACK

Sometimes it is desirable to save the current stack pointer and set up a new
one. When this happens, the original stack pointer is restored at the conclu-
sion of the task. The technique is particularly useful when one independent
program is executed by another. The original stack pointer is saved in a
memory location, then retrieved at the end of the program.

If the current program was reached through a subroutine call, the
return address for the calling program should be the current address on the
original stack. It is this address that must be saved.

There is a Z-80 instruction that allows the old stack pomter to be
stored directly in main memory. The instruction looks like this.

§ 2-80 VERSION

]
START: LD (OLDSTK) »SP $save stack
LD SP.STACK tnew stack
* ¢ ¢
Lp SPy (OLDSTK) jfdet old stack

RET idone
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At the conclusion of the task, the old stack pointer is restored. With an
8080 CPU, the job is more complicated since the stack pointer cannot be
directly saved. In this case, the stack pointer is moved to the HL register
pair which is in turn saved in memory. This is done by first zeroing HL, then
adding in the stack pointer. At the end of the routine, the old stack pointer
is loaded into the HL register pair then copied into the stack pointer register.
Finally, a RET instruction is given.

START: LXI He O izero HL
nan SP $8F to HL
SHLI OLDSTK isave stach
LXI SFsSTACK fnew stack

¢ e ®

*

LHLD OLDSTK idet old stack
SPHL irestore stack
RET

CALLING A SUBROUTINE IN ANOTHER PROGRAM

A program may need to call a subroutine that resides in another program.
But if the second program is revised, the subroutine address in the second
program will change. This means that the argument of the CALL statement
in the first program will also have to be changed.

There are two ways to solve this problem. One method is to prov1de a
jump instruction near the beginning of the second program. The address of
the jump instruction will always be the same. However, its argument, the
internal subroutine address, can change from one version to the next. The
first program simply calls CHEK2, and CHEK2 causes a jump to CHEK, the
desired subroutine. The RET instruction at the end of CHEK will effect a
proper return to program 1.

e 0 e # Program 1
e it l b caLL CHERZ2 i call Frodram 2
i s e T TP !
i ¢ : ' |
! START?: JHF CONTIN tstart of Prodram 2 |
- CHEK2: JMP CHEK s !
¢ 0 e ] ]
o 0 e | ]
CHEK ¢ o o D | |
RET ito Prodram 1 =]

Of course, the second program may need to save the incoming stack then
restore it before returning to program 1.

A second solution is to place just the two-byte address of the subrou-
tine near the beginning of the second program.

START: JMF CONTIN % Frodgram 2
CHER2: I CHEK
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Now the calling program must put its own return address on the stack and
get the address of CHEK into the program counter. The following example is
a way to do this. Notice that program 1 does not enter program 2 with a
CALL instruction. It uses instead the PCHL instruction which copies the
contents of HL into the program counter.

FUSH H $SAVE Hel

LXI HyNEXT FRET ADDR

PUSH - H $ONTO STACK

LHLD CHER?2

PCHL $INTO PC
NEXT: POP H SORIG HvyL

CALLING ONE SUBROUTINE FROM ANOTHER

A subroutine called by a main program may in turn call another subroutine.
When the first subroutine, SUB1, is called, the return address to the main
program, MAINA, is pushed onto the stack. When the second subroutine,
SUB2, is called, the return address SUB1A is next pushed onto the stack.
After the second subroutine has been called, there will be two return ad-
dresses on the stack: one to get back to SUB1 from SUB2, and the other to
get back to the main program from SUB1.

CaLL SUB1 FMAIN
“AINQ: ¢ o ¢ ﬁ——_l

+ & '
 SUBROUTINE 1 '
§ i
SUBL: .+ . !

CALL SuUgp2 !
SUR1AS ¢ o !

RET e |

SUBROUTINE 2

£ v @r >

UB2: .
RET B
STACK
8P e ! P R D !
===> | MAINA | I MAINA ! ===3> | MAINA !
0 o e e e o I GF leme—ee——— 1  [ET— !
===> | SUB1A !
o !
CALL SUB1 CALL SUB2 : RET RET

Figure 3.11. One subroutine calls another.
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BYPASSING A SUBROUTINE ON RETURN

It may be that an operation in the sectond subroutine SUB2 makes it desir-
able to return directly to the main program from SUB2, bypassing SUB1.
This is easily accomplished if the stack pointer is raised by two bytes before
executing the return instruction. Of course, care should be taken to see if
data has been pushed onto the stack after one or both return addresses were
placed on the stack. The one-byte instruction to increment the stack pointer
(INX SP) can be executed twice, to raise the stack pointer two bytes. Alter-
nately, a one-byte POP command can be used if there is a free register pair
available.

STACK
fom e - R !
I OMAIN2 1 ===x 1 MAINZ )
8P e ! R !
==m> | SUBLA !
R !
CALL SUB2 FOP H RET

Figure 3.12. Skipping one level of subroutine during the return.

Suppose that an ordinary return from subroutine SUB2 back to sub-
routine SUB1 is desired if the zero flag is set to 1. On the other hand, an
unusual return directly back to the main program is desired if the zero flag
is reset to a value of zero. Here is a way to do this.

) CaLL SUR1 FMAIN
MAINL? ¢ 0 e s s e e

i SUBROUTINE 1
#

sSuB1? ¢ e e $SUBROUTINE 1
cal.L Sup2 g
SuUBiA: . .
RET '

SUBROUTINE 2

§
i
sup23. ¢ o e

o cmm e e tem b e

!
t
!
!
!
!
!
!
!
!
!
§
!
!
H

RZ $ NORMAL RETURN >-
POP PSW SRAISE STACK |
RET PSKIP TO MAIN »-w-—--

The POP PSW instruction raises the stack two bytes so that the final
RET instruction delivers the return address of MAIN1 to the program
counter. This effectively bypasses the intermediate subroutine.
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A PUSH WITHOUT A POP

Near the beginning of the system monitor, explained in Chapter 6, there is a
restart address called WARM. The program normally branches back to this
point at the conclusion of each task. Thus the final instruction of each task
could be: ’

JHP WARM

A more efficient method, however, is to push this restart address WARM
onto the stack at the beginning of the task. Then if the task does not termi-
nate within a subroutine, a simple return instruction, rather than a jump, can
be given at the end of the task. This causes a branch back to WARM.

¢ ° *

OFORT: & .+ . ‘ .
RET e !

WARM? LXI HsWARM $#HsL = HERE <~---I
PUSH H $ONTO STACK !

* * L4 '

L4 ¢ ¢ !

JZ OFORT !

i

]

This example is an exception to the rule that we should have a POP instruc-
tion for every PUSH. Here, there is a PUSH but no POP. Of course there is
also a RET with no CALL. So everything is all right—or is it? What happens
if termination occurs from a subroutine?

GETTING BACK FROM A SUBROUTINE
If a‘ particular task terminates in a subroutine, then this subroutine’s return

address must be popped off the stack (or an INX SP instruction must be
executed twice) before the return is issued.

WARM ¢ e 4 & o e e e !
JZ DUMF

DUMP ¢ e o e
catL TSTOF
¢ o e 2 e v s e o s s s s e et e ]

+ ® ° ,

TSTOPY: o & & !

RNC SNORMAL RETURN -
FOP H SRAISE STACK
RET $TO WARM B |

The stack pointer grows downward through memory during use. It is
therefore common practice to place the stack as high as possible in available
memory. But the system monitor may be located at the actual top of mem-
ory. In this case the stack can initially be placed lower in memory at the
beginning of the monitor.
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START?
LXI SPsSTART

On the other hand, the monitor may be placed in read-only memory (ROM).
In this case, the stack can be located at the actual top of read/write memory.
(While both read/write memory and ROM are random-access memory—
RAM, it is customary to refer to read/write memory as RAM and read-only
memory as ROM. This convention will be follecwed here.)

AUTOMATIC STACK PLACEMENT

The placement of the stack at the top of RAM can be done automatically, so
that the total amount of RAM can be changed without having to reprogram
the PROM monitor. A short routine can test each block of memory starting
at zero until it finds a location that can’t be changed. The stack is then put
at the beginning of this block. Remember, the stack pointer is always decre-
mented before use; therefore, it can be initially defined as one location
above usable memory.

The first part of the program is a memory search routine that starts at
address zero. It moves the byte from that location into the accumulator,
complements it, then moves the complemented byte back to the original
location. A comparison is made to see if the memory location does indeed
contain the complemented byte. If it does, the accumulator is comple-
mented back to the original byte and returned to memory. Such an algo-
rithm is often called a nondestructive memory test. A

The first byte of each subsequent block of memory is checked in this
way until a failure is found. This will usually reflect the top of usable mem-
ory, but of course, it could indicate defective memory. The followmg pro-
gram will work properly if placed in read-only memory.

ROUTINE TO AUTOMATICALLY FLACE THE
STACK AT THE TOP OF MEMORY

a» wr as @ 9>

8080 CODE

LXI HyO $FIRST ADDR

NEXTP? MOV Ark §GET BYTE
CHa $COMPLEMENT
MoV My A JPUT IT BACK
CMF M $ COMPARET
JNZ TOP #NOs DONE
cHa s BACK TO ORIG
MOV MrA FPUT IT BACK
INR H $NEXT BLOCK
JMP NEXTP $RKEEP GOING

H

TOP: SPHL $SET STACK

CaLlL OUTHL FPRINT IT

¢ o o
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This program might not work, however, if it is placed in read/write memory.
The problem occurs because the routine is changing various locations in
memory. If it happens to change its own instructions, then the results will
be unpredictable.

The shortcomings of the previous program are solved with the follow-
ing version. The improved version will operate properly no matter where it
is placed. The stack will be placed at the top of contiguous RAM unless the
routine itself is in that part of memory. In that case, the stack will be placed
at the beginning of the program. The Z-80 version is shown, but the program
can be run on an 8080 if two minor changes are made. The relative jump
instruction must be changed to an absolute jump and the DJNZ instruction
must be changed to the equivalent DCR B and JNZ combination.

ROUTINE TO AUTOMATICALLY FLACE THE
STACK AT THE TOF OF MEMORY
FAILSAFE VERSION (Z-80 CODE)

ar wr W @ e

START?! LD HL+O FSTART CHECK AT O
LD BrSTART SHR 8
NEXTP: LD Ay (HL) FGET BYTE
CFPL . FCOMPLEMENT IT
L (HL)»A #PUT IT BACK
Crp (HL) $DID IT GO?
JR Z;TOP $NOy DONE
CPL $BACK TO ORIG
LD (HL)»A SRESTORE
INC H $NEXT BLOCK

DJUNZ NEXTP $ARE WE HERE?

TOR?: LD SFyHL §SET STACK

L4 + *

The new version works in the following way. The B register initially
contains the block number of the routine itself. The value in B is decre-
mented as each successive block is checked. If the routine is in ROM, then
the end of usable memory will be found, as in the previous version. The
program will loop between the label NEXTP and the DJNZ NEXTP instruc-
tion. At some point, the CP (HL) instruction will reset the zero flag and the
computer will jump to the address of TOP. The stack will then be placed at
the top of RAM.

Alternately, if this routine is placed in the lower memory area, then the
DJINZ instruction will decrement the B register all the way to zero. The zero
flag will be set and the program will move on to TOP. Now the stack will be
set to the beginning of the memory block that contains the program itself.

The START SHR 8 expression at the beginning of the routine instructs
‘the assembler to calculate the high byte of the address of START and make
it the second operand of the LLD B instruction. It does this by shifting the
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address of START by eight bits to the right, then taking the low-order eight
bits of the result. Some assemblers allow an equivalent operand of

HIGH START

which is easier to comprehend. This automatic stack routine is incorporated
into the system monitor explained in Chapter 6.




CHAPTER FOUR

Input and Output

Computers would not be very useful if they could not interact with the
outside world. Commands and data are sent to the computer from the key-
board, magnetic tape, disk, and other peripherals. Results of computations
are sent back from the computer to the printer, video terminal, tape unit,
disk, and so on. Such input and output (I/O) transfers on a microcomputer
are typically accomplished through special memory locations called I/O
ports. One type of port is distinctly different from main memory. The other
~ type of arrangement utilizes one of the regular main memory locations. The
peripheral in this latter case is then said to use memory-mapped 1/0O. Each
method has advantages and disadvantages. In either case, the I/O port will
transfer eight bits, the natural word size for the 8080 and Z-80 CPUs.

MEMORY-MAPPED I/O

The I/O instructions on the 8080 microprocessor are rather limited com-
pared to memory operations. There is a single IN and a single OUT instruc-
tion for transferring eight bits of data. In contrast, there is a much larger
collection of memory operations available.

(8080 Mnemonics) (Z-80 mnemonics)
STA 80 . LD (80)rA
LDA 81 LD Ar(81)
MOV MsC LD (KLY »C
sSTAX D LD (DE)rA

SHLD 84 LoD (84) sHL

These additional instructions can be utilized with memory-mapped I/O,
greatly increasing the versatility of the Z-80 and 8080 I/O operations.

48
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The STA instruction stores the 8-bit accumulator value at the memory
address specified by the operand. If this address corresponds to a memory-
mapped port, then the byte is sent to the peripheral. The LDA command
reverses the operation. It can be used to input a byte from a port. The
MOV M,C instruction can be used to transfer a byte from the C register to
the memory location designated by the HL register pair. The STAX D com-
mand moves a byte from the accumulator to the memory location desig-
nated by the DE register pair. The SHLD instruction opens a new dimension.
Since this operation transfers 16 bits of data from the HL register pair
directly into two consecutive memory locations, two adjacent ports can be
simultaneously serviced.

The typical video console is a serial device that uses distinct ports.
However, memory-mapped controller boards are commerically available. In
this case, an ordinary TV set is then used for the video screen. There are also
disk-controller boards that use memory-mapped operations to communicate
with the disk drives. It is interesting to note that the Motorola 6600 CPU
performs all of its I/O by memory mapping. There are no separate input or
output instructions for this CPU.

DISTINCT DATA PORTS

Data ports may be designed to operate either in parallel or in serial fashion.
Both the parallel and the serial I/O ports are connected to the computer
through the system bus by a set of eight data lines. In addition, the parallel
port is connected to the peripheral by another set of eight data lines. The
serial port, by contrast, has only two datalines connecting it to the peripheral.

For some peripherals, such as a printer, data is transferred in only one
direction. For others, such as the console and magnetic tape units, the
peripheral is able to both send and receive data. In this latter case, there will
be 16 data lines between the computer and the peripheral if a parallel port is
used. Eight lines are used for sending data and eight are used for receiving
data. The serial port, in contrast, will have three signal lines to the peripheral
if there is two-way communication. One is for transmitting, one is for
receiving, and the third is a common line for the other two.

There may be additional lines between the computer and the pemph-
eral. One of these might indicate to the computer whether the terminal is
operational. Another can be used to inform the terminal that the computer
is ready. These extra lines are sometimes referred to as handshake lines.

The computer usually operates at a much higher speed than the periph-
erals. Consequently, there must be a mechanism for effectively slowing down
the computer during 1/O operations. For serial or parallel ports, this is
typically accomplished by using two separate I/O ports for each peripheral
device. One port is used for the data port and the other is used for the status
port. Each of these two ports will have distinct addresses, one of the 256
values available to the 8080 or Z-80 CPU for this purpose. There are three




50 - 8080/Z-80 ASSEMBLY LANGUAGE

general methods of performing I/O through data ports: looping, polling, and
interrupting.

LOOPING

Looping is the simplest method of performing I/O through separate ports,
and it is the one that is most commonly employed in 8080 and Z-80 pro-
grams. The CPU performs output by sending a byte to the data port using
the OUT instruction. The corresponding status port is then read with an IN
instruction. One bit of the 8-bit status port reflects the condition of the
corresponding peripheral.

When the CPU places a byte in the data register, using the OUT com-
mand, the output status bit of the status register is set. This may actually
result in a logical 1 or a logical zero, depending on the port design. When the
peripheral utilizes the byte that was placed into the data register, the output
status bit of the status register is reset. These changes in the status bit are
automatically handled by the I/O interface hardware. However, the program-
mer must include in the software the appropriate routines for monitoring
the status bits.

As an example of the looping method, consider the following sub-
routine:

couTts: IN 10H §CHECK STATUS
~ ANI 2 $SELECT BIT
JZ couT FNOT READY
MOV ArC $GET BYTE
ouT 11H # SEND
RET ? DONE

This routine could be used to send a byte of data to the system console. The
first instruction of the listing causes the CPU to read the 8-bit status port
which has the address of 10 hex. The second instruction performs a masking
AND operation to select the write-ready bit, bit 1. Remember that a logical
AND with zero and anything else gives a result of zero. However, a logical
AND with unity and a second logical value, gives the result of that second
value.

Suppose that the output status is indicated by a logical 1 of bit 1, where
bit O is the least-significant bit of the register. Then, a logical AND with the
value in the status register and with the number 2 will result in a logical 1 if
the peripheral is ready. If the device is not ready, however, the result is a
logical 0.

0101 0111 status 0101 0101
AND 0000 0010 = 2 0000 0010
0000 0000 0000 0010

ready not ready
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Thus, the logical AND with the value of 2 in the status register gives a result
of zero if bit 1 (the second bit) is 0. Otherwise, a nonzero result is obtained. -

The third instruction in the looping example is a conditional jump. If
the peripheral is not ready, the JZ instruction will cause the’ computer to
loop repeatedly through the first three lines until the peripheral is ready for
another byte. At this point, the write-ready bit, bit 1, will be a logical 1.
Then the logical AND operation, the second instruction of the subroutine,
produces the nonzero value of 2. The MOV instruction following the condi-
tional jump will then be executed. The byte to be outputted is moved to the
accumulator, and then sent to data port 11 hex by use of the OUT command.

When the byte to be output is actually sent to the data port, the write-
ready flag is reset to a logical zero. The output routine may be immediately
reentered for outputting another byte, but now the peripheral is not ready.
Looping will occur again through the first three instructions of the output
routine since the write-ready flag has been reset to zero. :

The CPU clock may be operating at 2 or 4 MHz. This rate is thousands
of times faster than the speed of a typical printer. Consequently, if the
looping method is used, the CPU will be spending over 99 percent of its time
simply looping through the first three lines of the output subroutine. The
computer will be spinning its wheels, so to speak, waiting on the peripheral.

Because the CPU is operating so much faster than the peripherals, it
can, in principle, service many peripherals simultaneously. A very simple but
useful implementation of this idea is found on the CP/M* operating system.
In the CP/M system,* console output is normally sent only to the console.
This terminal is typically a high-speed video device. But if the user types a
Control-P, then the list device is also turned on. Console output will now
appear simultaneously at both the console and the line printer.

This technique can be easily observed if the console video accepts data
much faster than the line printer. Normally, as data is sent only to the con-
sole, it appears rapidly on the video screen. But when the list device is
turned on, the output appears much more slowly. The reason for the slow-
down is that both peripherals are operating at the speed of the slower one,
in this case the printer.

A subroutine for accomplishing such a dual output mlght look like this.

LOUT IN LSTAT FLIST STATUS
ANI FOUTFPUT MASK
JZ LDUT $LOOP UNTIL READY
MoV asC $GET THE BYTE
ouT LDATA $SEND TO LIST
ouT ChATA $AND CONSOLE
RET s DONE

*CP/M is a registered trademark of Digital Research, Inc., Pacific Grove, California.
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This routine is not the one that is actually used in the CP/M system since,
with our routine, the console will always display everything that is sent to the
printer. This feature does not increase printing time as long as the console
operates faster than the printer. Notice that there is no need to check the
console status register. The output rate is set at the speed of the printer, and
so the console, which operates so much faster, will always be ready if the
printer is ready.

POLLING

One way to improve the performance, or throughput, of a CPU is with a
technique known as polling. In this method, the CPU sends a byte to each of
several different peripherals. Each peripheral operates at its full speed.
Polling is more efficient than the looping method, and has been incorporated
into several commercial 8080 software products. One product is a multiuser
BASIC which can service up to four separate consoles. Each user can inde-
pendently perform calculations using the same BASIC interpreter.

Another product that uses the polling technique is known as a spooler.
The looping method is typically utilized for all output. In this case, all other
activities must be halted while the printer is working. With a spooler pro-
gram, however, things are different. When this program is incorporated into
the system, the user can perform other tasks using the system console while
a disk file is being printed.

In the polling method, the I/O routines are somewhat different from
the corresponding routines of the looping method. The output-ready flag of
the status register is checked periodically as with the looping method. But if
the status flag indicates that the device is not ready, the CPU returns to per-
form some other task. Thus, the CPU does not waste time looping around
the first three instructions of the input or output routine. A typical output
routine using the polling method might look like tihis.

LouT: IN LSTAT s CHECK STATUS
ANI LMASK FMASK FOR OUTPUT
RZ FNOT READY
MOV AsyC $GET THE BYTE
ouT LDATA SSEND IT
RET

While the polling method is a great improvement over the looping
method, there are still problems. For example, a decision must be made as
to how often each status register will be polled. An even better method is to
use hardware interrupts.

HARDWARE INTERRUPTS

The 8080 and Z-80 microprocessors incorporate a hardware interrupt system.
This feature allows an external device, such as the system console or printer,
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to interrupt the current task of the processor. When the CPU is interrupted,
it suspends its current task, and calls on one of several memory locations set
aside for this purpose. The CPU services the request of the interrupting
peripheral, then it returns to its previous task.

In this method, the CPU does not have to be programmed to check the
peripherals on a regular basis as with the method of polling; nor does it have
to waste time in a loop. Instead, the peripheral interrupts the processor when
it needs service. If several peripherals are able to interrupt the CPU, then
there must be a method for prioritizing the requests. This ordering is accom-
plished through a vectored interrupt system. For example, if a lower-priority
device has interrupted the CPU for service, this phase can also be interrupted
by a peripheral with a higher priority. On the other hand, a device with a
lower priority cannot interrupt a higher-priority service, but must wait
its turn. v

Usually, the highest-priority interrupt will be assigned to updating the
system clock. If the computer misses a beat, then the time will be incorrect.
The next lower priority could be assigned to disk transfer. The printer could
have a low priority since it is a relatively slow device, and it won’t matter if
it must slow down every so often.

Suppose that the printer is operated by interrupts rather than by loop-
ing or polling. The computer sends a byte to the printer, then continues with
another task. When the current byte has actually been printed, the printer
interrupts the CPU for another byte. In the time between the prlntmg of
two bytes, the CPU can perform many other tasks.

The console keyboard is another peripheral that can be readlly serviced
by an interrupt system. In this case, each time the user presses a key, the
CPU is interrupted from its current task. Of course, if the CPU is currently
servicing a higher-priority interrupt, then the console keyboard request will
have to wait.

Both the 8080 and the Z-80 allocate eight addresses that can be used
for the interrupt service routines. These addresses can be called by the eight,
one-byte RST instructions.

Z-80 8080 Instruction code Call
mnemonic mnemonic hex binary address
RST 00H RST 0O C7 1100 0111 00H
RST 08H RST 1 CF 1100 1111 08H
RST 10H RST 2 D7 1101 o111 10H
RST 18H RST 3 DF 1101 1111 18H
RST 20H RST 4 E7 1110 0111 20H
RST 28H RST 5 EF 1110 1111 28H
RST 30H RST 6 F7 1111 o111 30H
RST 38H RST 7 FF 1111 1111 38H

These instructions can be used as one-byte subroutine calls. As an example,
suppose that the CPU executes an RST 5 instruction which corresponds to
the instruction code EF hex. A subroutine call is then made to the corre-
sponding address of 28 hex. The return address is pushed onto the stack,
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just as for a regular subroutine call. Subsequent execution of a return instruc-
tion will cause the program flow to return to the instruction immediately
following the RST 5 instruction.

Hardware interrupts operate by emulating the software RST call. When
an interrupt occurs, the CPU automatically disables the interrupt flip-flop,
thus further interrupts are prevented. Then a subroutine call is made to the
corresponding call address. This is done by jamming the desired RST code
onto the data bus. The simplest implementation is to use a single interrupting
device and the RST 7 instruction. (A normal interrupt always performs an
RST 7.) The interrupting peripheral momentarily changes the state of the
interrupt-request bus line. For the S-100 bus, this would require that bus line
~ 73 be pulled to a zero-voltage state from the usual 5-volt level. The CPU
responds by automatically calling memory address 38 hex. The programmer
will have previously placed the service routine at this location. The service
routine will conclude with a command to re-enable the interrupt flip-flop.
Then a return instruction will be executed.

The trouble with this simple approach is that the RST 7 call to location
38 hex interferes with system debuggers because they also use this address.
' Consequently, another interrupt level is more suitable. Unfortunately, a
single interrupt system always calls the RST 7 location. One solution to this
problem is to use a vectored interrupt board. A vectored interrupt board
allows the user to select up to eight separate interrupt levels corresponding
to the RST 0 to 7 instructions. The disadvantage of this approach is the
cost, since a vectored interrupt board may sell for several hundred dollars.

However, there is a low-cost solution. If only one interrupt level is
required, a single hardware interrupt can be converted from an RST 7 to
some other level such as an RST 5 by using only two logic gates. The circuit
shown in Figure 4.1 will make the needed translation. The output of the
two-input NAND gate IC-1 goes low when both of the input lines are high.
One of these inputs is SINTA, line 96 on the S-100 bus. It is a CPU status
signal that indicates acknowledgment of the interrupt request. The other
input is PDBIN, bus line 78. This signal indicates that the data bus is in the
input mode.

8T97
14 13
I 91| D14

SINTA —4'-— 15
(5} )

PDBIN 74100

Figure 4.1. Circuit to convert an 8080 interrupt to an RST 5.

When the output of IC-1 goes low, it turns on the three-state buffer
IC-2. This pulls the data-input bus line DI4 low. Since the remaining seven
lines of the data-in bus are high, the CPU will see the value of

1110 1111
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Notice that this is the bit pattern for the RST 5 instruction. The result is
that the CPU executes an RST 5 instruction, by calling address 28 hex. The
interrupt service routine, or a jump to it, is placed at this address.

AN INTERRUPT-DRIVEN KEYBOARD

We have seen that a printer operates considerably slower than a CPU. The
console keyboard is even slower than the printer, especially if the operator
is not an expert typist. Conversion to an interrupt-driven keyboard will
considerably increase the effectiveness of a computer.

Characters entered on an interrupt-driven keyboard are temporarily
stored in a memory buffer area. Each time a key is pressed on the console,
the CPU is interrupted from its current task. The new byte is read and
placed into the keyboard buffer. The computer then returns to its prior task.
When the computer needs console input, it gets it from the input buffer,
rather than from the console itself.

An interface program, utilizing a keyboard-interrupt approach, is
shown in Listing 4.1. This program provides the necessary routines for
interfacing the Lifeboart version of CP/M to a North Star disk system.* The
portions of the program which specifically utilize the interrupt routines
begin with a row of asterisks and end with a row of semicolons.

Computer Computer Keyboard Keyboard
- . Buffer
pointer count count pointer FA06
F400 F402 F403 F404 .

Figure 4.2. The input buffer and pointers.

The layout of the memory buffer with its pointers is shown in Figure
4.2. The buffer area is arbitrarily chosen to start at the address of F400 hex.
The location can be anywhere above the CP/M operating system. There is
only one keyboard buffer, but there are two sets of pointers: one for the
CPU and one for the keyboard. Two counters are also utilized; one shows
how many characters have been entered from the keyboard and the other
shows how many have been read by the computer. Since both sets of pointers
grow larger, they need to be reset periodically. The two pointers are com-
pared after each carriage return. If they are the same, then they are both
reset to the beginning of the buffer.

Suppose that this interface program is incorporated into your system.
CP/M might be printing something on the console video screen when a key
on the console is pressed. A hardware interrupt will occur, causing the com-
puter to stop its task and call address 28 hex (RST 5). A jump instruction at
address 28 hex will transfer control to subroutine KEYBD. The keyboard

*Lifeboart Associates, 2248 Broadway, New York, N.Y. 10024.
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Listing 4.1,

0000

FFFF

FFFF
FFFF

0036
0600
DEOO
4900

0003
ooon
000A
000C
0003
0004
0011
0013

DSR1

neroo

0010
0011
0001
0002
0012
0013
0001
0002
0000

0o

o

Honouo#

o

B oHou U

2EA4465

[E O O O I

Interrust driven hkeub
TITLE ‘Interrusrt
(Fut todaw’s date

LIFEROAT VERSION
EITHER SINGLE OR

TERMINAL DEVICES

@s P ER O AR G W NG WP T P NG

oard.
CF/M BIOS’
here)

WITH OFTION FOR
DOURLE DENSITY

SUFFORTED S

CONSOLE 10 HEX CON:
LIST- 12 HEX LST:
FHONE MODEM 14 HEX FUN!
FALSE EQU 0
TRUE EQU NOT FALSE
¥
DOURLE EQU TRUE s DOURLE DENSITY
INTRM EQU TRUE $ INTERR VERSION
?
IF DOURLE
MSIZE EQU 54 SODECIMAL K
RIOS EQU MSIZEX1024-200H
USER EQU RIOS+S00H
OFFSET ERU 1FOOH-~RIOS
ELSE $SINGLE DENSITY
MSIZE EQU 96
USER EQU MSIZE%1024-700H
ENDIF
IORYTE EQU 3 #1/0 SETUF
CR EQU ODH §CARRIAGE RET
LF EQU OAH $LINEFEED
FFEED EQU 12 # FORMFEED
CTRC EQU 3 $7Cy KILL SCROLL
CTRD EQU 4 $7Ds EMPTY BUFFER
CTRQ EQU 17 §7Qy SCROLL
CTRS . EQU i9 $7"8s FREEZE SCROLL
14
IF DOURLE
§ PATCH DATE
ORG RIOS-100H+OER1H
ELSE
ORG USER-600H+0AFH
ENDIF
DE ‘odan 28,807 $PATCH DATE
¥
ORG USER
¥
CSTAT EQU 10H sCONSDLE STATUS
CDATA EQU CSTAT+1 $CONSOLE DATA
CIMSK EQU 1 FINFUT MASK
COMSK EQU 2 sOUTFUT MASK
LSTAT EQU 12H sLIST STATUS
LIATA EQU LSTAT+1 FLIST DATA
LIMSK EQU i § INFUT MASK
LOMSK EQU 2 FOUTFUT MASK
LNULL EQU 0 FLIST NULLS
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0014
0015
0040
0080

00C4
00CS
00C4
ooc7

oo u

o onu

0095 =

F400
F400
F402
F403
F404
F40é
0005

nEoo
nRoO3
DROS
neo?
DROC
DROF
oRi2

DR1S
LnRriz
nRi9
LDRIER
DR1D

DBI1F

DEB21

DE23
nR24
DE26
ne28
DR2A

HoH 0o .0 H

C313DR
C3ARDERE
C3ID30R
c312nc
C32610C
c34800C
C3n3ne

3E03
n310
n3iz2
3E1S
n3i12

3EPS

n3io

AF

n3Cs
n3cz
3E70
n3c4

MSTAT
MDATA
MIMSK

. MOMSK

EQu
EQU
EQU
EQu

14H
MSTAT+HL
40H
80H

$MODEM STATUS
iMODEM DATA
FINFUT MASK
sOUTFUT MASK

¢
3 INITIALIZE FORTS FOR COMPUTIME BOARD

14

ADATA
ACONT
ROATA
ECONT

y

§ Aok kol skoiokok SRk skoiok sk kokoksksoloksokok kokokksokokok ok

STOF

wr er @

RUFFER
CENTR
CONT
KCNT
KFNTR
EUFF

i wr er an

EQU 0C4H
EQU AATA+L
EQU ADIATA+2
EQU ADATA+3
IF INTRM
EQU P5H

EQU OF400H
EQU BUFFER
EQU CFNTR+2
EQU CCNT+1
EQu KCNT+1
EQU KFPFNTR+2
EQU ]

ENDIF

JHF INIT
JMF CONST
JHF CONIN
JMF CONOUT
JMF LOouUT
JMF FUNCH
JHF CONIN

§ INTERRUFTS
$SET FOR INTERR

CONSOLE INFUT-BUFFER LOCATION

# INFUT BUFFER
FCOMFUTER FOINTER
FRUFFER COUNT
FKEYERD BUFF COUNT
sREYBOARD FOINTER
§ INFUT RUFFER

s INTERR LEVEL

$ INTERRUFTS

A A A A A D & A A A

A B A A A A AN A DB A LS A A LA A A s s s s
FYPPPPPPIPIIVPYIIPIPPIPYPIPYIFPPPYIPIIVRY

FINITIALIZATION
sCONSOLE STATUS
$CONSOLE INPUT
§CONSOLE OQUTFUT
SLIST QUTFUT -

sFOR READER

INITIALIZATION ROUTINES

sRESET
# INTERFACE

FSET FOR INTERR.

$ INTERFACE

EROARD INITIALIZATION

NIT? MVI A3
our CSTAT
ouT LSTAT
MVI Av15H
ouT LETAT

§
IF INTRM
MVI AsSTOF
ENDIF

H
ouT CSTAT

H

i COMPUTIME

§
XRA A
ouT ACONT
ouT BCONT
MVI Ay 70H
ouTr AlATA

$GET A ZEROD
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DR2C
DR2E
LE30
ne32
DE34
DB36

DE38
DE3?
R3E

| DR3E

OR3F
DRA42
DER45
DE48
DEAR
OR4E
DES1
OES4
LRSS

nERSé6
LDRS?7
DEGA

NERSE
IRSC
DESE
DE&O
DR&63
DR&6S

NR&67
NR&69
nesec
NER&E
DR70
nE73
DR7S
ngR77
LR79
ne7c

3E77
D3ce
3E14
0D3cs
JEO4
n3c7

F3
3EC3
322800
ES
218BDE
222900
2106F4
2204F 4
2200F4
210000
2202F4
El

FR

AF
320300
ce

FS
DE10
E&01
CA?2DR
LE1l
E&7F

FE13
C27FDR
DEL10
E&01
CASCIR
nRil
E&7F
FE11
C26CNER
C3920R

MVI Ay77H
ouT BROATA
MVUI Ay 14H
ouT ACONT
MVI Ar 4
our BOCONT
5 oksksokdok ok ok ok skokskolok ok sokokokoksoksok sk kok ok k
IF INTRM
13
$ FATCH RST LOCATION TO JUMF TO KEYED
14
DI SDISARLE INTERR
MVI AyOC3H  $JMF INSTR
8TA 8XLEV $FATCH R8T
FUSH H
LXI Hy REYBI' 3 INTERR ENTRY
SHLD S8XLEVHT 5 JUMP HERE
LXI Hy BUFF  FBUFFER ADDR
SHLD KFPNTR FRESET FOINTERS
SHLD CFNTR
LXI Hy O $2 ZEROS
SHLD CONT $ZERD THE COUNTS
FOF H
EI F RE-ENARLE INTERR
ENDIF § INTERRUFTS
R R R R R R R R R R R R R R R R R R R R R R R R R R R R R RS
¥
$# INITIALIZE IORYTE
?
XRA A FRESET IORYTE
STA IOBYTE
RET
§ ok kok ok ook Kk Rok ok sk oRloR ROk kR ok R oKk Rk
IF INTRM
¥
3 INTERRUFT ENTRY FOR KEYBROARD INFUT
§
KEYERDS: FUSH FSW
IN CSTAT § CONSOLE STATUS
ANI CIMSK
JZ KEYZ2 FNOT READY
IN CHOATA sGET DATA
ANI 7FH FMASK FARITY
14
$ CHECK FOR "8y "0 SCROLL CONTROL
¢
CFI CTRS 78
JNZ KEYJ3 §NO
KEY4: IN CBTAT § CHECK KEYROARD
ANI CIMSK §READYT
JZ KEY4 FLOOF UNTIL READY
IN CDATA $GET EYTE
ANI 7FH $STRIF FARITY
CFI CTRQ $TQAT
JNZ KEY4 #NOD
JMF KEY2

ar
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DE7F
DE8O
nRa2
DR8S
Legs
DR8Y
DE8A
nean
DR?0O
neel

nDe92
LE?3
D94

DR?Y
DEY8

DEYR
DRYE
neAl
LiRA4
ORA7
DREAA

DEAR
DRAE
DEERO

DERE3
DBE4
LBE7
DEERS8
DEEY
DBRRA

DERER
DEEC
LERERF
DRCO
LeC1
DBC3

ES
FEO4
CA95DE
2A04F 4
77

23
2204F 4
2103F4
34

El

Fi
FE
ce

CLH9BROE
C3910K

210000
2202F4
2106F4
2204F 4
2200F 4
co

3A0300
E602
C2CRIDE

ES
2A02F 4
7C
P9
El
(2]

ES
2A00F4
7E

El
FEO3
CACBDER

REY3: FUSH H

CFI CTRD sEMFTY RUFFERT
JZ REYé FYES
LHLD KENTR s BUFFER FOINTER
MOV MrA $FUT IT THERE
INX H $INR FOINTER
SHLD KFPNTR §BAVE POINTER
LXI HeKCNT  $GET COUNT
INR M - # INCREMENT IT
KEYS? FOF H
9
KEY23 FOF FSUW
EI
RET

= e

as ar s

EY&3 CALL ‘RSETP FRESET FOINTERS

JMF KEYS

RESET BOTH FOINTERS TO START

RSETF: LXI Hy 0O
SHLDY  CONT yZERO EOTH
LXI Hy BUFF
SHLII ~ KFNTR FRESET FNTRS
SHLI CFENTR
RET
ENDIF $ INTERRUFTS
R R R R R R R R R R R RN R R R R R R R R R R R R R
i
# CHECK FOR CONSOLE INFUT REALY
¥
CONST: LDA IOBYTE
ANI 2
JINZ LISST SLIST

§
s
H

- < @k ar

ar sy @ ey

ARk Aok Aok olokokokokok sk kokok ook ook sk sokok Rk

IF INTRM

CHECKR INFUT BUFFER RATHER THAN REYROARID

FUSH H

LHLD CONT iBOTH COUNTS
MoV AsH

SUR L FNIFFERENCE
FOF H

RZ SNO INFUT
FUSH H

LHLD CPNTR $COMFUTER FNTR
MOV ArM FNEXT CHAR
FOF H

CFI CTRC PTCT

Jz QUIT FYESy QUIT

MAKE CF/M THINK THERE IS NO INFUT
S0 SCROLLING WON‘T RE ARORTED
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DRCA
DRC7

nBC8
DECA

DECE
DRCD
DECF
DEDO
DED2

DED3
)3
DRDS

DEDER
DERDC
LDRDF
DREO
LREL
DBE4
DRES
LRES
DIRE?
DBEC

DRED
DEREE
DEBF1
DBF3
DBF 6
DRF?
DBFA
DEBFB

AF
ce

3EFF
ce

DE12
E601
c8
3EFF
ce

3A0300
E602
c206DC

ES
2A02F4
7C
?5
CADCDE
F3
2102F4
34
2A00F4
7E

23
2200F4
FEOD
c203nC
2A02F4
7C

93
c201nC

ENDIF

-r

QUIT: MVI

RET

LIST READY

™ ar e e

IS8T IN
ANI
RZ
MVI
RET

CONSOLE INF

£ o> @ e

ONIN: LDA
ANI

JINZ

CSTAT
CIMSK

Ay TRUE

FOR CONSOLE

LSTAT
LIMSK

As TRUE

ur

IORYTE

2

LIN

$GET ZERO

R R R Y]
FYPryYIYISYYIVPY?

<r
ar

T INTERRUFTS

¥ NO
FGET STATUS

$NOT REALDY
$ INTERRUF TS

§ INFUT READY

FNOT READY

i READY

SLIST INPUT

§
3 Rokoookkakokokokokkkiokkok KRk sk sk ok kR kKK

IF

~a»

as ar @

FUSH
LHLD
MoV
SUR
JZ
nI
LXI
INR
LHLE
MOV

CIN3:

RESET BOTH

@ ar “ar

INX
SHLD
CRI
JNZ
LHLID
MOV
SUR
JNZ

ar ‘ar ‘er

INTRM

H
CONT
AvH
L
CIN3

Hs CONT
M
CPNTR
ArM

FOINTERS IF

H
CPNTR
CR
CIN4G
CONT
AvH

L
CING

$ INTERRUFTS

GET INFUT FROM KEYROARD RBUFFER
INSTEAD OF FROM CONSOLE

§BOTH COUNTS

}SAME?

FREEF TRYING
FHOLD OFF
$COMPUTER COUNT
$§ INCREMENT IT
$COMFUTER PNTR
$GET RYTE

CARR RET FOUND
§ BUMF FOINTER
FSAVE IT

f# CARRIAGE RET?
#NO

$GET ROTH COUNTS

$DIFFERENCE
SNOT SAME

RESET EOTH FOINTERS TO ZERO
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DERFE
ncoi
ncos
nco4
ncos

neos
ncos
ncoa
ncon
nCOF
neci1

nciz
neci1s
nciz
ncis

DC1E
nein
DCiF
ncz2:2
nc23
De2s

nDe2é
ncze
DC2k

nCze
nc3o
ncaz
ne3s
ne3es

CLPRDER
JEOD
E1

FE

ce

nRiz
E601
CAO6LC
DE13
E&67F

380300
E603
R7
E22EDC

DR1O
E602
CALRLC
79
n3i1
ce

3A0300
E640
C21BNOC

nBi12
E602
CAZEDC
79
D313

= or o s

ONOuT?:

CONSOLE INPUT

ING IN

ANI
JZ
IN
ANI
RET

CONSOLE QUTFUT

LDA
ANI
ORA
JFO

CONUW?¢ IN

™ e s o

ouT:

ANI
JZ
MoV
ouT
RET
LIST QUTFUT
LDA
ANI
JNZ

LIST: IN

-

ar ar sar

ANI
Jz

MoV
ouT

IF

NULLS FOR LIST

RSETF
AsCR JRESTORE CR
H
$READY FOR MORE
FEEiEiisEisIiiiEEES
PNO INTERRUFTS
CSTAT  $CHECK STATUS
CIMSK
CIN2
CDATA  $GET DATA
7FH $MASK FARITY
$ INTRM
FROM LIST
LSTAT
LIMSK
LIN
LOATA
7FH
IORYTE  $WHERE?
3
A
LIST
CSTAT  $CHECK STATUS
COMSK
CONW
AsC $GET BYTE
CDATA  $SEND IT
IOBYTE ,
A0H SEIT 6
CONW $CONSOLE OUT
LSTAT  $CHECK STATUS
LOMSK
LIST
AsC SGET EYTE
LOATA  $SEND IT
LNULL = ©
DEVICE
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nc3s
nc3a

DC3K
ncac
DC3F
ncaz
nca3
- DC4aé
nca47

nc4s
ncae
DCA4B
ncac
ncan
- DCAF
neso
ncs3
ness
nCss
nesSe
nesn

DCSE
ncsel
NnCé3
DCéS
ncaes

ncs9
LnC6R
ncen
nczo
nczi
ncz3

FEOC
co

C3
010A09
CR2EDRC
05
CR3FNC
Ci
ce

79
E67F
B7

c8
FEOA
8
cns?oc
FEOI
CASEDC
cnzanc
n3ii
ce

cnz4nc
n3ii1
FEOD
C25EDC
ce

DER14
E&480
Cas?nC
79
D313
co

ANI 7FH
CFI CR
JNZ FORM
MVI Cs0
CALL LIST #1 NULL
CALL LIST $2 NULLS
CALL LIST $3 NULLS
JMFP LIST 4 NULLS
ENDIF
¢
FORM? CFI FFEED $FORMFEED?
RNZ #NO
§
; EMULATE FORMFEED WITH 9 LINES
¥
FUSH E
LXI By PO0H+LF
LEKIF: CALL LIST
neR R
JNZ LEKIF
FOF ]
RET
3 .
$ PUNCH QUTFUT SENT TO MODEM
¥
PUNCH: MOV AyC FGET RYTE
ANI 7FH
ORA A FNULLT
RZ SRON‘T SEND
CrI LF
RZ $SKIF LINEFEED
CALL MOUT §SEND
CFrI CR
JZz MODCR FWAIT FOR CR
CALL MIN FMODEM INFUT
our COATA $SEND TO CONSOLE
~ RET
¥
$ SEND <CR> TO MODEM» WAIT FOR ONE EBACK
¥
MODCR: CALL MIN
ouT COATA $T0 CONSOLE
CFI CR
JNZ MODCR FREEF TRYING
RET
§
$ MODEM OUTFUT
5
MOUT?: IN MSTAT s CHECK 8TATUS
ANI MOMSK
JZ MOUT
Mov AyC $GET RBYTE
ouT MOATA $SEND IT
RET

ar er ar

MODEM INFUT
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DC74 DEB14 MING IN MSTAT CHECK STATUS
DC76 E&40 ANI MIMSK
DC78 CA741C Jz MIN
DC7E DR1S IN MIDATA $GET RYTE I
DC70 E&7F ANI 7FH FMASK FARITY
RC7F €9 RET
$
DC8o 31322n g ‘1-28-80‘ FVERSION
§
nces END

sumbhol table

00CS ACONT 00C4 ADATA 00C7 RCONT 0006 BRIATA
D600 RIOS F400 RUFFER F40&6 RUFF F402 CCNT
0011 CDATA 0001 CIMSK DEDC CIN3 DCO3 CIN4
DCO1 CINS 0002 COMSK DERD3 CONIN DC12 CONOUT
DEAR CONST LCIR CONW F400 CFNTR 000l CR
0010 CSTAT 0003 CTRC 0004 CTRD 0011 CTRQ
0013 CTRS FFFF DOUERLE 0000 FALSE 000C FFEED
RC38 FORM DELS INIT FFFF INTRM 0003 IORYTE
F403 KCNT LDE?2 KEY2 DE7F KEY3 DRSC KEY4
OE?1 KEYS DE?3 KEY6 DRSR KEYRD F404 KPNTR
0013 LDATA 0003 LEV 000A LF 0001 LIMSK
DCO6 LIN DECE LISST DC2E LIST 0000 LNULL
0002 LOMSK DC246 Lout DC3F LSKIF 0012 LSTAT
0015 MDATA 0040 MIMSK DC74 MIN DCSE MONCR
0080 MOMSK C6? MouT 0036 MSIZE 0014 MSTAT
4900 OFFSET DC48 FUNCH DEC8 QuIT DRPE RSETF
DBOO START Q095 STOF FFFF TRUE nROO USER

entry is read with an IN instruction. The byte is then placed into the key-
board buffer and the buffer pointer and buffer count are both incremented.
The interrupt flip-flop is enabled with an EI instruction, then the computer
returns to its previous task.

When the CPU needs another byte, it gets it from the keyboard buffer
in memory, rather than from the keyboard itself. The instructions starting at
subroutine CONIN perform this step. The separate buffer pointer and buffer
count, maintained for the CPU, are both incremented.

The interrupt-driven keyboard can be utilized with most of the CP/M
systems programs. For example, if a BASIC interpreter has been loaded and
a source program has been entered, then the source program can first be
listed, then executed by typing the following two lines.

LIST
RUN

The second command can be given immediately following the first, even
though the first task has not been completed. The second command will not
be displayed on the console, however, until the completion of the first task.
Therefore, the operator must type carefully.
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SCROLL CONTROL AND TASK ABORTION

Data can appear (scroll) too rapidly on a high-speed video screen. With the
usual CP/M arrangement, the user can type a Control-S to freeze the video
display. Typing any other character will cause scrolling to resume. The
interrupt-driven routine given in Listing 4.1 incorporates its own scroll con-
trol. Typing -a Control-S freezes the screen, just as with the usual CP/M
setup. However, scrolling can only be resumed by typing a Control-Q. The
two commands, Control-S and Control-Q, are treated distinctly; they are
not placed into the input buffer, but are acted upon immediately.

CP/M tasks are normally aborted by typing any keyboard character. On
the other hand, a Control-C is required in Microsoft BASIC, and a Control-E
is used by Xitan BASIC for aborting the current task. This protocol has been
altered so that characters can be entered into the keyboard buffer during a
scroll operation. Nevertheless, it may be desirable to abort a task.

If no characters have been typed ahead, that is, if the computer is
executing the latest command, then a Control-C command will abort the
current operation. Alternatively, if there are characters waiting in the console-
input buffer, then these must be flushed out by typing a Control-D. At this
point, a Control-C can be typed to abort the task. This arrangement will
work with most programs, including Microsoft BASIC and Tarbell BASIC.
If you use Xitan BASIC, then you must change the abort command character
in the interface routine from a Control-C to a Control-E.

An additional alteration is necessary for the Word-Master text editor.
First of all, Word-Master buffers the keyboard buffer using software routines.
Consequently, a hardware-interrupt system is unnecessary. Secondly, Word-
Master uses Control-C and Control-D for system commands. Control-C is
used to display the next screen and Control-D is used to move the cursor to
the next word. If you want to use hardware interrupts with Word-Master,
you must change the Control-C and Control-D commands in either the inter-
face routine or in Word-Master.

DATA TRANSMISSION BY TELEPHONE

The process of transmitting information between a peripheral and the com-
puter may be simple or it may be complex. If the system console is wired
into the computer, or if the computer itself is built into the console, then
the integrity of the transmitted data is not likely to be much of a problem. It
may be, however, that the console is connected to the computer through a
telephone line. The computer may be located across town or across the coun-
try. In any case, connection through a telephone line complicates things.

In a typical telephone arrangement, the data is sent from the console
by modulating an acoustical carrier for transmission over the telephone line.
The conversion is performed by an electronic device called a modem (the
name is an abbreviation for MODulator-DEModulator). Two modems are
required, one at each end of the telephone line. One converts the transmitted
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signal to telephone frequencies, the other converts the signal back to the
original data.

The modem may also have an acoustical coupler. This allows a standard
telephone headset to be pressed into two rubber-lined openings in the
modem, making a direct connection between the modem and the telephone
line unnecessary.

There will usually be two data carrier signals at different frequencies.
This allows simultaneous two-way, or full duplex, operation. The computer
can transmit data to the console on one carrier while the console is trans-
mitting data to the computer on the other carrier.

A microcomputer can produce a more effective link between a console
and a large main-frame computer, especially if a relatively slow modem is
utilized. A program can be developed using the microcomputer’s editor,
then the resulting file can be automatically transmitted to the larger com-
puter. A subroutine that can be.used to link a microcomputer to a large
computer is given in Listing 4.2. This routine can be readily incorporated
into the system monitor introduced in Chapter 6.

Listing 4.2 Connection to a3 lardge comruter

CONNECT TO ANOTHER COMFUTER
THROUGH FPHONE MODEM

we @r @ sar A

(Z-80 CODE)

0014 DSTAT EQU 14H FSTATUS
0015 DOATA EQU DSTAT+H1 ;
0040 DIMSK EQU 40H § INFUT MASK
0080 DOMSK EQU 80H s0UT MASK

9
0004 CTRD EQU 4 #7hy COFY
5741 TYFLG EQU STACK+1 COFY FLAG

H
SER3 AF DEC XOR A § ZERO
GBR4 32 G741 Lo (TYFLG)»& $RESET COFY
SER7 DB 14 DECIN: IN Ay (NSTAT) FREADY?
SBE? E6 40 AND DIMSK
SBER 28 13 JR ZsALTIN #NO
SERD 3A S7A1 Lo Ay (TYFLG) COFY FLAG
SRCO R7 OR A $TO MEMORY?
SBRCLI 28 07 JR ZyDINS  #NO
GEC3 CD SEF1 CAaLL DINFUT FGET RYTE
SBRCS 77 Lo (HL)sA  $TO MEMORY
SBRC? 23 INC HL iFOINTER
SBC8 18 03 JR DEC2
SkECA CD SEF1 DINS: CALL DINFUT FGET ERYTE
SECDH CD 5835 DEC2: CaLL ouTT $TO CONSOLE
SBDO CD 5827 ALTIN? CALL INSTAT FCONSOLE
SBEDR3 28 E2 JR ZyDECIN #NOT READY
SEDS CD 5814 CaLlL INPUTZ2 $FCONSOLE
SED8 FE 04 ALT2: CF CTRI 70

SROA 28 1A JR Z+DCOFY $SET FLAG
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Parity checking provides a method of monitoring the integrity of data trans-
mission. While there are several different schemes for digitally encoding the
common characters, the ASCII method is frequently used for microcom-
puters. The ASCII code, shown in Appendix A, requires only seven bits for
each character. Since each byte of data contains eight bits, there is one bit

SBROC CD SREL ALTS: CALL
SBDF 18 Dé JR

R
H
.
§
.
i

I

= e e @ e

SEF6 21 0100

OUTFUT A RYTE

DECOUT
DECIN

§TO DEC
fNEC INFUT

TO DEC

SBE1 F5 IECOUT? FUSH AF
SRE2 CD SREA CAaLL DORDY
SRES F1 FOF AF
SBES D3 15 ouT (NDATA) s A
SRESB 18 CD JR DECIN FNEXT
V
# DEC INFUT READY
#
‘SBEA DR 14 DORDY: IN Ay (IISTAT)
SEEC Eé& 80 AND DOMSK
SBEE 28 F1 JR ZyDECOUT
SERFO €9 RET
H
5 INFUT FROM DEC MODREM
§
SBF1 DR 15 DINFUT? IN Ay (DDATA)
SRF3 E6 7F AND DEL iMASK FARITY
SBFS C9 RET

SET DEC COFY FLAG. START COFYING
INTO MEMORY AT 100 HEX

COFY$ LD HLs100H
SEF9 3E 01 LD Asl
SEFE 32 574l LD (TYFLG) v A
SEFE 18 B7 JR DECIN
5
END START
PARITY CHECKING

available for use as a check bit.
Consider the 7-bit pattern for the ASCII characters 2 and 3.

ASCII 2

The value of 2 is encoded with four logical zero bits and three logical 1 bits.
The value of 3 is encoded with three logical zero bits and four logical 1 bits.
A parity check can be obtained by including an additional bit on the left

(high-order) end.

ASCII 3

011 0010
011 0011
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There are two common methods of generating the parity bit. One
encoding method is called even parity. In this case, a leading zero bit is
added if there are an even number of logical ones among the other seven
bits. On the other hand, the parity bit would be a logical 1 if there are an
odd number of logical ones among the other seven bits. With even parity
coding, the ASCII characters 2 and 3 would look like this.

2 1011 0010
3 0011 0011

Now the 8-bit representation of both the 2 and the 3 contains an even num-
ber of logical ones (and an even number of logical zeros).

An alternate approach is called odd parity. In this case, the operation is
simply the inverse of even parity. The logic of the parity bit is chosen so that
the resulting bit pattern contains an odd number of logical ones. Either even
or odd parity encoding will provide a check on the integrity of the data
transmission. :

Suppose that during transmission of the character 2, the rightmost bit
became inverted. The console sent the even-parity bit pattern ~

1011 0010
but the computer received the bit pattern
1011 0011
A parity check, performed at the computer, would be able to detect the fact

that there was an error.
A typical console-input routine might look like this.

CONIN? IN CMASK #CHECK STATUS
ANI CIMSK FMASK FOR INFUT
Jz CONIN sLOOF UNTIL READY
IN CDATA #GET THE DATA
ANI 7FH -$REMOVE PARITY
RET

The next to the last instruction in this subroutine performs a logical AND
with 7F hex. This step is used to remove the high-order bit of the byte since
it is not needed for ASCII data. Instead of ignoring this eighth bit, we could
use it as a parity check. An input routine to perform a check for parity
looks like the following list.
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CONING IN CHASBK $CHECK STATUS
ANI CIMSK $MASK FOR INFUT
JZ CONIN $LO0OP UNTIL READY
IN CDATA $BET THE DATA
ORA A $SET PARITY FLAG
JFPO FERROR $FPARITY ERROR
ANI 7FH FREMOVE PARITY
RET

S
$ PARITY-ERROR MESSAGE

3
PERROR: « +

This routine is essentially the same as the one given immediately before, but
after the data register has been read by the computer, the parity of the byte
is determined. .

The ORA A instruction performs a logical OR of the accumulator with
itself. A logical OR of any byte with itself will not change the byte. How-
ever, it does affect the status flags in this case. After the OR operation, the
parity flag will be set according to the parity of the accumulator. If the
parity is found to be odd, then an error is present. The JPO instruction
causes a jump to the parity-error routine in this case. However, if the parity
is found to be even, then the byte in the accumulator does not contain a
parity error. '

Notice that a parity check will not detect an even number of bit errors
in a byte. There may be two, four, or six errors, and the parity check will
not detect an error. This is not likely to be a practical problem, however,
since the likelihood of two errors is much less than the likelihood of single
errors.

ASCII computer terminals usually have the ability to automatically
transmit an eighth parity bit with the data. Furthermore, there will typically
be a user-selectable switch for choosing either even or odd parity. There may
also be the additional choices of always resetting or always setting the parity
bit. The input routine can check for odd parity if the JPO instruction is
changed to a JPE instruction.

There are much more sophisticated methods of checking for transmis-
sion errors. One of these is the checksum approach discussed in Chapter 9.
With this method, the transmitted data are added together. At regular inter-
vals, the sum, or its complement, is transmitted along with the data. When
the data are decoded, the data are added up again and compared to the
~ checksum.

The Hamming error-correction code is even better than the checksum
method. It not only detects errors, but can also correct them. In the end,
however, it is wise to find out why errors occur, and to take the appropriate
action to correct the problem. A dirty tape head, for example, can produce
errors. Cleaning the head is better than relying on an error-correction
scheme.




CHAPTER FIVE

Macros

Sophisticated assemblers incorporate a macro processor. A macro is used to
define a set of instructions which are associated with the macro name. Then
whenever the macro name appears in the source program, the assembler
substitutes the corresponding instructions. This is called a macro expansion.

Suppose that we want to interchange the contents of two memory
locations with the following instructions.

LDA FIRST PGET FIRST BYTE
PUSH FSW § SAVE

LDA SECOND $GET SECOND

8Ta FIRST $PUT INTO FIRST
FOpP FSUW $GET FIRST

8TA SECOND 3SPUT INTO SECOND

This set of instructions can be defined in a macro called SWAP.

SWAF MACRO $SWAFP FIRST AND SECOND
LDaA FIRST $GET FIRST BYTE
FUSH PSY i SAVE
LDA SECONDN $GET SECOND
STA FIRST $FUT INTO FIRST
FOF FSY $GET FIRST
8TA SECOND $SPUT INTO SECOND
ENDM

The macro definition is placed near the top of the assembler source program.
The first line defines the macro name; the last line terminates the definition.
The name SWAP can now be used like an operation code. it is placed in
the source program whenever the corresponding instructions are needed.
When the assembler encounters the name SWAP, it substitutes the desired

69
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instructions. The final binary code generated by the assembler is the same as
it would be if the instructions had originally been entered into the source
program.

Each time the macro name SWAP appears in the source program, the
same set of instructions will be generated and the same two memory loca-
tions will be interchanged. The SWAP macro becomes more versatile if the
memory locations can be changed. If the names of the memory locations
are placed on the first line of the macro definition, they become dummy
variables.

SWAF MACRO FIRSTy SECOND

LIva FIRST $GET 18T RYTE
PUSH PSY $ SAVE

LDA SECOND $GET 2ND

STA FIRST SPUT INTO 18T
PoP PSW FGET 18T

8TA SECOND $PUT INTO 2ND
ENDM

The actual parameters in the macro call are substituted for the dummy
parameters at assembly time. The macro call

SHAFP HIGHy, LOW

- generates the assembly language instructions

LDa HIGH $6ET 18T RBYTE
PUSH FSHW § SAVE

LDA LOW FGET 2ND

STA HIGH $PUT INTO 18T
FOF PSU $GET 18T

8TA LOW $PUT INTO 2ND

The statement
- SWAP LEFTs RIGHT

will produce the instructions

LDA LEFT $GET 18T BYTE
PUSH FSW § SAVE

LDA RIGHT $GET 2NI

STA LEFT $PUT INTO 18T
FOP PSW $GET 18T

5TA RIGHT $PUT INTO 2ND

The structure of macros can be much more complicated than the above
examples. One macro can be nested inside another.
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OUTER MACRO

¢ * ®

IF FAST

INNER MACRO
® * *
ENDM $ 3 INNER
ENDIF §FFAST
ENDM $ OUTER

Conditional assembly directives can be used to create different versions.
Comments in the macro definition which begin with a single semicolon are
reproduced in the macro expansion along with the op codes. But if the com-
ments are preceded by two consecutive semicolons, then they will appear
only in the macro definition, not in the macro expansion.

GENERATING THREE OUTPUT ROUTINES WITH ONE MACRO

A subroutine can be used whenever a set of instructions is needed at several
places in a program. But there are times when a similar but different group
of instructions is needed. A subroutine cannot be used in this case. Consider
the three 8080 output routines that follow. The first sends a byte to the
console, the second sends a byte to the list device, and the third sends a byte
to the phone modem.

coT: IN CSTAT
ANI COMSK
JZ coTv
MoV asC
ouT CDATA
RET

?

LOT: IN LSTAT
ANI LOMSK
JZ Lot
MOV ArC
ouT - LDATA
RET

§

MOT: IN MSTAT
ANI MOMSK
JNZ MOT
MoV ArC
ouT MDATA
RET

The structure of these three routines is very similar. Each begins by
reading the appropriate status register. Then a logical AND is performed to
select the output-ready bit. Looping occurs until the peripheral is ready. The
byte is moved from the C register into the accumulator and sent to the
appropriate peripheral. Finally, a return instruction is executed.
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These three routines are slightly different, hence they cannot be re-
placed by a single subroutine. However, since they have similar structure
they can be generated with a macro. The macro definition looks like this.

OUTPUT HMACRO ETAYA $0UTPUT ROUTINES

?SEOT: IN PSESTAT $CHECK STATUS
ANI PER0MBK $MASK FOR OQUTPUT
JETZ 78807 $NOT READY
MOV ArC FGET BYTE
ouT PSEDATA FSEND IT
RET
ENDM

It would appear near the beginning of the source program. The macro name
chosen is OUTPUT and the two dummy arguments are ?S and ?Z. Dummy
arguments can have the same form as any other identifier. A question mark
was chosen as the first character so that the dummy arguments would be
easier to find in the macro definition. You must be careful not to use register
names such as A, B, H, or L for dummy arguments if these register names
also appear in the macro.

Each of the three output routines is generated by a one-line macro call.

QUTFUT C»Z F CONSOLE OUTFUT

“ty

OUTPUT L+sZ $LIST OUTFUT

“ar

OUTPUT  MsNZ $MODEM OUTPUT

Each line includes the appropriate parameters. At assembly time, the real
arguments replace the dummy arguments of the macro. The ampersand
character (&) is a concatenation operator. It separates a dummy argument
from additional text. The macro processor substitutes the real parameter for
the dummy argument, then joins it to the rest of the text. By this means the
expression ?S&OT becomes LOT if the real argument is the letter L.

Macro assemblers may give the user three options for the assembly
listing:

1. Show the macro call, the generated source line, and the resultant
; hex code.

2. Show the macro call and the hex code.

3. Show only the macro call.

If option 1 is chosen, then the above three macro calls to OUTPUT will pro-
duce the following.
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QUTFUT MACRO PSP PZ FOUTPUT ROUTINES

?S5&0OT:  IN PSERSTAT SCHECK STATUS

ANI PHEOMSK FMASK FOR OUTFUT

JETZ ?S&OT $NOT READY

MOV AsC $GET BYTE

ouT THEDATA SSEND IT

RET

ENDHM

§

ouUTPUT CyZ # CONSOLE OUTPUT
4000+DR10 coTe IN CSTAT §CHECK STATUS
4002+E602 ANI COMSBK $MASK FOR OUTFPUT
40044+CA0040 JZ cor FNOT READY
4007479 MOV AyC SGET RBYTE
4008+D311 ouT CDATA FSEND IT
4000+4C9? RET

H

. OUTFUT L»Z SLIST OUTFPUT

400B+DEB12 LaT: IN LSTAT $CHECK STATUS
400N+E602 ANI LOHSK $MASK FOR OQUTFUT
400F+CAOR40 JZ LaT FNOT READY
4012479 MOV ArC FGET RYTE
401340313 ouT LDATA $SEND IT
40154C9 RET -

?

QUTFUT MeNZ $MODEM OQUTPUT
4016+DR14 MOT$ IN MSTAT $CHECK STATUS
4018+E4680 ANI MOMSK $MASK FOR OUTFUT
401A+C21640 JNZ MOT $NOT READY
4010479 MOV AsC $GET RYTE
401E4+D315 ouT MOATA FSEND IT
4020+C? RET

The first argument in the macro, 7S, is replaced by the actual argument. This
is the letter C in the first call, the letter L in the second call, and the letter M
in the third call. The second argument is used to select a JZ or JNZ instruc-
tion for the third line of the macro expansion.

Some assemblers automatically remove the ampersand symbol from the
resultant assembly listing. Others leave the symbol in place. In this latter
case, the first line of the first routine would look like this.

C&aoT?e IN C&STAT FCHECK STATUS

But this is a matter of style. The actual machine code generated is the same
in either case.

GENERATING Z-80 INSTRUCTIONS WITH AN 8080 ASSEMBLER

If you have a Z-80 CPU but an 8080 macro assembler, such as the Digital
Research MAC, you can run all of the 8080 programs just as they are given
in this book. You can also do the Z-80 programs by using macros to generate
the Z-80 instructions. For some of the instructions, the regular Zilog mne-
monic can be used. For other instructions a slightly different format is
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necessary. Consider, for example, the Z-80 instruction that performs a two’s
complement on the accumulator. The Zilog mnemonic for this operation is
NEG. A Z-80 assembler converts this mnemonic into the two hex bytes
ED 44. With an 8080 macro assembler you can use the same mnemonic.
Define the macro

NEG MACRO $ TWO'S COMFLEMENT
DB OEDMHy 44H
ENDM

Then, the macro call

NEG

is placed in the source program when the Z-80 NEG instruction is needed.
The 8080 macro assembler will insert the desired hex bytes ED 44 at this
point. '

As another example, consider the Z-80 relative-jump instruction. This
instruction can be implemented with a macro that uses the assembler’s pro-
gram counter, a dollar sign. The macro definition looks like this.

JR ADDR SRELATIVE JUMF
DR 18Hs ADDR-$-~1
ENDM

The dummy parameter ADDR is the destination address of the jump. The
macro call

JR ERROR

will generate the correct Z-80 code. The first byte will be 18 hex. The
second byte will be the required displacement for the jump.

The Z-80 instruction, DJNZ, can be generated in a similar way. This
instruction decrements the B register and jumps relative to the address of
the argument if the zero flag is not set. The macro definition is

DJINZ MACRO ADDR
DB 10HsADDR~$-1

ENDM

and the macro call looks like

DJUNZ LooF

~This approach will work with most macro assemblers. There may be a prob-
lem, however, with the interpretation of the dollar sign. This symbol usually
refers to the address of the beginning of the current instruction. But for
some assemblers, it is interpreted as the address of the following instruction.
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If your assembler uses the latter interpretation, you will have to change the
macro accordingly. If in doubt, check the user manual.

Some Z-80 mnemonics are not compatible with the macro format. For
example, the Z-80 instruction

PUSH IX
cannot be generated with a macro called
PUSH MACRO REG

since PUSH is a regular 8080 mnemonic. One possibility is to name the
macro PUSHIX instead.

PUSHIX #™ACRO
DB OLDH» OESH
ENDM

Similar problems occur with the commands POP IX, ADD IX,BC, SUB
(IX+dis), and SET. A format that is different from the Z-80 mnemonic must
be chosen in each of these cases.

The Digital Research macro assembler has an added bonus. Frequently-
used macros can be placed into a separate macro library and given the file
extension of LIB. In fact, this assembler is supplied with a macro library
called Z80.LIB that will generate all of the Z-80 instructions. The statement

MACLIB Z80

" is placed near the beginning of the regular source program. The assembler
will then look in the file Z80.LIB for the required macros.

EMULATING Z-80 INSTRUCTIONS WITH AN 8080 CPU

The Z-80 CPU can execute many powerful instructions that are not available
to the 8080. Some of these useful instructions are difficult to implement on
an 8080, while others are simply combinations of regular 8080 instructions.
The NEG instruction is one of the easiest to implement. The macro defini-
tion is

NEG MACRO 8080 TWO’S COMPLEMENT
CMa $31°8 COMPLEMENT
INR A $32/98 COMPLEMENT
ENDM

Now, whenever a two’s complement is needed, the macro call

NEG
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is placed into the program. The assembler generates the required 8080
mnemonics

CHA
INR A

Another useful Z-80 operation is the arithmetic shift. This operation
shifts all bits of a register one position to the left. The high-order bit is
moved into carry, that is, the carry flag is set to a 1 if bit 7 was originally a
value of 1. The carry flag is reset to zero if bit 7 was zero. A value of zero is
placed into the low-order bit (bit zero).

The 8080 instruction ADD A, which adds the value in the accumulator
to itself, performs the arithmetic shift left. But for the 8080, this is the only
register which can perform the shift. The Z-80 has an additional instruction
which allows this operation to be performed on any of the general-purpose,
8-bit registers or on the memory byte referenced by HL, IX, or IY.

The following macro will generate a set of 8080 instructions for the
arithmetic shift left operation.

SLA MACRO REG $SHIFT LEFT ARITH
MOV AsREG §FGET BYTE
ADD A $FSHIFT LEFT
MOV REGrA $ $PUT BACK
ENDM

The byte is first moved to the accumulator. The next step is to add the
accumulator to itself. This doubling operation performs the needed shift
into carry. Then the result is returned to the original register. The value in
register C can be doubled by inserting the macro call

SLA c

This macro must be used with caution, since the accumulator will be
changed during use. But the byte originally in the accumulator cannot be
saved with a PUSH PSW instruction. The problem is that the subsequent
POP PSW command will overlay the flag register, so that the carry result of
the shift will be lost. One solution is to save the accumulator in memory.

SLA MACRO REG $SHIFT LEFT ARITH
8TA SAVE $SAVE A
MoV AyREG $3GET BYTE
ADD A $PSHIFT LEFT
MOV REGrA §3PUT BACK
LDA SAVE $ PRESTORE &

ENDM
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THE REPEAT MACROS

There are times when several lines of identical or nearly identical lines of
code are needed. Three repeat macros, REPT, IRP, and IRPC are provided
for this purpose. The repeat macros differ from the regular macros in that
they are placed directly into the source program where they are needed. The
macro definition is the macro call. In the simplest form, an instruction or
group of instructions can be replicated. The expression '

REPT 4
RAR
ENDHM

will generate the four lines

RAR
RAR
RAR
RAR

By using the SET directive, this operation can become more versatile. The
SET instruction is like an EQU except that the value can be redefined.
The lines

ADDR SET 8000H
REFT 4

ADDR SET ADDR+3
el ADIIR
ENDM

will generate the code corresponding to

DW 8003H
DY 8006H
Dy 8009H
D 800CH

Such a series could refer to jump vectors that are spaced three bytes apart.

The repeat macro, combined with the conditional-assembly directive,
can generate the required number of nulls after a carriage-return, line-feed
pair. This will give the printer time to return to the left margin. Some
printers need no nulls, whereas others may need as many as six or seven. The
source code could be

H
§ OUTPUT TO LIST DEVICE
$
LouUT? IN LSTAT
ANI LOMSK
JZ LouT
MOV AsC $GET DATA

ouT LDATA $SEND BYTE
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a

IF NULLS > O
ANI 7FH JREMOVE PARITY
CPI CR $CARRIAGE RETURNT
RNZ #NO
MVI €»0 FGET A NULL

9
REPT NULLS FHOW MANY?
CaLL LOuUT $SEND NULL
ENDM $REPEAT MACRO
ENDIF FNULLS

i
RET

The first part is a typical output subroutine. A call is made with the byte in
register C. When the output device is ready, the byte is moved from the C
register to the accumulator. It is then sent to the printer. If no nulls are
required, then the passage from

IF NULLS > ©
to

ENDIF

is not assembled. On the other hand, if nulls are required, then this passage
is assembled. If four nulls are needed, then the assembler will generate four
lines of '

CALL LOUT $SEND NULL

The list output routine calls itself to produce the required nulls. The identi-
fier called NULLS must be previously set to the necessary number of nulls.

There are two other repeat macros called IRP and IRPC. A set of one-
character message routines can be generated by using the indefinite repeat
macro IRPC. This example will introduce something called a programming
trick. Some people think that it is a horrible example of programming.
Others think it is very clever. Its purpose is to save two bytes of instruction
each time it is used. In addition, less branching is required.

Suppose that we need five different message routines that each produce
a single character. The instructions might look like

CHARC: MVI Ar’C’
JHP ouTT

CHARM? MVI Ar ‘M’
C o JHP ouTT
CHARR: NMVI’ As ‘R’
JHP ouTT

CHAR??: MVI “Ar P’
JHF ouTT

CHARS$! MVI Ar’$’
JMF ouTT

* * .

OuUTT? <outrut routine>
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If the B and C registers are not in use, we can shorten the above passage by
replacing each line containing the instruction JMP OUTT with a line of DB 1.

CHARC: MVI as'C’
DB i
CHARM: NMVI As "M’
. DB 1
CHARR?! HMVI As 'R’
DR 1
CHAR?? MVI Ay P
DR i
CHARS$: MVI Ay '8’

¢

ouUTT? o e ;

Let’s see how this works. Suppose that a branch is made to the label
CHARC. The accumulator is loaded with an ASCII letter C. The next byte,
a DB 1, looks like the start of an LXI B instruction. The following two
bytes, corresponding to the MVI A,'M' instruction, will be interpreted as the
argument for the LXI instruction. That is, they will be considered as data.
The same will hold for the other occurrences of DB 1. By this means, we
have effectively shortened the code. We no longer need the JMP statements.
Caution: a disassembler is not likely to interpret this passage correctly. It
looks like there are labels pointing into the middle of the LXI instructions.
Notice that the second version has subroutine OUTT positioned directly
under the CHARS$ routine, so that no JMP instruction is needed at this
point. '

The second version can be easily generated with the IRPC macro. Only
five lines are needed in the source program.

IRPC XsCMPR?S

DR i $FAKE LXI B
CHAREX: WMVI Ar &X'
ENDM

The five different message routines are all generated with this single macro.
One replication is made for each character of the second argument to IRPC.

PRINTING STRINGS WITH MACROS

Suppose that we want to send messages to the console from various points
of a program. We could write a subroutine called SENDM for this purpose.

SENDM: LDAX D $GET CHAR
ORA A $ZEROT
RZ SYES
INX D FPOINTER
MOV CsA

caLL ouTT $SENT
JMP SENDM PNEXT
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 The address of the message is loaded into the DE register and subroutine
SENDM is called.

LXI Dy MESS1
CaLL SENDM

Subroutine SENDM prints a message by sending each character to the output
subroutine OUTT. When a binary zero, used to indicate the end of the mes-
sage, is found, SENDM returns to the calling program.

We can simplify the sending of messages by using a macro called PRINT.
At each point we write

PRINT <CHECKSUM ERROR:
® ® ¢
PRINT <END OF FILE>

® ¢ L]

PRINT <OUTFUT TO LIST?>

The macro called PRINT will generate the message given in the argument.
- The message is enclosed in angle brackets because the blanks are part of the
argument. ,

If subroutine SENDM were placed into the macro body, then one copy
of SENDM would be inserted for each occurrence of the PRINT statement.
But we don’t need more than one copy of SENDM. On the other hand, if
we don’t include SENDM in the macro, there may not be any copies at all.
What we need is a mechanism for inserting one, and only one, copy of
SENDM regardless of how many times we give the PRINT command.

The solution is to write a double macro—one nested inside the other.
Both macros will be given the same name. Subroutine SENDM will be part
of the outer macro which will be expanded only once. The layout looks
like this.

PRINT MACRO <messade> JOUTER MACRO
Edéf‘ ;‘,ne SENDM]

PRINT éAéRé <messade’> JINNER MACRO
Eséngj messadel

Ll ® ®
ENDM 7 INNER MACRO

ENDM $OUTER MACRO

The source program in Listing 5.1 demonstrates this technique. The outer
macro PRINT has the argument ?TEXT, used for the first call to the macro.
Subroutine SENDM is generated at this time. Additional macro calls to
PRINT utilize the inner macro which has the argument ?TEXT2. Subrou-
tine SENDM is not generated on these subsequent calls.
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Listing S.1. Source listing for a3 macro
demonstration =rogram.
; .
FRINT MACRO PTEXT
LOCAL ARODUND
§

JHF AROUND 3 SENDHM

SUBROUTINE TO SEND A STRING TO
THE CONSOLE. RINARY ZERO AT STRING ENI.
DsE IS STRING FOINTER.

W o e e e

ENDM: LDAX I $GET CHAR
ORA A $ ZEROT
RZ $YES
INX D §FOINTER
MOV " CrA
CALL ouTT $SENT
JHF SENDM SNEXT

$

AROUNI

?

# REDEFINE THE MACRO

; :

FRINT MACRO PTEXT2
LOCAL MESGy CONT

»
?

FUSH D $SAVE InsE
LXI e MESG  $FOINT
CALL SENDM
FOF D #RESTORE
JHP CONT $SKIF MESSAGE
§
MESG
DE CRyLF» "&PTEXT2/50
H
CONT? ENDM # INNER MACRO
FRINT WPTEXT>
ENDM sOUTER MACRO
$
CSTAT EQU 10H s CONSOLE STATUS
CDATA EQu CSTAT+1 FCONSOLE DATA
CR EQU 13 $ CARRIAGE RETURN
LF EQU 10 SLINE FEED
§
ORG 100H
START:

FRINT < CHECKSUM ERROR.:
;
PRINT <END OF FILE.:x
$
FRINT <OUTFPUT TO LIST®:
JMF 0 FRETURN TO CF/M

SENDI CHARACTER IN C TO THE CONSOLE

as ar as
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ouTT? IN
ANI
JZ
MOV
ouT
RET

ar

ENT

CSTAT
-

ouUTT
AsC
CHOATA

Subroutine SENDM is coded into the main flow of the program, that
is, it is an inline routine. It is therefore necessary to jump around SENDM.
Additionally, there must be a branch around each of the messages, since they
too are coded inline. Labels for the required branches are uniquely gener-
ated in the macro by declaring the corresponding labels as LOCAL. The
resulting assembly listing is given in Listing 5.2. The assembler places plus
symbols between the address and the generated code of the assembly listing
to designate those lines that were generated by macros. Thus, lines that
contain plus symbols were not present in the original source listing.

Listing 5.2,

Assembly listing for a macro

demonstration srodram.

¥
PRINT MACRO PTEXT

LocaL AROUND
§

JHF ARDBUND  $SENDM
$
# SUBROUTINE TO SEND A STRING TO
# THE CONSOLE. RINARY ZERO AT STRING END.
# DyE I8 STRING FOINTER.
y
8

ENDM: LIAX It sGET CHAR

ORA A $ZEROT
RZ $YES

INX b sFOINTER
MOV Cra

caLL ouTT FSENT
JHP SENDM FNEXT

#
AROQUND ¢

REDEFINE THE MACRO

T s e wr

RINT MACRO PTEXT2
LocaL MESGy CONT

-r

FUSH n FSAVE DsE

LXI Ly MESG FFOINT

CALL SENDM

FOFP I FRESTORE

JMP CONT i SKIF MESSAGE

ar

MESG S
e CRsLF»“&PTEXT250

-
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CONT ¢ ENDM 7 INNER MACRO
FRINT CPTEXT >
ENDM sOUTER MACRO
?
0010 = CSTAT EQU 10H s CONSOLE STATUS
0011 = CDATA EQU CSTAT+1 FCONSOLE DATA
000N = CR EQU 13 sCARRIAGE RETURN
0004 = L.F EQU 10 SLINE FEED
?
0100 ORG 100H
START? :
FRINT “CHECKSUM ERROR.
0100+C30E01L JHF PPO001 i SENDM
0103+1A SENDM: LDAX D §GET CHAR
0104+R7 ORA A $ ZEROT
0105+4C8 RZ FYES
0106413 INX I sFOINTER
0107+4F MoV CrA
01084+CN6501 CatL ouTT §SENT
010R+C30301 JHF SENDM FNEXT
O10E+DS FUSH D §SAVE DsE
010F+111901 LXI Dy 7?0002  FPOINT
01124CD0O301 caLlL SENDNM
0115401 FOFP D sRESTORE
0116+C32801 JHF ?PP0003 $SKIF MESSAGE
01194+0D0A434845 DR CRsLF» 'CHECKSUM ERROR.‘+0
H .
FRINT “END OF FILE.:
O12B+DS FUSH D sSAVE IvE
012C+113601 LXI Ds?P0004 SPOINT
012F+CDO301 caLL SENDM
0132401 FOF n FRESTORE
0133+C34501 JMF PPO00S FSKIF MESSAGE
0136+0010A454E44 DR CRyLFs "ENIN OF FILE. +0Q
1
) FRINT “OUTFUT TO LIST?>
0145405 FUSH D §SAVE DsyE
0146+115001 LXX Ds?P0006 SPOINT
01494CDO301 caLL SENDH
014C+D1 FOP D FRESTORE
01404C34201 JMP ?PPO007 $SKIF MESSAGE
0150+000A4F 5554 DB CRyLFy/OUTFUT TO LIST?’:0
0162 C30000 JMP 0 SRETURN TO CP/M
9
5 SEND CHARACTER IN € TO THE CONSOLE
9
0163 DR1O ouTT: IN CSTAT
0167 E602 ANI 2
0169 CA6S501 JZ ouTT
016C 79 MOV ArC
016D D311 ouT ChoAaTA
016F C? RET

“a»

0170 END
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If you are familiar with the operation of your assembler, type up the
demonstration program and try it out. Branch to the beginning and three
messages will appear at the console.

Checksum error
End of file
Qutrut to list?

Assembler operation will be considered in the next chapter.

By constructing increasingly complicated macros, it is possible to
develop some of the structure that is characteristic of higher-level languages
‘such as Pascal. The common loop constructions V

REPEAT
I S

® ® ®

UNTIL <condition true?

and

LOOPF
] ® ®
EXITIF <condition true>

* ¢ ®

ENDLOOF

can be realized with macros called REPEAT, UNTIL, and so on. The argu-
ments to UNTIL and EXITIF will consist of three terms. The first and third
will be numeric values. The middle term will represent a logical operation
such as EQUALS or LESS THAN. The spelling of the logical operators in
this case will have to be unusual, since the normal spellings

EQ
LT
GE

are already utilized by the macro assembler. Macros for all of the common
structures are available commercially. Also, source programs for structured
macros of this type may be given in the instruction manual for your macro
assembler.




CHAPTER SIX

Development of
a System Monitor

The best way to learn assembly language programming is to actually do it.
Consequently, in this chapter you will develop a small but very powerful
utility program called a monitor. There are many useful things that can be
done with the monitor. There is a command to examine memory and another
to change it. Other commands deal with memory blocks. These allow you to
move a block from one location to another. Some of the features will dupli-
cate those found in other programs, but other features, such as a search
routine and a memory test routine, will be unique.

You will not program the entire monitor at one time. Instead, you will
start with just the bare essentials. You will check the monitor after each
major change to ensure that the new features have been added correctly.
With this so-called top-down method, any error that develops is likely to be
found in the most recently added instructions. As new features are incorpo-
rated, the monitor will increase in size until it reaches 1K bytes. This is a
size that can be easily programmed into a single ROM. The monitor will
then be immediately available as soon as the computer is turned on. ,

An editor and an assembler are required for the development of the
monitor. In addition, a debugger will be helpful if you have problems along
the way. Each phase of the development will require the same sequence of
steps.

1. Generate an assembly language source file with the editor.

2. Assemble the source program to produce an object file.

3. Compare the hex code from your assembly listing to the listing
given in this chapter.

Load the object program into memory.

. Branch to the monitor and try it out.

or

85
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The assembly listings given in this chapter are written with 8080 mne-
monics. You can use an 8080 assembler for these programs whether you
‘have an 8080 or a Z-80 CPU. The resulting code will run on both an 8080
and a Z-80 CPU. If you have only a Z-80 assembler, you will have to change
the mnemonics. The cross-reference between the 8080 and Z-80 mnemonics,
given in Appendix G, can be used to find the corresponding instructions.
Alternately, you can define the 8080 mnemonics as macros.

PROGRAM DEVELOPMENT DETAILS

This section describes the details of program development. Skip to the next
section if you are familiar with the operation of your editor and assembler.
An editor is needed to create and alter the assembly language source file. If
you have CP/M, you will have an editor called ED. Other editors, such as
ED-80, EDIT80, and Word-Master, are separately available.

The session begins by giving the name of the editor and the name of the
source program. The following discussion assumes that you have CP/M. If
you have some other operating system, the approach will be similar, but the
details may differ. Put the CP/M system diskette in drive A and a working
diskette in drive B if you have more than one drive. Go to drive B with the
command

AxBl
The response will be
B>

Type the name of the editor followed by the name of the monitor source,
program. The command line might look like this.

BrAIED MON1.ASHM

for the first version. The digit 1 in the filename refers to the version number.
The file type is ASM for the Digital Research assemblers ASM and MAC.
The file type should be chosen as MAC, however, if the Microsoft assembler
is used.

As you type the source program, be careful to include only the instruc-
tions and the comments shown in Listing 6.1A. Do not type the resulting
hex code that is also given at the beginning of each line. For example, the
line that defines the parameter TOP, on the first page of the listing, should
be typed as

TOP EQu 24 $MEMORY TOPs K BYTES
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rather than as:

00i8 = TOP EQU 24 $MEMORY TOPs K BYTES

Type a Control-I or tab to automatically generate the blank spaces between
symbols. :

Most of the assembly language symbols have five or fewer characters.
This is acceptable to many assemblers. However, if your assembler only
allows names to have a maximum of five characters, then several symbols
will have to be shortened. The TITLE directive, on the first line, is another
potential problem. The CP/M version is shown. The apostrophes should be
removed if the Microsoft assembler is utilized. If the TITLE directive is not
available on your assembler, place a semicolon at the beginning of this first
line to convert it to a comment.

VERSION 1: THE INPUT AND OUTPUT ROUTINES

Refer to Listing 6.1A. This version will contain only the input and output
routines. Generate an assembler source file with the system editor. The
following variables will have to be tailored to your particular system. :

TOP (top of usable memory, decimal K)
HOME (where to return when done)
CSTAT (console input status address)
CDATA (console input data address)

CSTATO (console output status address)
CDATAO (console output data address)
INMSK (input-ready mask)

OMSK (output-ready mask)

BACKUP (console backspace character)

Normally, CSTATO will be the same as CSTAT, and CDATAO will be the
same as CDATA. But if your console input address is different from your
console output address, then each can be separately defined. Furthermore,
the address of CDATA will typically have a value one larger or smaller than
that of CSTAT.
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Listind 6.14. The bedinnind of a3 suystem monitor.
TITLE ‘8080 sustem monitors ver 17

(rut todaw’s date here)

> ar @

H
0018 = TOF EQU 24 FMEMORY TOF, K BYTES
5800 = ORGIN EQU (TOF-2)%1024 FFPROGRAM START
. ’

5800 ORG ORGIN

$

§
0000 = HOME EQU 0 _#ARORT (VER 1-2)

FHOME EQU ORGIN $ARORT ADDRESS
0031 = VERS EQU ‘1’ sVERSION NUMBER
5740 = STACK EQU ORGIN-60H
0010 = CSTAT EQU 10H $CONSOLE STATUS
0011 = CDATA EQU CSTAT+1 $CONSOLE DATA
0010 = CSTATO EQU CSTAT $CON OUT STATUS
0011 = CIATAD EQU CSTATO+1 0UT DATA
0001 = INMSK EQU 1 $ INFUT MASK
0002 = OMSK EQU 2 sO0UTFUT MASK

§
9740 = FORTN EQU STACK 73 RYTES 1/0
S7A3 = IBUFF EQU STACK+3 FRUFFER FOINTER
3745 = IRUFC EQU IBUFF+2 $BUFFER COUNT
5766 = IBUFF EQU IBUFF+3 FINFUT RUFFER

¥
0008 = CTRH EQU 8 §7H BACKSFACE
0009 = TAR EQU 9 71
0011 = CTR® EQU 17 7R
0013 = CTRS EQU 19 378
0018 = CTRX EQU 24 §7Xy ABORT
0008 = EACKUF EQU CTRH i BACKUF CHAR
007F = DEL EQU 127 s RUROUT
001 = ESC. EQU 27 FESCAFE
00F7 = AFOS EQU (39-707) AND OFFH
000D = CR EQU 13 sCARRIAGE RET
0004 = LF EQU 10 FLINE FEED
Q0DR = INC EQU ODEH $IN OF COLE
oon3 = ouTc EQU OD3H $0UT OF CODE
00C? = RETC EQU OC%H sRET OF CODE

9

START:
5800 C34A58 JHF coLn sCOLD START

5803 35358 RESTRT! JMP WARHM sWARM START
CONSOLE INFUT ROUTINE

5806 CD14658 NFUTT: CALL INSTAT $CHECKR STATUS

5809 CA0658 JZ INFUTT #NOT READY XXX
580C DE11 INFUT2: IN CDATA #6GET BYTE

S80E E&7F ~ ANI DEL

5810 FEi8 CFI CTRX §ABORT?

5812 CAO0000 JZ HOME SYES

59815 C9 RET

GET CONSOLE-INFUT STATUS

s @ G
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8164
5818
3814

S81R
s81c
S81F
2822
5823
3827

5824
3820
S582F
5832

5835
5837
5839
583C
5830
S383F

9840
3842
5847
5849

G844
G840
5850

5853
5856
5857
5854
5830
5860
58642

3865
5867

3864
S86C

G386F
5871

9874

DR10
E601
cy

F3
Chi1658
CaA3558
cpocss
FE13
€21C58

Choss8
FE11

C22458
C31Cs8

DER10
E602
Caicss
Fi
n3i1
cy

onoa
2056635
3100
00

314057
114058
CDEZ258

215358
ES
CIB4S8
Cn7758
COCCS58
FE44
CAS358

FE43
CAS358

FE47
CAS358

FEAC
CAS358

C35358

INSTAT: IN CSTAT
ANI INMSK
RET

> @y ‘9v

CONSOLE OUTFUT ROUTINE

H
QUTT? FUSH FouW
oura: CALL INSTAT SINFUT?

2 e wr e

JZ ouT4 FNO kXX
CAaLL INFUT2 $GET INFUT
CFI CTRS sFREEZE?
JINZ ouT2 iNO

FREEZE OUTPUT UNTIL ~Q OR "X

UT3s CaLtL INFUTT SINFPUTT
CPI CTRQ FRESUMET
JNZ OuUT3 FNO
JMF ouT2
1
ouT4: IN CSTATO $FCHECK STATUS
ANI OMSK
JZ ouT2 SNOT READY XXX
FOF FSW
ouT COATAD $SEND DATA
RET
9
SIGNON: DE CRsLF
e ‘ Ver
D VERS
e 0

ar e

a

b

CONTINUATION OF COLD START

OLIe3 LXI SF»STACK

LXI DsSIGNON $MESSAGE
CaLL SENDM FSEND IT

WARM-START ENTRY

WARM? LXI HyWARM SRETURN HERE
FUSH H
CALL CRLF sNEW LINE

.

.

ar

as

ar

caLL INFLN sCONSOLE LINE
CaLl GETCH $GET CHAR

CrlI ‘n’ $ DUMF

JZ WARM 5(VER 1)

Jz DUMF SHEX/ASCII (2
CFI ‘c’ sCALL

JZ WARM § (VER 1-2)

JZ CALLS $SUBROUTINE (3)
CrI ‘G’ $GO

JZ WARM s (VER 1-2)

Jz GO $ SOMEWHERE (3)
CFI i sLOAD

JZ WARM F(VER 1-3)

Jz LoAD §INTO MEMORY (4)

JMFP WARM $TRY AGAIN
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5877

5879
587C
587F
5882
5884
5887
5889
588C
988E
5891
o893
5896
5898
5899
589Kk
589¢C
989F
5840
58A1
w8A2
58A5

58A8
S8aA
S8AD
S8AF

S8R2
58E3

S58B6
58E8
S8EER
S8RD

38C0
58C1
S8C2
98CS
58C6e
58C7
58CY

3E3E
CD1B58
21A657
220357
0E00
Cpo658
FE20
DAABSE
FE7F
CACO58
FESB
[A9858
E6SF
77
3E20
E9
CABA4S8
7E

23

oc
CD1E58
C38458

FEOS
CACOS58
FEOD
£28458

79
32A557

JEOD
CD1BS8
3EO0A
C31B58

79

B7
CAB458
2K

oD
3E08
C3A258

INFUT A LINE FROM CONSOLE AND

H4

$ INTO THE BUFFER. CAR
# THE LINE. RUROUT OR
# LAST ENTRY.
¥
$
I

CONTROL~
OTHER CONTROL CHARAC
NFLNS  MVI Ayt
cALL  OUTT
INFL23  LXI H» TBUF
SHLD  IEUFF
: MUT Cs0
INFLI: CALL  INFUTT
CF1I .
Jc INFLC
CPI DEL
Jz INFLE
CFI ‘7741
JC INFL3
ANI S5FH
INPL3: MOV MrA
MVI Ar32
CMF c
Jz INFLI
MOV Al
INX H
INR c
INFLE: CALL  OUTT
IMF INFLI

N
1
.
$
.
§
I

NFLC?: CFI CTRH
JZ INFLE
CFI CR
JNZ INFLI

§

§ END OF INFUT LINE

¥
MOV AsC
8TA IBUFC

v

$ CARRIAGE-RETURNs LIN

;

CRLF? MVI AsCR
CaLL ouTT
MVI AsLF
JHF ouTT

@ wr e

DELETE FRIOR CHARACTER

FUT IT
RIAGE RETURN ENDS
“H CORRECTS LAST
X RESTARTS LINE.
TERS ARE IGNORED

$ FROMFT

F SBUFFER ADDR
# BAVE FOINTER
$§ COUNT
$ CONSOLE CHAR
sCONTROL?
$YES
fDELETE
$YES
SUFFER CASE?T
SYES
$ MAKE UFFER
$INTO RUFFER
s BUFFER SIZE
$FULL?
5YESy LOOF
s GET CHAR
# INCR FOINTER
$AND COUNT
$5HOW CHAR
$NEXT CHAR

FROCESS CONTROL CHARACTER

sTHT

$YES
FRETURNT
iNO» IGNORE

§COUNT
§ SAVE

E-FEED ROUTINE

#SEND CR
§SEND LF

IF ANY

NPLE: MOV AsC #CHAR COUNT
ORA A $ZEROT
JZ INFLI #YES
nex H $ BACK FOINTER
DCR c $ AND COUNT
MVI As BACKUF $CHARACTER
JHF INPLE $ SEND

§
# GET A CHARACTER FROM
$ SET CARRY IF EMFTY

CONSOLE BUFFER
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S8cC
S8ch
800
5803
2805
S808
S80R
38DcC
580D
S58E0
S8E1

38E2
S8E3
S8E4
98ES
SB8ES
S8E?

98EC

E3
2AA357
3AASS7
D601
DAEOSS
32A357
7E

23
22A357
El

ce

ia
B?
cs
CoiBS8
13
C3E258

9
GETCH?

GETC4:

U} w9 e o @

ENDM2

13

FUSH

LHLD

LDA
SUI
Jc
sTA
MOY
INX
SHLD
FOP
RET

. SEND ASCII
I8 FOUND.

LIaX
ORA
RZ
CaLL
INX
JHF

END

IRUFF
IBUFC

GETC4
IBUFC
AsiM

IBUFP

§SAVE REGS

$GET FOINTER
FAND COUNT

sDECR WITH CARRY
$NO MORE CHAR
FSAVE NEW COUNT
#GET CHARACTER

# INCR FOINTER
$AND SAVE
#RESTORE REGS

MESSAGE UNTIL BINARY ZERO
POINTER IS DyE

n
A

ouTT
n
SENDM

$GET RYTE
FZEROT
SYES» DONE
FSEND IT
SFOINTER
SNEXT

If you don’t know the addresses of the console status and data registers
and you are using the CP/M operating system, there is another approach you
can take. You can use the I/O routines in the CP/M BIOS. The disadvantage
of this approach is that CP/M must always be in place whenever the monitor
is used. The BIOS entry address is given at memory address 1. The console
status, input and output addresses are obtained by adding, respectively, 3, 6,
and 9 to this address. The following I/O routines in Listing 6.1B can be sub-
stituted for the subroutines in Listing 6.1A starting with the label INPUTT
- and ending with the label OUT2. If this version is utilized, the addresses in
the following sections will not agree with your assembly listings.

Listing 6.1B. Alternate I/0 routines using CF/M BRIOS.

5806
2807
5808
3809
s80C
580D
5810
5813
9814
5815
5816
5817
5818
I81a
381D

ES

ns

€3
211558
ES
240100
110600
19

E9?

Ci

D1

El
FE18
CA00S58
ce

5 CONSOLE INFUT ROUTINE USING CF/M RIOS

L
INFUTT?
INPUT2?

INS?

FUSH
FUSH
FUSH
LXI
FUSH
LHLD
LXI
DAD
FCHL
FOF
FOP
FOP
CFI
Jz
RET

H

I

B

Hs INS
H

1

s é

1]

B

n

H
CTRX
START

#SAVE REGISTERS

JRETURN ADDRESS
sFUT ON STACK
SRIOS WARM START
sOFFSET TO INFUT
JADD IN

sCALL EIOS
fRESTORE REGISTERS

s ARORT?
$YES
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GET CONSOLE-INFUT STATUS USING CF/M

i
§
I

S581E ES NSTATS: FUSH H $SAVE REGISTERS
S581F DS FUSH D
5820 CS PUSH B
5821 212058 LXI H»STS SRETURN ADDRESS
5824 ES i FUSH H $FUT ON STACK
5825 240100 LHLD i $BIOS ENTRY
5828 110300 LXI 0.3 sOFFSET TO STATUS
5828 19 DAD n sADD TO ADLDR
582C E9 PCHL sCaLl RIOS
5820 C1 STSS POF B $RESTORE REGISTERS
S82E D1 FOF I
S582F E1 FOF H
- 5830 R7 ORA A
5831 C9 RET
H
: CONSOLE OUTFUT ROUTINE USING CP/M BIOS
‘ ¢
5832 F5 QUTTS FUSH FSW $ SAVE RYTE
5833 CDIESS ouUT2: caLl INSTAT S INFUT?
5836 CAR4CSS JZ ouT4 FNO
5839 CDO658 CALL INFUT2 $GET INFPUT
583C FE13 CFI CTRS sFREEZE®T
S583E 23358 JNZ ouT2 $NO
5841 Ch0O658 ouT3: caLL INPUTT FINPUTT
5844 FE11 CFI CTRQA § RESUME®?
5846 (24158 JNZ ouT3 $NO
5849 C33358 JMF ouT2
1
984C F1 ouT4: FOF FSW $GET BYTE
584D ES FUSH H #SAVE REGISTERS
S84E DS FUSH I
584F C5 FUSH B , 4
3850 4F MOV CrA s MOVE RYTE
5851 FS FUSH FSu
5852 215ES8 LXI HsQUTS FRETURN ADIDRESS
5855 ES FUSH H FFPUT ON STACK
58956 240100 LHLD i $BI0OS ENTRY
5859 110900 LXI ny9 $OFFSET TO OUTFUT
585C 19 DAN I sAND TOGETHER
5890 E9 FCHL sCALL RIOS
585E Fi ouTS: FOF PSW fRESTORE REGISTERS
58GF C1 FOF B
5860 i FOF n
5861 E1 FOF H
5862 C9 RET

Some of the constants such as PORTN will not be used at this time.
However, their inclusion now will simplify things later. There are four
occurrences of the dummy instruction

Jz WARM
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following the label WARM. Each is followed by an instruction that will be
needed later. These latter instructions are preceded by a semicolon so that
they will be treated as comments by the assembler. ‘

There are some other matters that may need to be considered. One has
to do with the sense of the input and output ready flags. There are three
conditional jump instructions based on console-ready flags that display a
logical 1 (active high) when ready. If your flags are inverted, that is, they
present a logic zero when ready, then the three JZ commands must be
changed to JNZ commands. These lines, indicated by three stars in the
listing below, should be changed to

INPUTT: CaLL- INSTAT $CHECK STATUS

JNZ INPUTT $NOT READY XkxX
ouT2:¢ Caltb INSTAT GINPUT?
JNZ ouT4 SNO ok
- ® ° *
ouT4 IN CSTAT sCHECK STATUS
ANI OMSK
JNZ ouT2 FNOT READY k&%

The routine that corrects keyboard errors is programmed for a video
console. If you have a console printer instead, change the backspace char-
acter to a slash.

BACKUF EQU Al §CORRECTION

This will print a slash when an error is corrected. Otherwise the printer will
back up during error correction, overstriking the old character with the new.
You may also need to add some nulls after each carriage return. The prob-
lem here will be evidenced by missing characters at the beginning of each
line. The solution is to place additional instructions in the subroutine called
CRLF. Replace the last statement in this routine with the following.

caLL ouTT FSEND LINE FEED
XRA A JGET A ZERO
CALL ouTT FSEND NULL

calL ouTT $AND ANOTHER

PN (one line for each null)
JMF ouTT FLAST NULL

The rest of the program can be copied directly as it is. The abort com-
mand is a control-X. Initially, the abort address of HOME will be needed to
leave the new monitor and return to your regular system. We will change
this in version 3 when we will add a routine for branching to any memory
address. ,

If you have a TRS-80 Model I, you won’t have a control key. There-
fore, you will have to change several of the commands shown in the listing.
The original commands follow.
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CTRH (Control-H)
TAR (Control-1I)
CTRQ (Control-Q)
CTRS (Control-8)
CTRX (Control-X)
DEL (DEL/RUR)

ESC (Escare)

After you have finished typing the program, exit from the editor and
assemble the source program with the assembler. The command line might be

BrAtASH MONI
or

B>AIMAC  MON1

for the Digital Research assemblers. These two assemblers will produce two
files.

MON1 . ASH (assembly listing)
MONL . HEX (hex code)

In addition, MAC will produce a symbol table

HMONL1.SYM (sumbol table)

. Inspect the hex code given in the assembly listing to see that it matches
the corresponding instructions given in this chapter. These 8080 listings have
all been generated with the Digital Research assembler MAC. This assembler
displays the hex code for 16-bit operands in the usual reverse order. The
low-order byte appears first followed by the high-order byte. Thus:

CDIiR5S8 means CALL S581iF and
£38458 means JMP 5884

By contrast, the assembly listing produced by the Microsoft assembler
reverses the usual order of the two bytes. The high-order byte is given first;
this is followed by the low-order byte. In this case, the listing

Ch 581EB means CALL 581E and
3 5884 means JMP 5884

, The next step is to load the hex program into memory using the debug-
ger. The CP/M command would be

BrAtDDT MON1 . HEX or
B>A!SID MON1.HEX
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Now branch to the beginning of the monitor using the debugger G command.
65800

The first thing that the monitor will do is display the version number on the
first line and a prompt symbol of > underneath it.

Try out this first version by typing a series of letters and numbers. Each
character that is typed should appear (echo) on the console. Try the correc-
tion keys. Typing either a control-H (backspace) or the RUB/DEL key
should back up the cursor on a video terminal. Type a carriage return. The
prompt symbol should appear at the beginning of the next line. If all of the
features are working properly, type a control-X to return to your regular
system. If something appears to be wrong, carefully compare your assembly
listing with the one given in Listing 6.1 A. Don’t proceed to the next version
until the current one is working. ‘

VERSION 2: A MEMORY DISPLAY

A provision for examining the contents of memory will now be added. This
routine is called a memory dump, or dump for short; it displays the contents
of memory in both hex and ASCII notation. The dump feature is initiated
with a command of D followed by the address limits in hexadecimal. For
example, the statement

1100 18F

will dump memory from address 100 to 18F hex. The first address (100
in this case) must immediately follow the letter D. A space is typed and
then the second address (18F in this case) is entered. Leading zeros are
unnecessary. ,

Each line will display 16 memory locations. The hexadecimal address
of the first location will appear at the beginning of the line. Then the hexa-
decimal representation of the contents will follow, two characters per byte.
These are arranged in four groups of four bytes. The ASCII representations
of the data will be given at the end of the line if printable. Otherwise, a
period is given. A dump of the first line of the monitor might look like this.

*DS5800 S80OF (»wour command)
5800 C35C58C3 4598CD16 SBCA0LGE DBLIEG7F AXeeXeeXesXsvon

Use your system editor to make the necessary alterations and additions
to version 1. First, change the version number at the beginning of the ‘
program.

VERS EQU 27 FVERSION NUMBER
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Next, locate the instruction
Jz DUWP

that follows the label WARM. Remove the semicolon at the beginning of
this line. Also delete the line just before it that jumps to WARM. The region
should now look like this.

© CALL BGETCH
CPI ‘D’ § DUMPT
JZ DUMP

® ® ® ® L4 °

The remaining instructions, shown in Listing 6.2, will be placed at the
end of version 1, just preceding the END statement. It might be easier to
delete the END statement, type in the new code, and then add a new END
statement. The END statement is usually optional, anyway. One of the sub-
routines (READHL) will translate the dump limits from ASCII-encoded
hexadecimal into binary. One routine gets both the start and the stop address
(using READHL) then checks to see that the second address is larger than
the first. If the second address is smaller than the first, then the task will be
aborted. Subroutine OUTHEX will convert the binary data already in
memory into ASCII-coded hex for output to the console. Subroutine TSTOP
is used to determine when to terminate the dump process. Finally, an error
routine (ERROR) will be needed in case an invalid character is entered by
the user.

Listing 6.2. Memory disrlay
3 DUMF MEMORY IN HEXADECIMAL AND ASCII

§
S8EC CL2D59 DUMF ¢ CaLL RIHLDE $RANGE

58EF CD8359 DuMP2: CaLL CRHL FNEW LINE
58F2 4E DUMF3: MOV Cei JGET BYTE
58F3 CD9359 caLL OUTHX FPRINT

98F6 23 INX H FPOINTER
S8F7 7D MoV Asl

58F8 E60F ANI OFH SLINE END?
58FAa CAOSS? JZ DUMF 4 PYESs ASCII
58FD E603 ANI 3 $SFACE

58FF CCBES? cZ ouTsFP i 4 BYTES
5902 C3F258 JHF DUMF3 FNEXT HEX
5905 CDBESY? DUMF4: CalLL ouTSsF

5908 DS FUSH D

5909 11FOFF LXI Dy-10H SRESET LINE
590C 19 DAL D

990D Di FOF o :

S%0E CD1DS9 DUMFPSE  CALL FASCI FASCII DUMF
5911 CDA759 CALL TSTOF SDONET

5914 7D MOV AvL FNO

5915 E60F ANI OFH FLINE END?
5917 C20ES? JINZ DUMFS #NO

591Aa C3EFGS8 JHuP DUMF2
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g91n
S91E
59920
5923
9925
5928
S92R

592D
5930
5931
5932
9933
5934
5937

9938
S93B
S93E
993F
5942
5943

5944
5945
5946
5949
994C
S994F
39952
5955
5956
S957
5958
5959
3954
S95B

S95E
5960
5963
9963
59968
3969
9964

7E
FEZF
n22859
FE20
D22459
JE2E
C31B58

Cn3gse
7B
93
760
?C
DAZBS9
co

Ch4459
DA7RSY

ns
C3
210000
cncess
DALBSY
CD&RS?
DASESY
29
29
29
29
B3
6F
C34959

FEF?
Cas859
FEFO
C27RS9
c1

o1

ce

T er @ @r car

ASCI¢

FASC2:
FASC3:

a

DISFLAY MEMORY BYTE IN ASCII IF
FOSSIBLEs OTHERWISE GIVE DECIMAL FBNT

MoV A $GET RYTE

CPI DEL JHIGH RIT ONT
JNC FAsC2 i YES

CFrI o sCONTROL CHART
JNC FASC3 #NO

MVI - T sCHANGE TO LOT
JHF ouTT § SEND

GET HsL. AND D-E FROM CONSOLE

§
# CHECK
H
RIOHLDE
RDHLDZ2:

INFUT

$
# INPUT
H

READHL ¢

RIHL 2

CHECK

T e e w

DHLA4¢

ROHLS?

THAT Dy»E IS LARGER

CaLL HHLIDE

MOV ArE

SUR L SE -~ L

MoV ArD

SEE H #0 - H

JC ERROR $HsL. BRIGGER
RET

HeL AND DsE. SEE THAT

2 ADDRESSES ARE ENTERED

CaLL " READHL  $H»sL

JC ERROR JONLY 1 ADIDR
XCHG FSAVE IN DyE
CallL READHL SIHE

XCHG sFUT RACK
RET

HeL FROM CONSOLE

PUSH D ‘
PUSH E $SAVE REGS
LXI Hs O $CLEAR

CALL GETCH  $GET CHAR

Jec ROMLS  $LINE END
CALL  NIE $TO BINARY

Jc RDHL4  $NOT HEX

DAD H STIMES 2

DAD H STIMES 4

DAD H STIMES 8

DAD H STIMES 16

ORA L $ADD NEW CHAR
MOV LyA

JMF RDHL2  §NEXT

FOR BLANK AT END

CPI AFOS 3 APDSTROFHE
Jz ROHLS  5ASCII INFUT
CFI ( “=70) AND OFFH
JNZ ERROR  $NO

FOP B

FOF -~ D s RESTORE

RET
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INCREMENT H»sL

$
# CONVERT ASCII CHARACTERS TO BINARY
$
5968 D630 NIB? SUI ‘0’ $ASCII RIAS
5960 D8 RC i 0
596E FE17 CPI ‘F/-'0"+41
5970 3F cHe # INVERT
5971 D8 RC FERRORy » F
5972 FEOA CPI 10
5974 3F CMC # INVERT
5975 DO RNC FNUMEER 0-9
5976 D607 SUI ‘A9~
5978 FEOA CPI 10 PEKIF ¢ TO
5974 C9 RET JLETTER A-F
$
# PRINT 7 ON IMPROPER INFUT
§
5978k 3E3F ERROR: MVI Ay T’
5970 CO1RS8 CALL ouTT
5980 C30058 JHF START FTRY AGAIN
§
§ START NEW LINEs GIVE ADDRESS
' $
5983 CDR6SB CRHL ¢ CaLL CRLF FNEW LINE
; .
§ PRINT HsL IN HEX
¥
5986 4C OUTHL: MOV CsH
5987 CD?359 catl OUTHX iH
5984 4D OuUTLL: MOV CsL
§
§ OUTFUT HEX BRYTE FROM C AND A SPACE
§
598B CL9359 OUTHEX? CaLL QUTHX
#
i OUTFUT A& SFACE
H
598E 3E20 ouUTSsSP:  MVI Ae 7
35990 C31RS8 Jup ouTT
8
# ODUTFUT A HEX RYTE FROM C
# BINARY TO ASCII HEX CONVERSION
§
9993 79 OUTHX?: MOV AsC
5994 1F RAR PROTATE
5995 1F RAR 3 FOUR
5996 1F RAR # RITS TO
5997 1F RAR § RIGHT
5998 CD?9CS? CaL.L HEX1 FUFFER CHaR
S99k 79 MOV Ar(C sLOBER CHAR
599C E6OF HEX1: ANI OFH STAKE 4 RITS
S99E C6%0 ADI P0H
3940 27 DAA sDAA TRICK
59A1 CE40 ACI 40H
9943 27 DAA
5944 C31ER58 JHP ouTT
§
§ CHECK FOR END» HsL MINUS DsE
H
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a

59247 23 TSTOF: INX H
9948 7B MoV AYE
5949 95 SUE L i E - L
S59RA 74 MOV AsD
59AR 9C SEE H i - H
S59AC DO RNC §NOT DONE
S9AD E1L FOF H FRAISE STACK
S9AE C9 RET
12
S9Ek1 END

Type up the new instructions, then, after you leave the editor, rename
the new file. The CP/M command will be

REN MON2.ASM=MON1.ASH

Rename the backup file to its original name.

REN MON1.ASM=MON1.BAK

Assemble version 2 and load it into memory. Start it up by branching
to the address of START. Again, the version number should be printed, and
the prompt symbol should appear. Test the new feature by dumping a por-
tion of the monitor.

>D5800 S8SF

Be sure to type a carriage return at the end of the line. Input errors can be
corrected by typing a backspace or DEL. Check to see that the hex code
displayed on the screen matches the assembly listing code. Most of the
ASCII representation will be meaningless. But the section from 5842 to
585A hex will read

Ver 2
Now test the scroll-freeze commands. Dump a large section of memory.

»D0 1000

Type a control-S as the data are being displayed on the console. The console
screen should freeze. Now type a control-Q. The screen should again resume
displaying the data. The commands of Control-S and control-Q will alter-
nately freeze and resume the scrolling.

Try the routine that checks for proper dump limits by typing a larger
address first, then a smaller address.

n300 200
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As a result of this improper input, a question mark should be printed. Then
the prompt will appear on a new line. If everything is all right, return to your
regular system by entering a control-X.

If version 2 does not perform satisfactorily, compare the hex code in
your assembly listing with the values given in Listing 6.2 for the new code.
Correct any errors, reassemble the program, and try it again.

VERSION 3: A CALL AND GO ROUTINE

Now that both hex-to-binary and binary-to-hex routines are available, we can
easily include new features. A CALL routine and a GO routine will be added
in version 3. These routines will allow you to branch to any address in mem-
ory. The GO command will be useful for testing subroutines. For this latter
command, the monitor warm-start address (WARM) is on the stack when the
call is made. A subroutine can be called with the C command. The execution
of an RET instruction at the end of the subroutine will cause a return to
the monitor.

First, change the version number to 3. Then find the instructions corre-
sponding to the C and G commands after the label WARM. Remove the
semicolons from the beginning of the lines that branch to CALLS and GO.
Delete the prior lines that jump to WARM. The program should now look like

- CPI c’ $CALLT
JZ caLLs
CPI ‘|’ $607
JZ GO ‘

The remaining lines of code (and some comments) are placed at the end of
the source program just prior to the ‘END statement. They are given in
Listing 6.3.

Listindg 6.3+ A CALL and 28 GO routine.

$ ROUTINE TO GU ANYWHERE IN MEMORY
§ ADDRESS OF WARM IS ON STACKy 80 A
5 SIMFLE RET WILL RETURN TO THIS MONITOR
$
S594F E1 GO3 FOP H FRAISE STACK
SPBO CD4459 CaLLSs: CalL READHL FGET ADLRESS
-59B3 E? FCHL GO0 THERE
§
S9B4 END

Another importat change should be made at this time. Since we can
now branch to any place in memory with the GO command, we can change
the abort command, control-X. Redefine HOME near the beginning of the
source program so that an abort command of control-X will restart the
monitor.
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HOME EQU ORGIN $ABORT ADDRESS

This line was originally entered as a comment. Remove the semicolon at the
beginning of the line and delete the previous line.

Assemble the new version and load it into memory. Branch to the
monitor and try the dump routine as before. Try the CALL feature by
calling the monitor itself. '

»>C5800

The cold-start message should appear. Now use the GO routine to return to
your main system. If the GO address is zero, then no argument need follow
the G command.

-,

»B6

VERSION 4: A MEMORY-LOAD ROUTINE

In version 2 we added a routine that could be used to inspect any memory
location. A routine which can be used to change memory will now be added.
Change the version number to 4. Locate the instruction

i Jz Loap

following WARM. Remove the semicolon at the beginning of the line. Delete
the original JZ WARM on the prior line. The program should now look like

CPI L’
Jz LOAD

Add the load routines shown in Listing 6.4 to the end of the source program.

Listing 4.4, A memory—~load routine.

LOAD HEX OR ASCII CHAR INTO MEMORY
FROM CONSOLE. CHECK TO SEE IF

THE DATA ACTUALLY GOT THERE
APOSTROFHE FRECEEDS ASCII CHAR
CARRIAGE RETURN FASSES OVER LOCATION

ar e @r @ wr @

G984 CD4459 LOAD? CaLL READHL  FADDRESS
S9B7 COBSS9? LoAaD2: CALL OUTHL FPRINT IT

S9BA COIDS9? caLL FASCI FASCII
SPRD COBESY CaLL ouTSP

S9C0 4E MoV Coid #ORIG RYTE
39C1 CO8RS59 CALL OUTHEX ' #HEX

59C4 ES FUSH H $SAVE FNTR
S99CS CD7C58 caLlL INFL2 FINFUT
9908 CD4459 CALL READHL 5 BYTE

99CE 45 MOV Byl # TO R
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S59CC E1 FOF H

S9Ch FEF?7 CPI AFOS

59CF CADES? Jz LOADS FASCII INFUT
s9p2 79 MOV AsC FHOW MANYT
5903 B7 ORA A F NONE?

5904 CADAS? JZ LOAD3 P YES

5907 CDESS? LoAD4:  CALL CHEKM FINTO MEMORY
59DA 23 LOADR3: INX H $FOINTER
S9DE C3B759 JHP LOAD2

§
i LOAD ASCII CHARACTER
H

59DE CRCCS8 LOAD6?Y CALL GETCH
S9E1 47 MOV EyA
S9E2 C30759 JHF LOADA

COFY BYTE FROM B TO MEMORY
AND SEE THAT IT GOT THERE

€ er e @ ar

S9ES 70 HEKHMS: MOV MsB SPUT IN MEM
59E6 7E MOV ArM #GET BACK
S59E7 R8 CHF E FSAMET
59E8 C8 RZ $YES
59E9 C37R59 JHF ERROR #BAD

¥
S?EC END

Assemble version 4 and compare the assembly listing of the new part to
Listing 6.4. Load the new program and branch to the beginning. Recheck the
dump command by examining the new code for the load routine

»DS59B4 SPER

Now try the load command. Great care must be taken when typing the load
address. This command will actually change the contents of memory, includ-
ing the monitor itself. ‘

Type the letter L, the hexadecimal address, and a carriage return. The
response will be the address that was typed and the current contents of that
memory location. The data are represented two ways: in ASCII and in hex.
If the ASCII value is not a printable character, it is rendered as a period.

The displayed location can now be changed by typing the new value
and a carriage return. The data can be entered in several ways. It can be in
the form of one or two hex characters. If more than two characters are
entered, only the last two are actually used. This allows you to correct an
error by continuing to type. Errors can also be corrected with the backspace
or the DEL/RUB key. A single ASCII character can be entered into memory
by preceding it with an apostrophe.

As each new value and a carriage return is typed, the next address and
the present data value will appear. In this way, a machine-language routine
can be entered from the console. Of course, using an assembler is a more
efficient way to generate a long program. But our load routine will be useful
for making simple changes or for writing short routines.
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The load command is terminated by typing a control-X (if you redefined
HOME as ORGIN back in version 3). It is also terminated if you enter a
nonhex character. Control then returns to the monitor. If the load command
is used to revise existing code, another feature is useful. A carriage return is
given without entering any data. The memory pointer then skips over the
current location and the corresponding value is not changed.

After each revised byte is entered into memory, the monitor checks to
see that the new value is correct. If an attempt is made to write into pro-
tected, nonexistent, or defective memory, the load process is terminated and
a question mark is printed.

Try the load routine by entering the following five bytes into a conve-
nient location such as 4000 hex.

JE 7 D3 XX €9

This sequence corresponds to the assembly language program

3E07 MVI Ar7
D3XX ouT XX
co RET

The value of XX is the console-data address (CDATA in the source program).
Check the code with the dump command.

D4000 4004
Now use the CALL command to execute the routine
C4000

The console bell should sound and control will return to the command level
of our monitor.

VERSION 5: USEFUL ENTRY POINTS

Changes to the first four versions were made for the most pait by adding
new instructions to the end of the existing program. For versions 5, 6, and 7,
we are going to start the process over to some extent by inserting some new
instructions in the middle of the existing program.

At the beginning of the monitor there are two jump instructions.

JHpP coLp
JMP WARM

Entry points such as these are sometimes called vectors. The first jump to
COLD is the initial, cold-start entry point into the monitor. Stack initiali-
zation and printing of the sign-on message occur at this time. But other
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housekeeping chores, such as interface initialization, could be performed in
this section. The second vector causes a jump to WARM, a restart entry point
that does not alter the stack pointer.

We will now insert some additional vectors after these first two. The
additional jumps will provide fixed entry points to useful subroutines in the
monitor. These routines can then be easily called by other programs outside
the monitor. Since these jump instructions are all at the beginning of the
monitor, their addresses won’t change when the monitor is altered. Further-
more, new vectors can be added to the end of the group without affecting
those already present.

Place the five jump instructions shown in Listing 6.5 at the beginning of
the monitor just after the first two (START and RESTRT).

Listindg 6.5. Some useful entry roints.

§ VECTORS. TO USEFUL ROUTINES

H
5806 C32AG8 cour: JMP ouTT $OUTFUT CHAR
5809 C31558 CING JuF INPUTT FINFUT CHAR
580C C3D0358 INLNZ JMF INPLN FINFUT LINE
580F C32859 GCHAR:  JMF GETCH $GET CHAR
5812 C3ECS? OUTH? JMP DUTHX $RIN TO HEX

9

Reassemble the monitor, load it into memory, and try the DUMP, LOAD,
and GO routines again to be sure that they still work. Now, when separate,
external routines are written, they need not contain subroutines for console
input, output, conversion of binary to hex, and so on.

A character can be displayed on the console by calling COUT with the
character in the accumulator. A single console character is obtained by
calling CIN. The byte is returned in the accumulator.

An entire line of characters can be easily obtained by calling the line-
input entry INLN. As each character is typed, it is automatically printed on
the console. The error-correction commands are available at this time. The
backspace and DEL/RUB keys can be used to delete the previously typed
character. A line is normally terminated with a carriage return. After the
console-input buffer has been filled by a call to INLN, the GCHAR address
can be called.

A character is returned in the accumulator for each call to GCHAR.
When the input buffer has been exhausted, the carry flag is set. Typing a
control-X will abort a routine and return control to the monitor. Therefore,
it is not necessary to include an abort routine in separate, external programs.

The fifth new entry point will perform a conversion from binary to
ASCII-coded hexadecimal. This will allow display of individual memory
locations or any of the CPU registers. The byte to be converted is placed in
the C register and the address of OUTH is called. The accumuiator is also
used by the conversion routine in this case, so it may be necessary to save
the accumulator’s original contents on the stack by using a PUSH instruction.
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Use the monitor to write the following short routine. This program will
demontrate the new vectors.

3E07 MVI Ar7
C30658 JMP couT

This program, which is similar to the one written in the last section, can be
placed almost anywhere in memory. This time, however, there is no need to
worry about the output device address since the monitor takes care of this.
Branch to the routine by giving the monitor command of C and the address

+C4000

The monitor output routine will ring the console bell, then cause a return to
the address WARM.

The monitor now contains a bare minimum of features. The DUMP,
LOAD, GO, and CALL routines can be used to write and inspect simple
routines. The several vectors located at the beginning of the monitor, allow
easy access to useful subroutines within. These vectors will greatly simplify
the task of writing and debugging simple routines.

At this point, you may wish to go on to Chapter 8 and try some of the
‘routines discussed there. Otherwise, continue in this chapter as we add more
features to the monitor. The new features will include memory fill and zero,
memory search, ASCII load and dump, input from and output through any
port, a memory test, byte replacement, and memory comparison.

VERSION 6: AUTOMATIC MEMORY SIZE

A routine that will automatically find the top of usable memory will be
added for version 6. The routine is executed each time a cold or warm start
is performed. The first byte of memory in each page of 256 bytes of mem-
ory is checked, starting with page zero. The byte in memory is moved to the
accumulator, complemented, then written back to the same memory loca-
tion. The result is compared to the accumulator to see if it is the same. If so,
then the byte in the accumulator is complemented back to the original byte
and it is written back into memory. This effectively restores the original byte.
Each page of memory is checked in this way until the monitor stack
area is encountered or until defective, missing, or protected memory is
found. The hexadecimal value of this top page is printed just preceding the
monitor greater-than prompt (>). For example, if the monitor starts at
5800 hex and the stack is located at 57A0, then the prompt will appear as

57>
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This routine provides a regular, continuous check on the memory size. It
does not check all of the memory, but only the first byte of each 256 bytes
of the page. Nevertheless, this check may point up potential problems. A
more complete memory test program will be added in version 15.

Listing 6.6. Automatic memory check.

FIND TOF OF USABLE MEMORY.

CHECK FIRST BYTE OF EACH FAGE OF MEMORY
"STARTING AT ADDRESS ZERD. STOP AT STACK
OR MISSING/DEFECTIVE/FPROTECTED MEMORY.
DNISFLAY HIGH BYTE OF MEMORY TOF.

e ar ey WP Wy 0

58465 210000 LXI Hs O sPAGE ZERO
3868 0657 MVI EySTACK SHR 8

586A 7E NFAGE: MOV Ak $GET BYTE
5868 2F CHA FCOMPLEMENT
986C 77 MoV My A sPUT IT RACK
5860 BE CHF M § SAMET

T86E C27858 JNZ MSIZE iNOy MEM TOF
5871 2F CHA #ORIG RYTE
5872 77 MOV MsA FRESTORE IT
5873 24 INR H FNEXT PAGE
5874 03 DCR B

5875 C26A58 JNZ NPAGE sKEEF GOING
5878 4C MSIZE: MOV CeH $MEM TOF

5879 CDOFS? CALL CRLF FNEW LINE
587C CDECS? CALL OUTHX FPRINT MEM SIZE
S587F CDDOGS CALL INPLN $CONSOLE LINE
5882 CD2559 CaALL GETCH $FIRST CHAR

a
-4

Insert the new instructions shown in Listing 6.6 right after the PUSH H
instruction that follows the label WARM.

WARM? LXI HoWARM FRET TO
PUSH H # HERE

(add new code here)

If your assembler does not have the shift-right operation SHR, then just code
the high half of the stack address. The second line in Listing 6.6 might look
like this instead.

MVI Br37H

Assemble the new version. Check the assembly listing to see that the new
additions are correct. Then try out version 6.
The symbol table at this point follows.
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sumbhols?

00F7 aPOS 0008 BACKUP 39B0O CALLS 0011 CDATA
0011 CDATAO SPES CHERM 5844 COLD o00Ir CR
5983 CRHL 58Bé6 CRLF 0010 CSTAT 0010 CSTATO
0008 CTRH 0011 CTRQA 0013 CTRS 0018 CTRX
007F DEL S8EC LUMP S8EF DUMP2 S8F2- DUMP3
59205 DUMFP4 S90E DUMPS 597B ERROR 001B ESC
S8EO0 GETC4 S8CC GETCH S9AF GO 599C HEX1
5938 HHLDE 0000 HOME 5745 IBUFC 5746 IBUFF
5743 IBUFF OODE INC 0001 INMSK 587C. INFLZ2
5898 INFL3 58C0 INFLR 38A8 INFLC S8A2 INFLE
5884 INPLI 5877 INFLN S80C INPUT2 5806 INPUTT
5816 INSTAT 000Aa LF S9B4 LOAD SPBR7 LOADZ2
S90A LOADR3 S907 LOAD4 S9LE LOADS S96E NIB
0002 0OMSK 5800 ORGIN S81C our2 5824 0UT3 -
5835 0UT4 003 QUTC S98R OUTHEX 5986 OUTHL
5993 OQUTHX 5984 OUTLL S98E OQUTSF 5818 OUTT
5928 FASC2 5924 FASC3 591D FASCI S57RA0 FORTN
5949 RDHL2 S95SE RDHLA4 5968 RIHLS 9930 RDHLD2
59220 RDHLDE 5944 READHL 5803 RESTRT Q0C? RETC
S8E2 SENDM 5840 SIGNON S57A0 STACK 5800 START
0009 TAR 0018 TOF S9A7 TSTOF 0031 VERS
5853 WARM

VERSION 7: COMMAND-BRANCH TABLE

Before incorporating additional features into the monitor, we should make
a fundamental change in the command processor routine. This routine inter-
prets the initial character of the command line. The routine looks for com-
mands beginning with the letter D, C, G, or L. Five bytes of instruction are
needed for each one of these commands. For example, the LOAD routine
uses the instructions

CrPI i
JZ LOAD

Since there are 26 letters of the alphabet, there will eventually be 26 times
5, or 130 bytes needed if 26 different commands are incorporated. This

approach is satisfactory for a short table, but there is a better approach when o '

there are many entries.

An alternate method is to use a command branch table. This method
only requires two bytes per table entry plus 23 bytes of decoding instruc-
tions. The disadvantage of this method is that all 26 table entries will have to
be allocated, even if only a few are needed. Thus, there may be a lot of
unallocated table entries.

Delete the 13 lines of program immediately following the command of
CALL GETCH, just after the label MSIZE. :
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CPI ‘D’ sDUMP <delete 13 lines: ====|
I [}
) !

JHP WARM #TRY AGAIN {m===|

The new code that will be added is given in Listing 6.7. Notice that there are
26 table entries. Each line corresponds to one letter of the alphabet. At this
time, most of the entries refer to the erro? routine called ERROR. This is
because we have not yet incorporated many features. As new features are
added to the monitor, these error references will be replaced by the desired
subroutine names.

Listing 6.7. Command-branch table.
3 MAIN COMMAND FROCESSOR
H

5885 D641l SUI ‘A7 $ CONVERT OFFSET

5887 DADAS? JC ERROR P <A
588A FE1A CFI ‘Z-"AHL
588C D2D459 JNC ERROR 8 o» Z

- G88F 87 ADD A # DOUERLE
5890 219C58 LXI Hes TARLE $START
5893 1600 MVI Dy O
5895 SF MOV ErA SOFFSET
5896 19 DAD D $ADD TO TARLE
5897 SE MOV EsM $LOW RYTE
o898 23 INX H

. 3899 56 MOV DM $HIGH BYTE
58%9A EB XCHG SINTO HeL
589R E9 FCHL 60 THERE

COMMAND TABLE

=4 s s @

589C D4S9 ARLE? DUW ERROR Ay ASCII

S8PE D4ASY Dy ERROR §

58A0 0954 ny caLLs $C» CALL SUER
58A2 4559 i1 DUNMP Dy DUMP

58A4 DASY Dy ERROR $E

S58A6 DAGY Dy ERROR $Fy FILL

5848 0854 by GO i6r GO

58AA D459 ’ Dy ERROR iHsy HEX MATH
58AC D459 ny ERROR #Iy FORT INPUT
58AE D459 ny ERROR #Jr MEMORY TEST
58BO D459 oy ERROR K

S58B2 0DSA Dy L.OAD Ly LOAD

58R4 D459 DY ERROR iMy MOVE

58B6 DAS? i1 ERROR N

S8E8 D459 DY ERROR $0s PORT OUTPUT
S58BA D459 Dy ERROR iF

58BC D459 D ERROR iQ

SBBE DA4SY DY ERROR $R» REPLACE
58C0 DAS? i1 ERROR 8y SEARCH
58C2 DA5? DY ERROR 3T

58C4 D459 DY ERROR iU

58C6 D459 110 ERROR Ve VERIFY MEM
58C8 D459 Y ERROR i

58CA D459 DY ERROR $Xs STACK POINTER
58CC D459 11 ERROR $Y

S8CE DAS? Dy ERROR #Zy ZEROD
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Generate the new version, assemble it, and compare the resulting assem-
bly listing to the one given in Listing 6.7. Try out version 7. It should behave
exactly like version 6. It will be a bit longer than version 6 at this stage, but
it will not grow as rapidly as we add new features. In the remainder of this
chapter, we will add the new subroutines to the end of source program. The
label for the subroutine will be placed in the appropriate place of the com-
mand branch table.

VERSION 8: DISPLAY THE STACK POINTER

By adding seven bytes of new code, we will be able to examine our monitor’s
stack pointer. This will alert us to a possible problem with the monitor
itself. We may find, for example, that as we use the monitor, the stack tends
to grow up or down in memory, rather than remain in the same place. This
is undesirable and indicates that we are not properly lowering or raising the
stack somewhere in the program. For example, subroutine TSTOP increments
the pointer then checks to see if the current task should be terminated. If so,
the stack is raised with a POP instruction. Then a return instruction skips
one level of subroutines, so that control returns to the address of WARM.

Change the version number to 8. Also change the entry in the command
table that corresponds to the command of X. This is the third from the last
entry. Delete the word ERROR and replace it with the word REGS.

DY REGS #Xs STK POINTER
Then go to the end of the source program. We will make a minor change in
subroutine CHECKM, the last subroutine in the monitor. Then the new
instructions will be added. Delete the END statement and the instruction
just prior to the END statement.

JHP ERROR s BAD

Then add the new instructions as shown in Listing 6.8.

Listindg 6.8, Disrlawy the stack rointer.

OR42 F1 ERRP ¢ FOF FsY SRAISE 8TACK
3A43 3E42 ERRB? MVI As ‘B’ i BAD

JA45 CD2AS58 ERR23 CAaLL ouTT

5A48 CDE759 CaLL ouTSF

9A4B C3DFS9 JHF OUTHL FPOINTER

DISFLAY STACK POINTER REGISTER

T e e

SA4E 210000 EGS? LXI Hs O
3451 39 DAD SF
JA52 C3DFS59 JHP OUTHL
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Reassemble the monitor and try it out. First give the X command (with no
argument). Make a note of the value given for the stack pointer. Now, try
other monitor features such as the dump and load commands. After each of
these commands, give the X command to see that the stack pointer remains
in the same place.

Try the separate routine that rings the console bell. This routine, which
was written for version 4, may have to be rewritten if it was destroyed by
the assembler or the editor. Again, check that the stack pointer is still in the
same place. When you are convinced that everything is all right, continue to
the next version.

VERSION 9: ZERO AND FILL ROUTINES

In version 4, we added a routine that could be used to change individual
memory locations, one at a time. We will now add a routine which will allow
us to fill a portion of memory with a constant value. A separate command
for zeroing memory is also added for convenience, even though this opera-
tion could be performed with the FILL command.

Change the version number to 9, then alter the two command table
entries that correspond to the F (fill) and Z (zero) commands.

ny FILL $F» MEMORY

Dy ZERO $Zv MEMORY

Add the new code shown in Listing 6.9 to the end of the program.

Listing 6.9. Zero and fill routines.

ZERO A PORTION OF MEMORY
THE MONITOR AND STACK ARE

N e o e as

FROTECTED
5A55 CDB6SY ERO? caLl RDHLDE $SRANGE
5458 0600 MVI BsO
5A5A C3665A JMF FILLZ2

FILL A PORTION OF MEMORY

T} s e e

SASD CD7CS5A ILL: CALL HLREBC FRANGEs RYTE

5460 FEF7 CFI AF0S $AFOSTROFHE®
5A62 CA735A JZ FILLA $YES ASCII
SALS 41 MoV RsC

S5A66 7C FILL2: MOV ArH sFILL RYTE
5A67 FES7 CFI STACK SHR 8 $TOO FAR?T
S5A69 D2D459 JNC ERROR $YES

SA4C CD3ESA FILL3: CaALL CHERM §PUTy» CHECK
SA6F CDOOSA caLL TSTOF $DONET

5A72 C36654 JHP FILL2 SNEXT

-
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SA75 CD2559 FILL4: CALL GETCH FASCII CHAR
SA78 47 MoV BsA
GA79 C3I6CTA ' JMF FILL3

GET HsL DsE AND B»C

SA7C CDBASA LRDERC? CALL HLDECK $RANGE

SA7F DADAS? Je ERROR iNO BYTE
SAB2 ES FUSH H

5A83 CD?D59 caLL READHL  $3RD INFUT
SABS 44 Mov By H FMOVE TO
SA87 4D MoV Col i BrC

5488 E1 FOF H

SA89 C9 RET

GET 2 ADDRESSESs CHECK THAT
ADDITIONAL DATA IS INCLUDED

I e @ w9 wr

JA8BA CD?P159 LDECK: CALL HHLDE #2 ADDR
348D DADA4S? Jc ERROR iTHAT’S ALL
JA90 C3BP59? JHF RDHLD2 $CHECK

Assemble the program, load it into memory, and try it out. First, dis-
play a portion of memory.

>D4000 404F
Then, zero out a part of this region.

>Z4000 403F

Display the region again to be sure that the zero routine is working. Now fill
a portion of the previously zeroed memory with A5 hex bytes.

>F4001 401E AS

Again, dump this region of memory to ensure that the fill routine is working.
»D4000 404F

Finally, check the ASCII fill command by filling with a $ symbol.

>F4020 402F ‘$

As with the load command, ASCII input is preceded by an apostrophe.

VERSION 10: A BLOCK-MOVE ROUTINE

The next routine to be added will allow us to move a block data from one
memory location to another. This is actually a duplication routine, since the
original memory block will remain unchanged. As each byte is moved to the
new location, a check is made to ensure that it actually got there.
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First, change the version number to 10. Then add the new lines to the
end of the source program. Change the branch table entry corresponding to
the command of M.

1] MOVE iMs MEMORY

Insert the instructions given in Listing 6.10 to the end of the source program.
Assemble the monitor and try it out.

Listing 6.10. A block-move routine.

$ MOVE A BLOCK OF MEMORY HsL-DsE TO R.C
H

5493 CD7CS5A MOVE ? CaLlL HLDERC 33 ADDR

5496 CDAOSA MOVDN: CaALL MOVIN FMOVE /CHECK

5A99 CDOOSA CaLL TSTOR FDONE?
S5A9C 03 INX B #NO
35APD C3945A JMF MOVDN
¥
5AA0 7E MOVINZ MOV AsM FRYTE
SAAL 02 STAX R SNEW LOCATION
SAA2 0A LDAX B $ CHECK
5AA3 BE . CHP M #1858 IT THERE?
SAA4 C8 RZ FYES
SARS 60 MOV HeB sERROR
SARé 69 MOV LsC $INTO HeL
S5AR7 C34234 JHP ERRF $SHOW RBAD

The move command requires three addresses. These are the start and
stop address of the source block and the start address of the destination
block. For example,

 >H5800 SBFF 4000

will move the first page of the monitor (5800 to 58FF hex) down to the
address range 4000 to 40FF hex.

The move routine is designed to move data downward. Thus the first
byte of a block can be deleted by moving the remainder of the program
downward by one byte. The command

*Mi103 1000 100

moves the memory block in the address range 103 through 1000 down three
bytes to the memory range 100 through FFD hex. On the other hand, a
block move in the upward direction must be done carefully.
If the new block does not overlap the old, then there is no problem.
_ But if there is an overlap, then the upward move will destroy some of the
- data. One possible solution to this problem is to first move the block down-
ward until it is clear of the new upper block. Then move the block up to the
desired location. Another possibility is to move the upper half of the block
first, then move the lower half.
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The best solution is to have a more sophisticated move routine. This
routine should first determine whether the move is to be upward or down-
ward. If the movement is downward, then the move commences with the
lower part of the block (as with the present program). But if the move is
upward, then it should begin with the upper end of the block. The memory
pointers should now move downward in memory. With this approach, the
original data will be unaltered. This additional feature is more easily coded
with the Z-80 block-move routines than with the 8080 instructions.

We have not incorporated the upward-move feature at this time. In
developing a system monitor, there must be a tradeoff between features and
space. A minimum of idiot-proofing is necessary. But, if we want to have a
monitor that will fit into 1K bytes of ROM, we will have to make some
compromises.

Notice that this move routine moves a byte from the source location
into the destination location. It then reads the byte back from the new loca-
tion to see that it actually got there. If an attempt is made to move data into
read-only memory, protected memory, or defective memory, the process will
be terminated. The address of the location will be printed following the
letter B (for “‘bad”). ' ‘

If we want to retain this memory-checking feature, we will not be able
to use the Z-80 block-move routines. The problem is that the Z-80 routines
perform an automatic pointer increment after each byte is moved. If a
memory check is desired, then the destination pointer will have to be backed
up after each byte is moved. This will allow the newly moved byte to be
checked. Finally, the pointer will have to be incremented again.

VERSION 11: A SEARCH ROUTINE

Sometimes it is necessary to find a particular data byte or address in memory.
Or perhaps all occurrences of a data byte or an address within a memory
block are needed. For version 11, we will add a hex search routine. Change
the version number and the branch table entry for the letter S.

117 SEARCH 78y MEMORY

Add the new instructions as given in Listing 6.11.

Listind 6.11, Search for 1 or 2 butes.

5 SEARCH FOR 1 OR 2 BYTES OVER THE

$§ RANGE HsL DsE. RYTES ARE IN EsC

5 B HAS CARRIAGE RETURN IF ONLY ONE ERYTE

$ PUT SPACE BTWEEN RBRYTES IF TWO

§ FORMAT: START STOF RYTEL BYTEZ2

i
JARA CH7CSA SEARCH? CALL HLDEBC SRANGEs 1ST EYTE
SAAD 060D SEAR2: HMVI BsCR §8ET FOR 1 RYTE -
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SAAF DABB5A JC SEAR3 FONLY ONE
SAB2 ES FUSH H

S5AB3 CD9D59 caLL READHL #2ND BYTE
S5AB& 45 MOV Byl $INTO C
5AB7 E1 FOF H

5AB8 7E SEAR3: MOV As M $GET BYTE
SAB? EB? CHF C FHATCH?
SABA C2CF5A JNZ SEAR4 PNO

SABD 23 INX H PYES

SABE 78 MoV Ak PONLY 17
SABF FEOD CFI CR

5AC1 CAC95aA JZ SEARS SYES

FOUND FIRST MATCH» CHECK FOR SECOND

ar @ er

SAC4 7E MOV At $NEXT RYTE
5ACS B8 CMP R SMATCH?
SACS C2CF5A JNZ SEAR4 $NO

14
S5ACY 2F SEARS: DCX H $A MATCH
S5ACA C5 PUSH B
SACB CDDCSS CALL CRHL $ SHOW ADDR
SACE C1 FOF B
5ACF CDOOSA SEAR4: CALL TSTOP  $DONE?
5A02 C3B8SA JMF SEAR3  $NO

Our new feature will display the address of every occurrence of one or
two chosen bytes. For example, the command

>8100 4FF OI

will print the address of each occurrence of a carriage return (OD hex) over
the memory block 100 to 4FF hex. The alternate command

>80 FFFF 3E 10

includes two search bytes. This command will look for the byte 3E followed
by the byte 10 over the entire 64K-byte memory range. These two bytes
might represent the 8080 instruction MVI A,10 or perhaps the address
103E hex.

Notice that if two search bytes are given in the command, they must
be separated by a space. If the command is incorrectly given without the
space between the bytes, the search will only include the second byte. For
example, the command

>80 FFFF 3E10

will be interpreted as a search for the byte 10 hex. This occurs because only
the last two characters of the field are used.
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VERSION 12: ASCII LOAD, SEARCH, AND DISPLAY

At this time, the monitor is hex oriented, but it is capable of limited ASCII
operations. For example, the DUMP routine gives both the hex and the
ASCII representation of the data. The load and fill commands will accept
ASCII characters when preceded by an apostrophe. In version 12, we will
add three new ASCII commands: ASCII load, ASCII dump, and ASCII
search. A continuous series of ASCII characters (a string), including a car-
riage return, line feed, tab, and so on, can be entered directly into memory.
A straight ASCII dump will render an ASCII portion of memory in its
natural form. And we will be able to search the memory for one or two
ASCII characters. If the command line begins with the letter A, a branch
will occur to a second command processor. The letter following the A will
cause a jump to the desired task of dump, load, or search.

Change the version number to 12 and the command table entry for the
letter A.

bW ASCII fAy DUMPy LOAD
Type the code from Listing 6.12; assemble the new version and start it up.

Listing 6,12, ASCII loads searchs and disrlag.
§ ASCII SUEBR~COMMAND FROCESSOR
] .
JADS CD2559 ASCII: CalLl GETCH SNEXT CHAR

SAD8 FE44 CPI ‘n’ §DISPLAY
JalA CAO045B Jz ADUMF

Sabp FES3 CPI ‘5 $ SEARCH
SADF CARCSR JZ ASCS

SAEZ FEA4C CRI ‘L $LOAD
SAE4 C2D459 JNZ ERROR

LOAD ASCII CHARACTERS INTO MEMORY
QUIT ON CONTROL-X

s wr B oy

JAE7 CDYD59 CALL READHL 7 ADDRESS
SAEA CDIFS9 CaLL OUTHL FPRINT IT
JAED CD1558 ALOD2: CALL INFUTT SNEXT CHAR
9AF0 CD2AS8 CaLL ouTT FPRINT IT
SAF3 47 MoV EsA §SAVE

IAF4 CD3ESA CALL CHEKM FINTO MEMORY
SAF7 23 INX H #FPOINTER
GAF8 7D MOV Avl

SAF9 E67F ANI 7FH FLINE ENDT
SAFR C2EDSA JINZ ALOD2 #NO :
SAFE CRDCS9 ; calbL CRHL FNEW LINE
SEO1 C3EDSA JMF ALOD2

DISFLAY MEMORY IN STRAIGHT ASCIIX.
KEEF CARRIAGE RETURNs LINE FEEDs CHANGE
TAB TO SFACEs REMOVE OTHER CONTROL CHAR.

WP ‘er ar a@s g
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SR04 CDB6S? ADUMF? CALL RDHLDE #RANGE

SBO7 7E ADMF2: MOV AsM $GET RYTE
SRO8 FE7F CrI DEL FHIGH BIT ONT
SROA D226TE JNC ALMF 4 SYES

SROD FE20 CPI ‘7 i CONTROL?
S5BOF D2235R JNC ADMF3 #NO

S5B12 FEOD CFrI CR sCARR RET?
S5B14 CA235E JZ ADMF3 $YESy» OR

SR17 FEOA CFI LF $LINE FEEDT
5R19 CAR23SE JZ ADMF3 $YES» OK

SR1C FEO9 CPI TAE

5B1E C2265R JNZ ADMF4 FSKIP OTHER
SB21 3E20 MVI A’ $SFACE FOR TAE
SR23 CD2AS8 ADMP3:  CALL ouTT $ SEND

SR26 CIOOSA ADMF4: CALL TSTOF # DONET?

5B29 C3075E JupP ADMF2 #NO

SEARCH FOR 1 OR 2 ASCII CHARACTERS
NO SPACE BETWEEN ASCII CHARS
FORMAT? START STOP 1 OR 2 ASCII CHAR

D wr wr @ wr W

SB2C CD8459 8CSs¢ CALL RDHLDE $RANGE

SE2F CD2559 call GETCH sFIRST CHAR

SB32 4F MOV - CrA

SR33 CD2559 caLL GETCH $2ND DR CARR RET
SB36 DAADGA JC SEAR2 FONLY ONE CHaR
SB39 47 MOV BsA 3 2ND ’

SRE3A C3RBSA JupP SEAR3

Dump a section of memory with the regular hex dump command. Then
enter a line of ASCII characters using the new ASCII load command.

>AL4000 <carrizde return
4000 This is 2 test of the new <cr»<lf>
ASCII load routine. <ecr>{lf>

All of these characters will be deposited directly into memory, including the
carriage returns and line feeds. Type a control-X to abort the task. Inspect
the new addition first with the hex dump

" >D4000 404F

then inspect it with the new ASCII dump:

>AD4000 404F

Notice the difference. The ASCII dump renders the data as it was originally
typed.

A carriage-return line-feed pair will cause a real carriage-return line-feed
pair to be sent to the console. Tab characters are not expanded but are ren-
dered as blanks (in line with our goal of reducing the monitor size). All
other control characters are ignored.
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VERSION 13: INPUT AND OUTPUT TO ANY PORT

The load routines added in versions 4 and 12 allow us to change individual
memory locations. And the dump routines added in versions 2 and 12 allow
us to inspect individual memory locations. For version 13, we will add a
routine to read any I/O port and another to send a byte to any I/O port.
This feature will allow us to initialize and test I/O ports.

The 8080 and Z-80 microprocessors can address 256 separate, 8-bit
input/output ports. These ports are used for communicating with the con-
sole, list, and tape devices. In addition, if there is a front panel, the switches
are usually assigned to a separate data port. Also, some disk-controller
boards use several I/O ports for communication with the CPU.

It is more difficult to implement these I/O features on an 8080 CPU
than on a Z-80. The reason is that the 8080 I/O instructions require the port
address to be placed in memory immediately following the IN or OUT
command

DB 10 IN 10H.
D3 11 ouT 1iH

By comparison, the Z-80 can execute I/O instructions with the device
address located in the C register. Nevertheless, we will implement the input
and output instructions, at this time, using only 8080 code.

The plan is to write the IN or OUT instruction in memory, write the
port number in the next byte, then write a RET instruction in the third
position. A call to the address of PORTN will then produce the desired
effect. The routine that writes these bytes in the stack area is called PUTIO.
Since we are developing a monitor that can be placed in ROM, we will have
to perform the actual I/O instructions outside of the regular monitor code
area. Three bytes of memory just above the stack were previously set aside
for this purpose. They start with the address PORTN.

A fourth routine is also needed. Subroutine BITS is used to convert the
binary data read from the selected port into ASCII-coded binary characters.
An IN command then prints on the console the port data in both hex and
binary. For example, the command

=IFF
will give the front-panel switch setting in both hex and binary notation.
F8 11110000

The BITS routine can be coded more efficiently if a Z-80 CPU is available.
This is because the Z-80 can shift data in the general-purpose registers, as
well as in the accumulator. This is discussed in Chapter 7.

Change the version number to 138 and alter the branch table entries for
the letters I and O.
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il%) IPORT $I+ FORT INPUT

L4

Dy OFPORT $0y» PORT OUTFUT

Add the new routines to the end of the source code. Assemble version 13
and try it out.

Listing 6.13. Input and outrput to any rort.
INFUT FROM ANY PORT (8080 VERSION)

-SB3D CD?DSY? IPORT? CALL READHL $PORT

S5B40 4D MoV CsL $PORT 7O C
S5k41 JEDE MVI Ay INC $IN CODE
SR43 CDA3SR CALL FUTIO FSETUF INFUT
S5B46 6F MOV LsA

5Rk47 CDE359 CALL OUTLL FHEX VALUE

FRINT L REGISTER IN RINARY (8080 VER)

wr ‘er av

SE4A 0608 BITS? MVI Ry 8 38 BITS

5p4C 7D RIT2: MOV Avl

5B4D 87 ADD A $SHIFT LEFT
SBAE 6F MoV Ls+A

SEAF 3E18 MVI Ar‘0°/2 $HALF OF O
5BS1 8F ADC A s DOUBLE+CARRY
SBE32 CO2458 CALL ouTT §FRINT BIT
SB3S 03 ner B

5856 C24CSR JNZ RIT2 8 TIMES

- GB59 C9? RET

QUTFUT BYTE FROM PORT (8080 VERSION)
FORMAT IS! OsPORTsBYTE

O e e e

SR5A CDPDSY? FORT: CALL READHL  $FORT

SESD 4D MoV CsL
SRSE CD9DS9? CALL READHL.  $DATA
SR61 3ED3 MVI AsOUTC $0UT OFCODE

EMULATE Z80 INP AND OQUTF FOR 8080

T v ‘er Gy

SB63 324057 uUTIO: 8TA FORTN $IN OR OUT CODE
SR66 79 MOV AyC $FORT NUMEER
SR67 324137 STA PORTN+1

S5R&6A 3ECY MVI AYRETC $RET OFCODE
S5B6C 324257 STA PORTN+2

.5B&6F 7D MOV AslL $OUTPUT RYTE
SR70 C3A057 JMF PORTN $EXECUTE

If you have a set of front panel switches, give the command
>IFF

and see if the bit pattern matches the actual switch setting. Next, try to ring
your console bell by sending a binary 7.
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»011 7

The value of 11 should be changed to your console data port address if it
is different.

Modern serial and parallel ports need to be initialized before use. These
initialization routines could be placed in the monitor cold-start routines.
Initialization can also be performed with the new monitor output command.
A Motorola 6850 serial port can be initialized for one stop bit with the two
commands

*010 3 <reset>
>010 15 <set»

where 10 is the address of the status/control port.

VERSION 14: HEXADECIMAL ARITHMETIC

A routine for obtaining the sum and difference of two hexadecimal numbers
will now be added. Change the version number to 14. Change the branch
table corresponding to the entry H.

DWW HMATH sHy HEX MATH
Place the remaining new lines at the end as usual.

Listing 6.14. Hecadecimal addition and subtraction.
HEXADECIMAL MATHs SUM AND DIFFERENCE

;
§
SR73 CD?159 HMATH: CALL HHLELE $ TWO NUMBERS

SR76 ES FPUSH H §SAVE H»sL
SR77 19 DAD n 5 SUM

GR78 CLDFS9 CaLL QUTHL §PRINT IT
SR7R E1 FOF H

SB7C 7D MOV Avl

SB7D 93 SUE E $LOW BYTES
SR7E 6F MOV Lst

SE7F 7C MOV AvH

SBBO 94 SBE D

SRE81 67 MOV HeAd $HIGH RYTES
9B82 C3IF59 JuP OUTHL s DIFFERENCE

The new feature is executed by typing the letter H and the hex num-
bers. The response is the sum and the difference.

>HB8000 4000
€000 4000
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VERSION 15: MEMORY-TEST PROGRAM

Back in version 6, we installed an automatic memory-size routine. This
addition performs a memory check of sorts by testing the first byte of each
page. In version 15, we will add a more complete memory-test program.
Change the version number and the branch table entry for the letter J
(justification):

DY JUsT #Js MEMORY TEST

Then, type in the new lines as shown in Listing 6.15.

Listing 6.15. A memoru—-test rrodram.

MEMORY TEST
THAT DOESN’T ALTER CURRENT BYTE
INFUT RANGE OF ADDRESSESs: ARORT WITH "X

N\ gr @ wr @

SE8G COB&59 JUST? CALL RDHLDE $RANGE

SE88 ES FPUSH H #SAVE START ADDR
SE8? 7E JUST2: MOV AsM sGET RYTE

SRBA 2F CHa SCOMFPLEMENT IT
SB8R 77 MOV Mr& FPUT IT BACK
SB8C BE CMP M sDID IT GOP
SB8D C2ASSR JNZ JERR #NO

SB90 2F CHA FORIGINAL RYTE
SB?1 77 MOV MrA PFPUT IT BACK
SB?2 7I JUST3: MOV Arsl §FPASS

SR9?3 93 SUR E § COMFLETED?T
Sp94 7C MoV AsH

SR?5 94 SER D

SR?6 23 INX H

-GR97 DAB?SE JC JusT2 P NO

AFTER EACH FASS»
SEE IF ABORT WANTED

W s@r er ar

S5E?A CD2558 CALL ~ INSTAT GFINPUT?

SE?D C41558 CNZ INFUTT $#YES» GET IT
SRAO E1 FOF H $START ADDR

"GBA1 ES FUSH H i SAVE AGAIN
SEAZ C38935F JHFP JUST2 FNEXT FASS

FOUND' MEMORY ERROR» FRINT FOINTER AND
RIT MAF: 0=G00Ds 1=BAD RIT

o ver a» ar

SBAS F5 ERR? FUSH FSW FSAVE COMPLEMENT
SkEAS6 CDODCS? caLL CRHL SPRINT FOINTER
SBA? F1 FOP FSUW

SBAA AE XRA M $SET RAD RITS
SBAE ES FUSH H $SAVE POINTER
SBAC 6F MoV LsA FRIT MAFP TO L
SBAD CDAASE CALL RITS SPRINT RINARY
SREO E1 FOP H

SBER1 C3923F JMFE JUsT3 FCONTINUE
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Assemble the program, load it into memory, and try it out. The mem-
ory range from zero to 58FF hex is tested with the command

>J0 5800

This is a continuing test. The given range is tested over and over until aborted
with a control-X command. This memory-test program is not very sophisti-
cated. The routine will not find unusual problems in flakey, dynamic mem-
ories. It will, however, locate those regions with no memory, protected
memory, and grossly defective memory. The address of each bad location is
printed in hex, then the bit pattern follows. ASCII ones are shown for the
bad bits and ASCII zeros are given for the good bits.

The test program gets the original memory byte, complements it, and
puts it back. It then complements it a second time and restores the- orlgmal
byte. Thus, the original memory is left intact. The only caution here is that
the stack area should not be tested.

Much more sophisticated memory test programs are needed for diffi-
cult memory errors. Of course, such programs will require a lot of memory,
and so would not fit into a compact system monitor. One feature of such a
program is to provide a delay between the time the test byte is placed into
memory and the time that the byte is checked. One disadvantage of a more
powerful memory-test program is that it does not protect the original
memory contents.

VERSION 16: REPLACE ONE BYTE WITH ANOTHER

In version 11 we added a memory-search routine. This feature gives us the
ability to find every occurrence of a particular byte. A companion feature
added in version 16 allows us to change every occurrence of a particular byte
to a different byte. Change the vers1on number and the branch table corre-
sponding to the letter R.

Dy REPL iRy REFLACE

Add the new lines shown in listing 6.16 to the end of the program.

Listing é.16., Rerlace one hex bute with another.

i REFLACE HEX RYTE WITH ANOTHER

# OVER GIVEN RANGE

# FORMAT I8! STARTs STOFs ORIG» NEW

?

SER4 CHO7CS5A REFL? CALL HLDERC SRANGEs 18T BYTE
SER7 DADAS? Jc ERROR §NO 2ND

SERA 41 ' MOV ByC 18T TO R

SERR ES FUSH H
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SRRC CD?DS? caLlL READHL.  $2ND RYTE
SRRF 4D MOV Crl. $ INTO C
SRCO E1 FOF H

SEC1 7E REFL2? MOV AvM SFETCH BYTE
SRC2 E8 CMF E $A MATCH?
SBC3 C2CCSE JNZ REPL3 FNO

SRC6 71 MOV MsC FSUBSTITUTE
SRC7 79 MOV AsC

SBC8 RE CHF M $SAME?

SRCY? C2435A JNZ ERRE iNOs RAD
SRCC CLOOGA REFL3: CALL TSTOFP s DONE?

SBCF C3C15E JMP REFL2

Assemble version 16 and try it out. Move three lines of the monitor’s
code to a lower place using the M command.

>M3800 S82F 4000

Dump these three lines of memory with the D command.

>D4000 402F

| Change every occurrence of the byte C3 found in those lines to a 40 hex
using the command

*R4000 402F €3 40

Notice that a space must separate the two bytes C3 and 40. Now, dump this
portion of memory with the command

>D4000 402F

The new byte is an ASCII “at” sign (@), therefore it will show up clearly on
the ASCII portion of the dump.

The replace routine can be useful for relocating a short executable
program. Suppose that a routine is programmed for execution at 3000 hex.
It can be moved to 4000 hex with the block-move command

*M3000 3IFFF 4000

However, the program will not run at the new location if there are absolute
jumps present. The high byte of each jump address will have to be changed
from 30 to 40 in this case. The search routine can be used to find all occur-
rences of 30 hex in the program.

>84000 4FFF 30

Then the replace command can be given to convert each 30 hex into a
40 hex.

*R4000 AFFF 30 40
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Another use for the replace command is to convert an assembly lan-
guage source file from one format to another. For example, the CP/M
format requires a line feed to follow a carriage return. But another assembler
may generate lines in which only the carriage return is placed at the end of
each line. In this case, the original file can be loaded into memory. Then, all
of the carriage returns (OD hex) can be replaced with an ASCII character
such as a # symbol (23 hex).

>R100 38FF 0D 23

After the file is altered with the monitor, it can be saved on a disk. The final
step can be performed with the system editor. The global replace command
of this editor can be used to replace every occurrence of the # sign with a
carriage-return/line-feed pair. With the Word-Master editor, the command
would be

KMRESANSOTT

The first step required the monitor because the system editors cannot
be directed to globally change a carriage return to something else. The
carriage-return/line-feed pair must be treated as a unit.

VERSION 17: COMPARE TWO BLOCKS OF MEMORY

This last addition to our system monitor will fill out the size to just under
1K bytes. The new routine will allow us to compare two blocks of memory.
If discrepancies are found, the address and the contents of the appropriate
location in both blocks will be shown. Change the version number and the
branch table corresponding to the letter R.

Dy VERM HAY

Add the new lines shown in Listing 6.17.

lListing 6.17, Compare two blocks of memory.

3 GIVE RANGE OF 18T BLOCK
$ AND START OF SECOND

y

SRD2 Ch7CSA VERM? caLl HLIERC $3 ADDRESSES

SEDS 0A VERM2: LDAX B $FETCH BYTE

SBD6é BE CHF ] FSAME AS OTHERT
SED7 CAF3SR JZ VERM3 PYES

SEDA ES FUSH H FDIFFERENT

SBDE CS FUSH E

SBDC CDDCSY? CaLL CRHL $PRINT 18T FOINTER
SRDF 4E MOV CeM $FIRST RYTE

SREO CHEA459 CaLL OUTHEX SPRINT IT

SRE3 3E3A MVI Av 3’
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SBES
SBE8
SBE?
SBEC
SBED
SBFO
SBF1
SBF 2
SBF 3
SBFé
SBF7

Ch2a58
E1l
CDIOFS9

VERM3:

CALL
FOF
CaLL
MOV
CALL
MOV
MOV
FOF
CAaLL
INX
JHP

ouTT
H
OUTHL
Cei
OUTHX
CoL
BsH

H
TSTOP
B
VERM2

The symbol table should now look like this.

GRO7
SAED
0008
0011
5858
S9P0F
0011
5945
5967
5A42
SA6C
5925
SA7C
5786
0001
5901
G81R
SRBAS
0004
SA30
SAAO
0002
- 6839
S9E4
S9E7
9976
59B7
5990
SBRCC
SARS
S93R
" 0009
SRDO2
5861

ADMP2
ALOD2
EACKUP
CDATA
coLD
CRLF
CTRQ
DUMF
DUMF'S
ERRF
FILL3
GETCH
HLDEEC
IBUFF
INMSK
INFLC
INFUT2
JERR
LF.
LOAL4
MOVIN
DMSK
ouT3
OUTHEX
OUTSF
FASCI
RIHL 4
READHL
REPL3
SEAR3
SENDM
TAE
VERM
WARM

SR23
00F7
SRAC
0011
9806
0010
0013
5948
5A45
001R
SA7S
SA08
S5ABA
5743
58D5
98FE
5815
GB8S
S5A0D
SA37
5878
SESA
5844
S90F
5824
G740
59C1
S5A4E
5803
SACF
S84F
58%9C
SBDO
5A5S

ADMF3
AF0S
RIT2
CDATAOD
couT
CSTAT
CTRS
nDUMP2
ERR2
ESC
FILLA
GO .
HLDECK
IRUFF
INPLZ2
INFLE
INFUTT
JUST
LOAD
LOADS
MSIZE
OFPORT
ouT4
OUTHL
ouTT
FORTN
RIHLS
REGS
RESTRT
SEAR4
SIGNON
TABLE
VERM2
ZERO

SB26
SADS
SB4A
SA3E
000D
0010
0018
594B
5A43
SASD
S80F
S9FS
SE73
O0DE
58F1
S8nn
5825
SE89
SA10
S5AP6
S59C4
5800
00D3
S9EC
5981
SB63
5989
SER4
00C?
SACY
3740
0018
SEF3

#BsC TO HsL
$SECOND FOINTER

$2NDN BYTE
SPRINT IT

sRESTORE C

SAND B
SAND HsL
3 DONE?

7 2ND FOINTER

ALIMF 4
ASCII
EITS
CHEKM
CR
CSTATO
CTRX
DUMF3
ERRE
FILL
GCHAR
HEX1
HMATH
INC
INFL3
INPLI
INSTAT
JusT2
LOAD2
MOVIIN
NIR
ORGIN
ouTC
OUTHX
FASC2
FUTIO
ROHLD2
REFL
RETC
SEARS
STACK
TOP -
VERM3

SR04
SR2C
SA09
5809
S59DC
0008
007F
S95E

S5Ab64
5939
5991
S7A5
580C
5919
S8D0
SBR3D
SR9Y2
GA33
SA93
586A
382R
5812
SPE3
5983
59A2
5986
SRC1
SAAD
SRAA
5800
35A00
3731

ADUMP
ASCS
CALLS
CIN
CRHL
CTRH
DEL
DUMF4
ERROR
FILL2
GETC4
HHLDE
IRUFC
INLN
INPLER
INPLN
IFORT
JUST3
L.OADZ
MOVE
NPAGE
ouT2
OUTH
QuUTLL
FASC3
RDHL2
RDHLDE
REFL2
SEARZ2
SEARCH
START
TSTOP
VERS

Try the new addition by first moving a copy of the monitor down to a lower
memory location.

»M5800 SEFF 4800

Then verify that the two copies are the same.
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»VU3800 SBFF 4800

Of course this step is not necessary, since there is a verification step included
in the block-move routine. Change one byte in the new location so that
there will be a difference. )

>.4820
4820 . XX 0 <zero location 4820
e o 0 AX Cauit>

Then, give the verification command again.

~V3800 3BFF 4800

Because you changed one byte of the copy, there should be an indication
of error. . '

This compare routine completes the 1K 8080 system monitor. We have
incorporated many useful features into a minimum of space. We have care-
fully distinguished program code from data code so that the monitor can be
placed into ROM or PROM.

AUTOMATIC EXECUTION OF THE MONITOR

If you program the monitor into ROM, it will be ready to use each time the
computer is turned on. On the other hand, you may want to copy it from
disk into memory each time it is needed. We have been loading the monitor
with the system debugger each time it is needed. But it is easier to include a
short loader program at the beginning of the monitor. Then you can execute
the monitor just by typing its name.

A suitable loader program is given in Listing 6.18. Type the program
into your editor. There are two locations that need to be matched to your
monitor; these are the addresses of START and FINAL. START must corre-
spond to the first address of your monitor. The address FINAL is the last
address of the monitor.

Listing 6.18. Loader rrogram to move the monitor.

3800 = START EQU 3800H FMONITOR START
SBFF = FINAL EQU SBFFH FMONITOR END
A920 = OFFST EQu 120~-8TART 3LOAD OFFSET
§
0100 ORG 100H $START HERE
H
0100 210058 LXI HySTART $NEW START
0103 012001 L.XI Bs120H F0LD START
0106 11FFS5R LXI DsFINAL
H
0109 0A LOOP? L.DAX R JGET A BYTE
0104 77 MOV MrA $TO NEW PLACE

010B BE CHP M sDID IT GO7
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010C C20000 JNZ 0 SNOs QUIT
O10F 23 INX H $ INCREMENT
0110 03 INX B # POINTERS
0111 7B MOV AvE $ DONE?
0112 95 SUB L
0113 74 MoV ArD

- 0114 9C SBB H
0115 D20901 JNC LooP sKEEF GOING
0118 C30058 JHP START $ DONE

]

011iB END

Assemble the loader program, then load it into memory with the debug-
ger SID or DDT.

AXDDOT MOVE .HEX

Next, place a copy of the monitor into memory starting at address 120 hex.
If the monitor is already in memory, a copy can be generated with the moni-
tor itself. DDT or SID can also be used for this task. The command is

M5800 SERFF 120

If the monitor resides on disk as a hex file, it can be loaded with the debug-
ger after you calculate the offset. The offset is necessary since hex files are
normally loaded at the operating address, but we want to put it somewhere
else,

The required offset should be given in the assembly listing of the
loader program as the value of the equate OFFST. If your assembler doesn’t
print such values, then use the debugger to calculate the value.

H120 5800 <starting value of monitor>
5920  A920
<sum> <differencer

Give the commands

IMONL7 .HEX
Rioffset>

so that the monitor will be loaded starting at address 120 hex.
Return to the CP/M system

GO <do to zeroX
and save the combination

AXSAVE 5 MONITOR.COM
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From now on, all you have to do is type the command

A>MONITOR

and the monitor will automatically start up.

What actually happens is that the combination of the monitor and the
loader program is first copied into memory at 100 hex. The move program
relocates the monitor from address 120 hex to its proper place. Then control
is transferred to the monitor. As each byte is moved to the new location, it
is checked to see that it actually got there. If not, the process is terminated
and control returns to CP/M.

This short loader can be placed on the front of any program that must
be relocated. Only the first two instructions may have to be changed to
reflect the proper starting and ending addresses.

In the next chapter, we will convert our monitor to Z-80 code. The
Z-80 version will be smaller so that we can incorporate a few additional
features and still be able to fit the program into 1K of ROM. The features in
the next chapter can be incorporated in the 8080 version, but they will take
so much space that the monitor will no longer fit into 1K bytes.



CHAPTER SEVEN

A Z-80 System Monitor

The system monitor developed in Chapter 6 contains many features. Since
the size is less than 1,024 bytes, it will easily fit into a 1K PROM, such as
the 2708 EPROM. It can then be ready for use as soon as the computer is
turned on. But, in this case, it may be necessary to include a routine to
initialize the peripheral ports, such as those that handle the console and
printer. In addition, you might want to send output to a printer as well as
to the video console. If these two features are added to the monitor, the
size will inerease beyond 1K bytes and it will not fit into a single 1X PROM.

One way to add these new features without increasing the monitor’s
size is to remove some of the original routines. Another way, if you have a
7Z-80 CPU, is to convert some of the instructions to the more compact Z-80
equivalent operations. The latter approach will be followed in this chapter.
Listing 7.1 gives the final version with all changes discussed in this chapter.
The symbol table at the end can be used to find the routines of interest.

Listing 7.1 The Z-80 version of the sustem monitor.
TITLE Z-80 SYSTEM MONITOR

(Dlate dHoes here)

FOUR SECTIONS HAVE REEN REMOVED:

VERS EQU soe (1 LINE)

SIGNON: xE (4 LINES)
LXI Dy SIGNON (2 LINES)
SENDM: oo (6 LINES)

ONE SECTION HAS BEEN ADDEDS
LIST OUFUT ROUTINES

WP G WP WE WH EP AP I W WD B G

0018 TOF EQU 24 #MEMORY TOP» K RYTES
5800 ORGIN EQU (TOP-2)%1024 FiFROGRAM START

128
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0000

59806
5809
a80c
G80F

G812

9815
5818
S81A
a8i1c
S81E
5820
5822
5824

5826

Cc3
C3

€3
C3
C3
C3

ch
28
IR
Eé
FE

2
FE
2

a

(Y

587E
5891

G835
9815
S8FD
9949
S9F8

o827

11
7F
i8
DE
10
06

ASEG
+ 280
ORG

3
STACK
CSTAT
ChATA
INMSK
OMSK
LSTAT
LDATA
LOMSK
NNULS

?
FORTN
IRUFF
IRUFC
IRUFF
H
CTRH
TAR
CTRF
CTRQ
CTRS
CTRX
RACKUF
DEL
AFOS
CR

LF

#

START:

RESTRT ¢

~a:

ORGIN

EQU
EQU
EQuU
EQU
EQU
EQU
EQU
EQU
EQU

EQu
EQU
EQu
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQu
EQU
EQu
EQU

JF
JF

FABSOLUTE CODE

ORGIN-60H

10H s CONSOLE STATUS
CSTAT+1 $CONSOLE DATA

1 § INFUT MASK

2 FOUTPUT MASK

12H FLIST STATUS (18)
LSETAT+1 5LIST DATA is)
2 FOUTFUT MASK (18)
4 SLIST NULLS 18

STACK §CONS=0sLIST=1
STACK+3 SRUFFER FOINTER
IBUFF+2 SBUFFER COUNT
IBUFF+3 #INPUT RUFFER

8 $"H BRACKSFACE
9 i71

16 TR (18)

iz TR

19 78

24 $7Xs ABORT
CTRH " $BACKUF CHAR
127 s RUBOUT
(39-°0’) AND OFFH

i3 s CARRIAGE RET
10 SLINE FEED
coLp sCOLD START
WARM $WARM START

3 VECTORS TO USEFUL ROUTINES

¢
cours:
CING
INLNG
GCHAR ¢
OUTH?

ar e W

INFUTT?S

INPUT2?

@ ar @

ouTT F0UTFUT CHAR
INFUTT SINFPUT CHAR
INFLN F INFUT LINE
GETCH §GET CHaAR
OUTHX $RIN TO HEX

CONSOLE INFUT ROUTINE
CHECK

FOR CONTROL-Fs LIST TOGGLE

INSTAT §CHECK STATUS
Zy INFUTT $NOT READY
Ay (CDATA) $GET RYTE

DEL

CTRX FARORT?
ZsSTART 3YES
CTRF »TRT

ZySETLST sLIST

GET CONSOLE-INFUT STATUS
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5827
5929
582R

582C
582F
5830
5833

5835
5836
5839
5834
583C
583F
5841
5844
5846
5848
584R
5840
584F

5851
5853
59855
5857
5858
585A

585E
S85E

9861
5863
5865
5867
5868
586A
586C

S86E
5870
5871
5872
5874
5876
5877
5879

DB
Eé
co

3A

32
18

ch

FE

L)
16
1E

20
15

10
01

57R0

S7a0
EO

5740

iF
5827
10
581a
13
F4
58195
i1
F9
ER

i0
02
ES

11

6827

5814

i2

2
P

F4
13

7F

on

78
FA

FD

INSTAT?! IN
AND
RET

ETLSTS LD
CPL
LD
JR

O e e e

UTT?: FUSH

ouT2e caLL

ouT3: CAaLL

ar

ouT4: IN

: AND
JR
FOF
ouT
RET

™ ar o @» or

ouT: CaLL
CalL

-»

IN

AND
JR

FOF
ouT
ouT
AND

ey @ ar

Cr
RET
FUSH
LD
OUTCR: LD
OUTCR2: DEC
JR
nEC

As (CSTAT)
INMSK

TOGGLE LIST OUTFUT WITH CONTROL-F

Ay (FORTN) FCHECK FLAG
$§ INVERT

(FORTN)sA #SAVE

INFUTT FNEXT RYTE

CONSOLE OUTFUT ROUTINE

AF

Ay (FORTN) FWHERE®?

A »ZEROT
NZsLOUT FLIST OUTFUT
INSTAT FINFUTT
Zy0UT4  $NO

INFUT2 SGET INFUT
CTRS sFREEZE®
NZ,0UT2 5NO

INFUTT S INPUT?

CTR® s RESUME®?
NZ-,0UT3 $NO
ouT2

Ay (CSTAT) FGET STATUS
OMSK

Zy0uT2 PNOT READY
AF

(CDATAYsA $SEND DATA

LIST OUTFUT ROUTINE
SEND TO CONSOLE TOO

INSTAT § INFUT?
NZy INFUT2 $YESs GET IT

Ay (LSTAT) SCHECK STATUS
OMSK

ZsL0OUT PNOT READY

AF

(LDATA)YvA $SEND DATA
(CDATA) sA $CONSOLE TOO
7FH FMASK FARITY

AlD TIME DELAY AFTER CARRIAGE RETURN

CR fCARRIAGE RET?
NZ $NO

DE FUSE IIvE

ny30 % NNULS

E»250

E

NZsOUTCR2 7 INNER LOOF
I
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3874 20 F8 JR NZyOUTCR 7OUTER LOOF
587C D1 FOF DE #RESTORE
5870 C9 RET

CONTINUATION OF COLD START
987E 31 5740 oLp: LD SFsSTACK

INITIALIZE I/0 FORTS

ar ar er {73 wr @r s

5881 3E 03 Lo A3

G883 D3 10 ouT (CBTAT)»A FRESET
5885 I3 12 ouT (LSTAT)»A

5887 3E 15 LD Ar15H

5889 D3 10 ouT (CSTAT)sA FSET
588k I3 12 ouTt (LSTAT)»A

a880 AF XOR A JGET A ZERO
388E 32 3740 LD (FORTN)s»A SRESET

WARM-START ENTRY

E o s ar

3891 21 5891 ARM ¢ Lp HLyWARM FRET TO
G894 ES PUSH HL $ HERE

FIND TOF OF USABLE MEMORY.

CHECK FIRST RYTE OF EACH FAGE OF MEMORY
STARTING AT ADDRESS ZERO. STOF AT STACK
OR MISSING/DEFECTIVE/FROTECTED MEMORY.
DISFLAY HIGH BYTE OF MEMORY TOP.

ar @r @r W @ 9 W

G895 21 0000 LD HL»O $FAGE ZERO

5898 06 57 Lo ByHIGH STACK $STOF HERE
49894 7E NFAGE: LD As(HL) $FGET RYTE

S89R 2F CPL $COMPLEMENT
589C 77 LD (HL)sA $PUT IT BACK
3890 RE CcF (HL)  SAMET

S89E 20 05 JR NZsMSIZE $NOy MEM TOF
5840 2F CPL JORIG RYTE

38A1 77 Lo (HL)»A FRESTORE IT
a8A2 24 INC H $NEXT PAGE

38A3 10 FS [JINZ NFAGE $KEEF GOING
38A3 4C MSIZE: LD CsH sMEM TOP

98R46 CD 5935 CALL CRLF $NEW LINE

I8A? CD 59F8 caLL OUTHX FPRINT MEM SIZE
98AC CDh S58FD CALL INPLN sCONSOLE LINE
B8AF CD 5949 caLL GETCH iFIRST CHAR

MAIN COMMAND FROCESSOR

ar sar >

S8R2 D6 41 SUR ‘A’ #CONVERT OFFSET
98B4 DA S9E0 JFP CsERROR 7 < A

S8R7 FE 1A CF ‘Z'="AH1

S8R9 D2 59E0 JF NCsERROR ¢ > Z

G8RC 87 ADD AvA 5 DOURLE

S8RD 21 58C9 LD HLsTARLE iSTART

38C0 16 00 Lo Ds0

a8C2 SF Lo EsA FOFFSET

58C3 19 ADD HL s DE FADD TO TABLE
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58C4
58C5
58C6
58C7
58C8

S8FL
S8FF
5902
5905
5908
5904
- S590D
590F
5911
5913
5915
5917
5919
591k
.591C
S91E
5?1F

9E
23
56
EB
E?

Sa03
S59E0
5415
S95E
S9E0
5864
SAl14
SRS51
SR31
SB&0O
S9E0
SAa19
S5R/97
SPEQ
SR47
S59E0
S9EQ
SR8C
SAAD

- G9EO0

S9E0
SRAB
SPEO
SAS6
SPEO

SASD

3E

5835
57A4
5743

5815
20
7F
24
SR
02

9F
20

E?

LD
INC
LD
EX
JF

COMMAND TABLE

od @t @ e

ABLE

INFUT A LINE FROM CONSOLE
INTO THE BRUFFER.
RUROUT OR

THE LINE.

OTHER CONTROL

NFLN? LD Ay
CALL QuTT
INPLZ2: LD HL. » IBUFF
LD (IBUFF) sHL
. Lo Cy0
INFLIS CaALL INFPUTT
CFI ’ rd
JR CysINFLC
CpP DEL
JR Zy INPLE
CF AR 3
JR CrINPL3
AND SFH
INPL3: LD (HL) 5 A
LD Ar32
CF c
JR ZyINPLI

Es (HL)

Dy (HL)
DE » HL
(HL)

ASCII
ERROR
CALLS"
DUMF
ERROR
FILL
GO
HMATH
IFORT
JUST
ERROR
LOAD
MOVE
ERROR
OFORT
ERROR
ERROR
REFL
SEARCH
ERROR
ERROR
VERM
ERROR
REGS
ERROR
ZEROD

CARRIAGE
"H CORRECTS LAST

PLOW RYTE

SHIGH RYTE
FINTO Hel
60 THERE

Ay
13
M
Dy
SE
iFy
iGy
FH»
§1y
Fde
K
Ly
ity
N
0¥
PP
H ]
iRy
$8y
3T
U
AV
A
§ Xy
sY
$Zy

DUMF - LOAD

SURROUTINE
DUMF

MEMORY

GO

HEX MATH
FORT INFPUT
MEMORY TEST

LOAD
MEMORY

FORT OUTFUT
REFLACE
MEMORY
VERIFY MEM
STK PNTR
MEMORY

AND FUT IT

RETURN ENDS

CHARACTERS ARE IGNORED

§

$

p

; .

# LAST ENTRY., CONTROL-X RESTARTS LINE.
12

#

I

5 PROMF'T

s BRUFFER ADDR
$SAVE FOINTER
$ COUNT

s CONSOLE CHAR
s CONTROL.?
$YES

DELETE

$YES

$UFPER CASE?T
$YES

i MAKE UFPER
§INTO BUFFER
§BUFFER SIZE
sFULL?

$YESy LOOF
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9921 7E LD Ay (HL) FGET CHAR
5922 23 INC HL $ INCR FOINTER
5923 OC . INC C FAND COUNT
5924 CI 5835 INFLE! CaLL ouTT 7 SHOW CHAR
9927 18 E1 JR INPLI #NEXT CHAR

i

§ FROCESS CONTROL CHARACTER

#
5929 FE 08 INPLC: CP CTRH PTHT
992B 28 12 JR ZsINFLER FYES
5920 FE oD CF CR $RETURN?
S92F 20 19 JR NZs INFLI $NOs IGNORE

$

7 ENI OF INPUT LINE

§
3931 79 LD AsC # COUNT
U932 32 5745 LD (IBUFC) sA $SAVE

§

i CARRIAGE-RETURN» LINE-FEED ROUTINE

i
5935 3E oD CRLF: LD AsCR :
G937 CD 3835 CALL ouTT §SEND CR
993A 3E 0A LD AsLF
993C €3 5835 JFP ouTT FSEND LF

i

5 DELETE FPRIOR CHARACTER IF ANY

§
S593F 79 INFLE? LD AsC s CHAR COUNT
5940 R7 OR A $ZEROT
9941 28 C7 JR ZyINPLI $YES
5943 2R DEC HL s BACK FOINTER
35944 0D DEC c . FAND COUNT
9945 3E 08 Lo As BACKUF $CHARACTER
9947 18 DR JR INPLE $ SEND

7 .

i GET A CHARACTER FROM CONSOLE BUFFER

3 SET CARRY IF EMPTY

H
U249 ES GETCH: FUSH HL $SAVE REGS
9248 2A 57A3 LD HL s CIBUFF) FGET FOINTER
59240 3A 5745 Lo Ay (IBUFC) $AND COUNT
3950 D6 01 SUR 1 SDECR WITH CARRY
9952 38 08 JR CrGETC4 $NO MORE CHAR
59594 32 S7A5 LD (IRUFC)sA 3SAVE NEW COUNT
5957 7E LD As (HL) JFGET CHARACTER
5958 23 INC HL $ INCR POINTER
3959 22 3743 Lo (IRUFF)sHL $AND SAVE
39925C E1 GETC4: FOF HL PRESTORE REGS
5950 €9 RET

§

# DUMF MEMORY IN HEXADECIMAL AND ASCII

H
393E CD 5999 DuUMP 2 CALL ROHLDE i RANGE
9961 CIr 59E8 DUMF2:  CALL CRHL FNEW LINE
9964 4E DuMr3: LD Csy(HL) $GET BYTE
9965 Ch 59F8 CALL OUTHX FFRINT
9968 23 INC HL sFOINTER
9969 70 Lo Ask
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596A
596C
596E
9970
5973
5975
5978
3979
597C
5970
597E
5981
5984
5985
5987
5989

598k
598C
S98E
3990
5992
5994
5996

5999
599C
599D
S99E
S99F
5940
S99A2

59483
5946
S59A8
5949
59aC
S9AD

S9AE
59aF
S9R0O
S9R3
S59R6
S9R8
S9BER
S?RD
S9BE

Eé
28
Eé
cc
18
ch
ns
i1
19
nu
ch
co
7D
Eé
20
18

oF
07
03
S59F3
EF
S9F3

FFFO
598E
5A0C
OF

FS

né

59A3

3E

59AE
38

59AE

0000
5949
135
5900
08

AND OFH SLINE END?

JR ZyDUMF4 $YESy ASCII

AND 3 i SPACE

caLL ZyOUTSF 3 4 RYTES

JR DUMF 3 FNEXT HEX
numMr4:  CALL ouTse

FUSH IE

LD NEs~10H SRESET LINE

ADD HL s DE

FOF DE

DUMPS:  CALL FASCI FASCIT DUMF
caLL TSTOF $ DONE?

LD Arl $NO

AND OFH FLINE ENDT
JR NZ s DUMFS $NO

JR DUMF2

DISFLAY MEMORY BYTE IN ASCII IF
FOSSIELEs OTHERWISE GIVE DECIMAL PNT

| @ ar e

FASCI: LD Ay (HL) §FGET BYTE
cF DEL FHIGH RBIT ONT
JR NC,FABC2 SYES
CF o $ CONTROL CHAR®T
JR NCsFASC3 iNO
FASC2: LD Ay’ o’ $ CHANGE TO DOT
FASC3: JP ouTT $ SEND

GET HsL AND DrE FROM CONSOLE
CHECK THAT DsE IS LARGER
RIHLDE: CaALL HHLDE

W @r

ROHLDZ2: LD AvE
SUB L $E - L
Lo AsD
SRC AsH s~ H
JR CrERROR #HslL. BRIGGER
RET

INPUT HeL AND DyE

HLDE: CALL READHL  #HrL

JR CyERROR $ONLY 1 ADDR
EX DE s HL §SAVE IN DyE
CALL READHL $DyE

EX DE s HL $PUT BACK
RET

INFUT HysL FROM CONSOLE

EADHL: FUSH DE

FUSH BC #8BAVE REGS
LD HL»O s CLEAR

ROHL2: CALL GETCH $GET CHAR
JR CyRDHLS SLINE END
CALL NIB $TO RINARY
JR CeROHL4 $NOT HEX
ADD HL s HL FSHIFT LEFT
ADD HL y HL 3 FOUR
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S9BF
S9C0
59C1
59C2
59C3

59CS
59C7
S59C9
S9CR
S9CD
S9CE
S9CF

5900
S9D2
S9D3
5905
3906
aen7
S909
59DA
59Dk
S9DD
S9DF

S9E0

S9E2.

9PES

S9ES8

SPER
S9EC
S9EF

S9F0

S9F3

G9FS

29

kS
6F

18

FE
28
FE
20
c1

ce

ns

3E
cn
Cc3

CDh

AC

4N

cp

3E
c3

EE

30

17

oA

07

3F
5835
5800

5935

S59F8

99F8

e
o©
ol
4

ar s wr (W s s

A Z-80 SYSTEM MONITOR
ADD HL s HL i RBYTES
ADD HL s HL :
OR L #ADD NEMW CHAR
LD LyA
JR RDHLZ FNEXT

CHECK FOR COMMA OR ELANK AT ENDI

DHL 43 CF AF0S § APOSTROPHE
JR ZsRDHLS $ASCII INPUT
CF (’/ 7=70’) AND OFFH
JR NZyERROR #NOT BLANK
RDHLS: FOF BC
FOF LE $RESTORE
RET

CONVERT ASCII CHARACTERS TO BINARY

2 e ar e

IR SUR 0’ $ASCII RIAS
RET C i <0
Ccr Fi-0+1 _
CCF 5 INVERT
RET C SERRORy = F
cP i0
CCF § INVERT
RET NC i NUMBER Q-9
SUR ‘A9 -1
CFP 10 $REMOVE ¢-—
RET FLETTER A-F

FRINT 7 ON IMPROFER INFUT

RROR? LD Ay T
CALL ouTT
JFP START s TRY AGAIN

START NEW LINEs GIVE ADDRESS

RHL: CALL CRLF FNEW LINE

FPRINT HsL IN HEX

OUTHL: LD CsH
CALL OUTHX  $H
OUTLLS LD CrL

QUTFUT HEX RYTE FROM C AND A SPACE
UTHEX?: CALL OUTHX

OUTFUT A SFACE

3 er er wr L3 er @ e

UTSF! LD As’
JF oUTT

OUTFUT A HEX BYTE FROM C
RINARY TO ASCII HEX CONVERSION

“e» war @ ey
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59F8
S9F9
99FA
S9FB
S59FC
S9FD
SA00
SA01
SA03
SA0S
5A046
SA08
JA09

SA0C
SAOD
SAOE
SAOF
5A10
9A11
SAL2
- 5A13

S5A14
9A1S5
S5A18

SA19
SAlC
SAlF
DA22
5A25
SAR26
SA29
SAZA
SAZ2D
5A30
S5A31
SA32
SA34
SR36
SA37
S9A38

79
iF
iF
iF
iF
ch
79
Eé
Cé
27
CE
27
c3

23
7K

7A
?C

El
ce

E1l

E?

JA01

OF
?0

40

5835

SPAE

SPAE
S9EER
S98R
S9F3

' S9F0

5902

SPAE

F7
oA

03

OUTHX: LD

RRA

RRA

RRA
RRA
CaLll
Lo
AND
ADD
DAA
ADC
AA
JF

HEX1?

H

# CHECK FOR
i INCREMENT
7
TSTOF? INC
LD
SUB
LD
SEC
RET
FOFP
RET

$

§

5

# IS ON 8TAC
H

§

GO: FOP
CALLS: CALL

JF

FROM CONSO

CARRIAGE R

@ Ss @ @ T W Ws

LoaD:
LOAD2?

CcALL
CALL
CALL
CALL
LD
CALL
FUSH
cALL
CALL
LD
FOP
CFP
JR
LD
OR
JR

HEX1
ArC
OFH
ArP0H

As40H
ouTT

END>»
Hel

HL
AsE
L
AsD
AvH
NC
HL

Ky

HL
READHL
(HL)

LE.

ET

READHL
OUTHL.
FASCI
OUTSP
Cs (HL)
OUTHEX
HL
INPLZ2
READHL
Byl

HL
AFPOS
Z:LOADS
aAr

A
ZyLOAD3

iROTATE

FOUR

BITS TO
RIGHT
SUPPER CHAR
FLOWER CHAR
$TAKE 4 BITS

> @ ep

sDAA TRICK

Hel MINUS DSE

i E - L
# 0 - H
$NOT DONE

PRAISE STACK

ROUTINE TO GO ANYWHERE IN MEMORY
FOR CALL ENTRY» ADDRESS OF WARM
50 A SINPLE RET
WILL RETURN TO THIS MONITOR

FRAISE STACK
§GET ADDRESS
#GO0 THERE

LOAD HEX OR ASCII CHAR INTO MEMORY
CHECK TO SEE IF

THE DATA ACTUALLY GOT THERE
AFOSTROFHE FPRECEEDS ASCII CHaR
FASSES OVER LOCATION

# ANDIRESS
SPRINT IT
FASCIT

FORIG RYTE
§HEX

s SAVE PNTR
$ INFUT

i BYTE

i TO R

FASCIT INPUT
FHOW MANY®?

i NONET

FYES
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SA3A
SA3N
5A3E

SA40
5A43
SA44

S5Aa46
SA47
5A48
5049
SA4A
SA4R
5a4D0
SAS0
GAS3

5A56
SASY

5A5A

SASDH
5A40
5862

SA64
SA67
SALY
SALE
Sa6C
SALD
SALF
5a72
9A75
5A78

SA7A
SA7D
SA7E

5A80
S5A83
5A86

CDh
23
18

co
47

(W 1]
FE
28
41
FE
n2
co
18
chn

18

co
DA

S5A46

nc

5949

Fa

42

5835
S9F3
S9ER

0000

SPER

5999

08

SA80

OF

597

SPE0

5A46
5A0C
F2

5949

SABE
SPEOQ

L.OADR4:  CALL CHEKM
LOADR3? INC HL
JR LOAD2
§
$ LOAD ASCII CHARACTER
§
LOARs: CaAlLL GETCH
Lo BrA
JR LOAD4

O e e o wr

$INTO MEMORY
$POINTER

COPY RYTE FROM R TO MEMORY
AND SEE THAT IT GOT THERE

HEKM: LD (HL)# B SPUT IN MEM
LD Ay (HL) #GET BACK
CF B I SAMET
RET Y4 §0OK
ERRF$ FOF AF sRAISE STACK
ERRE? LI Ay ‘B’ s BAD
CaLl ouTT
CALL QUTSP
JP OQUTHL SPOINTER
]
3 DISPLAY STACK FOINTER REGISTER
5
REGS S Lo HL.» O
ADD HL » SF
JP OQUTHL
§
3 ZERD A FORTION OF MEMORY
§
ZERO? CALL RDHLIDOE 7sRANGE
Lo EsO ’
JR FILL2
$
§ FILL A FORTION OF MEMORY
H
FILLS CAaLL HLDEEC $SRANGEys RYTE
M AFPOS FAFOSTROFHE?
JR ZsFILL4 $YESs ASCII
LI EByC
FILL2: LD asH sFILL RYTE
CF HIGH STACK 3T0OO FAR?
‘ JFP NCsERROR FYES
FILL3: CALL CHERM $PUTy CHECK
caLL TSTOP s DONE?
JR FILL2 SNEXT
9
FILL4: CalLL GETCH $ASCII CHAR
Lo BsA
JR FILL3

GET HeL DsE AND EyC

LDERC? CALL HLDECK
JF CyERROR
FUSH HL.

# RANGE
#NO RYTE
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SA87
SABA
SA8B
S5A8C
SA8D

SABE
SA%1
S9A%4

SA97
SA%A
SA9D
SAARO
SAA1

SAA3
SAA4
SAAS
SAAL
SAA7
SAAB
SAARY?
SAAA

SAAD
SARO
S5AB2
SAB4
SABS
S5ABS
SAR9
SARA
SARR
SABC
SABE
SARF
SACO
SAC2

SAC4
SACS
SACSe

co
44
AD
E1
co

CD
I'A
C3

Ch
cn
(W 1]

i8

7E
02
0A

cg
60
69
c3

SPAE

99A3
S9EO
599C

SA80
SAA3
SA0OC

F7

SA4A

5A80
on
06

S9AE

io0

on
04

06

READHL

CALL #3RD INFUT
Lo BsH FMOVE TO
LI CrL i BsC
FOF HL
RET
9
$ GET 2 ADDRESSESs CHECK THAT
5 ADDITIONAL DATA IS INCLUDED
v
HLDECK: CALL HHLDE $2 ADDR
JE CsERROR FTHAT’S ALL
JF RIHLD2  $CHECK
12
# MOVE A RLOCK OF MEMORY HsL-DsE TO EsC
9
MOVE ? caLL HLDEBC 3 ADDR
MOVDN: CalLL MOVIN FMOVE/CHECK
calL TSTOF 5 DONE?
INC EBC #NO
JR MOVDN
4
MOVIN: LD Ay (HL) $BYTE
LD (BCYrA  HSNEW LOCATION
Lo Ay (BC) $CHECK
CFP (HL) §IS8 IT THERE?
RET 4 sYES
Lo Hsy E s ERROR
LD LsC FINTO HeL
JP ERRP FSHOW EBAD

> MEr ‘Cr @ G2 @r @b

FORMAT?! START STOP
s :
SEARCH: CaALL HLDERC
SEAR2: LI ByCR
JR C+SEAR3
FUSH HL
caLL READHL
Lo Bsl
FOF HL.
SEAR3: LD Ay (HL)
CF c
JR NZySEAR4
INC HL.
Lh Av R
cpP CR
JR ZsSEARS
¥
§ FOUND FIRST MATCH>»
$
LD Ay (HL)?
CF E
JR NZySEARA

-

SEARCH FOR 1 OR 2
RANGE HsL IvE.
B HAS CARRIAGE RETURN

BYTES OVER THE
BYTES ARE IN R»C

IF ONLY ONE BYTE

FUT SPACE RBTWEEN RYTES IF TWO

RYTE1 RYTEZ

FRANGEs 15T RYTE
PSET FOR 1 RYTE
sONLY ONE

F2ND RYTE
§INTO C

$GET BYTE
iMATCH?
iND

$YES
§ONLY 17

PYES

CHECK FOR SECOND

FNEXT RYTE
FMATCHT
#NO
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S5AC8 2B SEARS: DEC HL iA MATCH
SAC? €S PUSH RC
5ACA CI S9ES8 CALL CRHL iSHOW ADDR
S5aCDh C1 FOF BC
SACE Ch 3A0C SEAR4: CALL TSTOF s DONE?
S5AD1 18 E7 JR SEAR3 §NO
§
i ASCII SUB-COMMAND FROCESSOR
3 ,
5aD3 Ch 5949 ASCII: CALL GETCH $NEXT CHAR
SAahé FE 44 cr ‘n’ $DISFLAY
SAN8 28 24 JR Zs ADUNP
SADA FE 53 CF ‘57 §SEARCH
SANC 28 42 JR ZyASCS
SADE FE 4C cP ‘L LOAD
SAEO0 C2 S9EO JF NZ s ERROR
9
5 LOAD ASCII CHARACTERS INTO MEMORY
i QUIT ON CONTROL-X
9
SAE3 CI S9AE caLl READHL $ADDRESS
SAES CD SPER caLL OUTHL FPRINT IT
SAE? CD 5815 AlLonz2: CcalLL INPUTT SNEXT CHAR
SAEC CD 5835 catL ouTT FFRINT IT
SAEF 47 LD EBsA i SAVE
SAFO CD 3A46 CALL CHEKM $ INTO MEMORY
SAF3 23 INC HL $POINTER
SAF4 70 LD Asl
SAFS E6 7F AND 7FH fLINE END?
SAF7 20 FO JR NZ,ALODZ2 $NO
S5AF? CDr 59E8 CALL CRHL PNEW LINE
SAFC 18 EBR JR ALODR2
v
3 DISFLAY MEMORY IN STRAIGHT ASCII.
5 KEEP CARRIAGE RETURNs LINE FEEDs CHANGE
$ TAB TO SFACEs REMOVE OTHER CONTROL CHAR. °
y
SAFE CI 5999 ADUMF:  CALL RIOHLDE §$RANGE
95B01 VE ADMF2: LD As(HL) FGET BYTE
SRO2 FE 7F CF DEL $HIGH BRIT ONT
S5BO4 30 15 JR NCy»AINMF4 5YES
B06 FE 20 CF c § CONTROL T
SR08 30 OE JR NCADMF3 $NO
SROA FE O cr CR $CARR RETT?
SROC 28 0A JR ZyAIMF3 $YESy OK
SEOE FE 0A CF LF #LINE FEED?
SR10 28 06 JR ZyADMP3 FYESs OK
Sk12 FE 09 CF TAE
5k14 20 05 JR NZs ADMF4 $SKIF OTHER
SB1é6 3E 20 LD Ay’ ¢ §SFACE FOR TAR
SR18 CDh 5835 ADIMF3:  CALL QuTT § SEND
SBiR CD SA0C AlMF4: CALL TSTOP s DONE®?
SEIE 18 E1 JR ADMF2 iNO

e ‘e G» ‘ar ar

SEARCH FOR 1 OR 2 ASCI
NO SPACE RETWEEN ASCII
FORMAT? START STOF 1 0O

I CHARACTERS
CHARS
R 2 ASCII CHAR
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SR20
SE23
SB26
SR27
SRB2A
SR2D

SR2ZE

SE31
GB34
SB35
SR37

SB3A
SE3C
T GB3E
.9B40
SR41
SR44
SRB46

5B47
SE4A
SBAR
SRAE
5B50

SR51
SRS54
SB35
SRS56
SR59
SESA
SBSE
SRBSD

SR60
SR63
SR64
SB&T
SR&6
SR&67
SB68
SR6R
SRB&C

cn
4D
ED
cp

06

3E
8F

ch

10
ce

co
410
chn

co

ch
ES
7E
2F
77
BE
c2
2F
77

5999
5949

9949
SARO

SARA

S9AE

68
S9EF

08

25

is

9835
Fé

S9AE

S59AE

69

59A3

S9ER

52

S9ER

5999

SR7E

ASCS: CaLL

caLL

INFUT
FORT?: CALL
LD
IN
CALL

FRINT

ar ar e

RITS:
BIT2:

Lp
SLA
LD
ADC
cAaLL
DUNZ
RET

;
§
i FORMAT I8¢
12
OFORT: CaALL
LD
CaLL
ouT
RET

RDHLDE
GETCH
CrA
GETCH
CrSEAR2
ErA
SEAR3

REAIDHL
CsL

Le ()

QUTLL

B:8

L

Ar 0’ /2
ArA
ouTT
RIT2

READHL
Col.
READHL
(CrsL

§
i HEXADECIMAL MATH», SUM
§

HMATH: CaLL
FUSH
ADD
CALL
FOFP
OR

SRC
JFP

o @ ar e car

usT? CALL
FUSH
Lo
CFL
LD
CF
JP
CFPL
LD

JusT2:

HHLDE
HL
HL»DE
OUTHL
HL
A
HL » DE
OUTHL

MEMORY TEST THAT DOESN‘T ALTER
INFUT RANGE OF ADDRESSES»

RIOIHLDE
HL
Ay (HL)

(HL)»A
(HL)
NZy JERR

(HL) s A

§ RANGE
SFIRST CHAR
F2ND OR CARR RET

§ONLY ONE CHAR
§ 2ND

FROM ANY FORT (Z-80 VERSION)

$FORT

$PORT TO C
F INFUT :
FHEX VALUE

L. REGISTER IN RINARY (Z-80 VER)

38 BITS
$SHIFT L LEFT
$HALF OF 0

» DOUBLE+CARRY
SPRINT RIT

8 TIMES

OUTFUT BYTE FROM FORT (Z-80 VERSION)
OsFORTRYTE

#FORT
FDATA
sOUTPUT

ANIY DIFFERENCE

$TWO NUMBERS
FSAVE HrL
$SUM

FPRINT IT
$CLEAR CARRY

s DIFFERENCE

ABORT WITH

# RANGE

CURRENT RYTE

X

$SAVE START ADDR

$GET RYTE
sCOMPLEMENT IT
sFUT IT BACK
$DID IT GO7?
§NO

§ORIGINAL BYTE
#FUT IT BACK
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SR6D 7D JUST3: LD AsL

iFASS

SBROE 93 suB E # COMFLETED?
aB&F 7C LD AyH
SE70 24 SREC " AsD
SR71 23 INC HL
GR72 38 FO JR CyJUST2 #NO

b4

# AFTER EACH FASS»

§ SEE IF ARORT WANTED

?
5B74 CIr 5827 CALL INSTAT FINFUT?
SR77 C4 58135 CAaLL NZy INFUTT $YES» GET IT
SB7A E1 FOF HL §START ADDR
SE7R ES FUSH HL s SAVE AGAIN
SB7C 18 E6 JR JUST2 FNEXT FASS

FOUND MEMORY ERROR: FRINT FOINTER AND
RIT MAF?! 0=600Dy 1=RAD RIT

|y @ e e

SR7E F5 JERR: FUSH AF $SAVE COMFLEMENT
SR7F CD S9E8 caLL CRHL FFPRINT FOINTER
SE82 F1 FOP AF

SE83 AE XOR (HL) $SET RAD RITS
B84 ES FUSH HL ?SAVE FOINTER
SRBYS 6F LI LsA FRIT MAF TO L
SEB8& Ch SE3A CALL RITS sPRINT BINARY
SE8? E1 FOFP HL

YEBA 18 E1l JR JUsT3 F CONTINUVE

REFLACE HEX BYTE WITH ANOTHER
FORMAT I8: START» STOF, ORIGy NEUW

s B TRE TR N

SE8BC CDN 5A80 EFL2 CAaLL HLDEBRC $RANGEs 18T RYTE

SEBF DA S9E0 JF CsERROR $NO 2ND
SR92 41 Lo EsC #18T TO E
SB9?3 ES FUSH HL

SR?4 CDh S9AE caLL READHL  52ND EYTE
SRSV 4D Lh CsL §INTO C
SR?8 E1 FOF HL

SR99 7E REPL2: LD Ay (HL) SFETCH BYTE
SR9?A KB CF E #A MATCH?T
SE9R 20 06 JR NZyREFL3 iNO

SB9D 71 Lo (HLYsC $SUBRSTITUTE
SGB9E 79 Lo AsC

GR?F RE CFP (HL) i SAMET

SEAQ C2 SA4ER JE NZ7ERRE #NOs EAD
SEA3 CD SAOC REFL3: CALL TSTOF  FDONET

SRAS 18 F1 JR " REFL2

GIVE RANGE OF 18T BLOCK AND START OF SECOND

> @ ar

y

SEAB CD 5480 VERM? CALL HLOEBRC 3 ADDRESSES

SBAE 0A VERM2: LD Ay (BRCY FFETCH BRYTE
SRAC ERE CF (HL) i SAME AS OTHERT
SRAD 28 19 JR ZsVERM3 S YES

SRAF ES FUSH HL sODIFFERENT

SERO C3 FUSH ERC
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SBB1 CD G9ES8

SBRR4 4E

SBBS CD S9F0
SRE8 3E 3A
SBRBA CI 5835
SERD E1

SERE CD S9ER
SEC1 4E ;
SRC2 CD S9F8
SRCS 4D

SBCS 44

SRC? E1

SBC8 CD SA0C
SECE 03

SRCC 18 no
Sumbols?
ADMF2 SRO1
ALODZ2 SAEY
RACKUF 0008
CHATA 0011
couT 5806
CSTAT 0010
CTRS 0013
DUMF2 5961
ERRE SA4R
FILL2 SA6C
GETC4 S995C
HHLIDE S943
IRUFC 57405
INMSK 0001
INPLC 5929
INFUT2 581A
JERR SR7E
LDATA 0013
LOAD3 SA3D
LouT 5858
MOVIN SAA3
NFAGE S89A
ouT2 383C
DUTCR2 58746
DUTHX S9F8
FASC2 5994
RIHL 2 S59E3
RIHLIE 5999
REFL2 SB99
SEAR3 SARA
SETLST G82C
TARLE 58C9

VERM2 SRAR

VERM3:

-

ADMP3
AFO0S
RIT2
CHERM
CR
CTRH
CTRX
DUMF3
ERROR
FILL3
GETCH
HLDERC
IRUFF
INPL2
INFLE
INFUTT
JUST
LF -
LOADA
LSTAT
MSIZE
OMSK
ouT3
OUTH
OuUTLL
FASC3
RIHL 4
READHL
REFL3
SEAR4
STACK
TOP
VERM3

CaLL

SR18
FFF7
SE3C
5A46
ooon
0008
0018
5964
S9E0
GR72
S949
SR80
G746
5902
5924
5815
SR60
0004
SA3A
0012
S8A5
0002
5848

5812

G99EF
5996
S59CS
S9AE
SBA3
SACE
5740
0018
SRCS

CRHL.
Cr (HL)
OUTHEX
Ar s’
ouTT
HL.
OUTHL
Cs (HLD
OUTHX
Col.
ByH
HL
TSTOF
BC
VERM2

START

ADMF 4
ASCII
RITS
CIN
CRHL
CTRF
DEL
LUMF 4
ERRF
FILLA
GO
HLDECK
IRUFF
INFL3
INFLI
INSTAT
JUsT2
LOAD
LOADG
MOVIIN
NIE
OFORT
ouT4
OUTHEX
OuUTSF
FASCI
RIHLS
REGS
RESTRT
SEARS
START
TSTOF
WARM

sFRINT 18T FOINTER
sFIRST BYTE
SPRINT IT

iBsC TO HsL
$ SECONDI FOINTER
$2NIN BYTE

SFRINT IT

sRESTORE C

$AND B

FAND Hel

s ONE?

F2ND FOINTER

SE1E ALDUMF SAFE
SAD3 ASCS SB20
SB3A CALLS 9A1S
5809 coLn S87E
S9E8 CRLF 5935
0010 CTRQ 0011
007F DUMF S95E
5975 DUMFS SY7E
SA4A FILL S5A64
SA7A GCHAR GBOF
5A14 HEX1 GA01
SABE HMATH SRS1
S7A3 INLN a8oc
S91E INFLE G593F
390A INPLN S8FD
G827 IFORT GR31
SR64 JusT3 SBeD
S5A19 LOADZ2 SALC
SA40 L.OMSK 0002
SA%A MOVE SA97
3900 NNULS 0004
SB47 ORGIN 9800
5851 OUTCR o874
39F0 OUTHL GPER
S9F3 QuTT 5835
598k FORTN 5740
S9Ch ROHLD2 599C
SASS REFL SE8C
3803 SEAR2 SARO
SACS SEARCH Saal
5800 TAR 0009
SA0C VERM SEAB
5891 ZEROD SASD
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CONVERSION OF THE MONITOR TO Z-80 MNEMONICS

If you used 8080 mnemonics to program the monitor in Chapter 6, you can
now convert it to Z-80 mnemonics. The form of the mnemonics depends on
the type of assembler you have. The Microsoft assembler accepts both the
Intel 8080 and the Zilog Z-80 mnemonics. Since most other assemblers use
only one or the other, you may need a second assembler.

The Digital Research assembler MAC requires the 8080 mnemonics, but
it can generate Z-80 code with an accompanying macro library. The Xitan
assembler utilizes 8080 mnemonics for the common set of 8080-type instruc-
tions and Zilog-like instructions for the others.

First, make a working copy of the monitor using PIP, a CP/M utility
routine.

PIF MONZ.ASM=MON17.A8SMLV]

If you are using MAC or the Xitan assembler, skip to the next section. Other-
wise, use the system editor to make the necessary changes to the new file.
The conversion can be easily performed with the global substitute command -
of the Word-Master or the CP/M editor. For example, the 8080 mnemonic

MOV AsM

can be changed to the equivalent Z-80 mnemonic

LD Ay (HL)

with the command

AXSHOV<tabrArsMSLD<tab>Ar (HL)SOTT

The $ symbols indicate that the escape key is pressed. The ‘“‘tab” refers to
the ASCII tab key, a control-I. You may find the cross-reference list for 8080
and Z-80 mnemonics, given in Appendix G, helpful in the conversion process.

After changing the monitor to Z-80 mnemonics, assemble it and care-
fully check the assembly listing to see that the hex code is correct. The Z-80
version at this time should generate the same hex code as the 8080 version.
A further check can be made with the monitor’s V command. Load the
binary code into memory with an offset. A command of

npT
IMONZ . HEX
RFO00

will load the new version 4K bytes below the regular monitor position.
Branch to the monitor prepared in the last chapter. Then compare its code
to the new version using the verify command. If there is a discrepancy, find
the error and correct it. When you are convinced that the Z-80 version pro-
duces the same code as the 8080 version, you can begin the alterations to
reduce the monitor’s size.
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REDUCING THE MONITOR SIZE

In this section you will reduce the monitor size by converting many of the
3-byte absolute jump instructions into 2-byte relative jump instructions.
This change will make room for additional features. There are five types of
jumps to be changed.

absolute relative condition
Jume Jume
JP X JR X unconditional
- JP ZeX JR ZsX " Zero
JP NZe¢ X JR NZ2X not zero
JP CeX JR CeX carry
JP NC ¢ X JR NCy X not carry

Not all of the absolute jumps can be converted in this way since the relative
jumps are limited to a distance of about 126 bytes.

Another way to obtain more space is to move some of the subroutines
to more advantageous locations. This will allow a few more absolute jumps
to be converted into relative jumps. For example, several routines contain a
jump to the routine ERROR. These can be placed together in a group. Then
the ERROR routine can be moved into the middle of the group.

Another change will free up three more bytes. Notice that subroutine
OUTSP ends with the instruction

JP OQUTT

If this subroutine were located directly ahead of subroutine OUTT, then the
jump instruction would not be necessary. Actually, this type of change has
already been used extensively in our monitor. Subroutines CRHL, OUTHL,
OUTHEX, and OUTSP are all directly related. They initially could have been
programmed (using Z-80 mnemonics) as

CRHL ¢ CALL CRLF
. CALL  OQUTHL

RET

H

OQUTHL: LD CyH
Call OUTHX

QuTLL: LD Cel
CaLL OUTHEX
RET

$

OUTHEX?t CaALL OUTHX
CALL OUTSP
RET

s
OUTSP: LD Av’
CCALL  OUTT

RET
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The CALL/RET combination at the end of each routine can be replaced by
a JP instruction. Then, since the calling program is located directly above
the called program, the jump instruction becomes unnecessary. Thus, four
bytes are saved in each of the first three routines. Furthermore, if this entire
block of four subroutines were located just prior to subroutine OUTT, we
could eliminate the final JP OUTT instruction and save three more bytes.
While this kind of subroutine rearrangement can be used to make the
overall program smaller, there is a penalty. The readability is reduced. We
have traded comprehension for space. This may not, in general, be a worth-
while tradeoff for assembly-language programming. Such programs are more
difficult to understand than those written in a high-level language such as
Pascal or BASIC. Furthermore, assembly-language programs are typically
much shorter than they would be if written in a higher-level language. But if
packing a maximum number of features into a 1K PROM is your goal, then
this technique may be worth it.

GETTING MORE FREE SPACE
The two instructions

LEC R
JP NZsX

which generate four bytes of code appear in two places. Replace them with
the 2-byte instruction

DJUNZ X

One location is just prior to the label. MSIZE (address 58A5 in Listing 7.1)
and the other is in subroutine BITS (bB3A). This change will free four
more bytes.

The 16-bit subtraction routine in HMATH (5B51) has been improved.
The sequence of instructions

Lo ArL
SUE AvE
LD LsA
Lo AsH
SBEC Ash
LD HyA

is replaced by the shorter, double-precision subtraction:

OR A jreset carry
SEC HL ¢ DE ssubtract

Three more bytes are freed by this change.
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- Since the Z-80 contains a set of instructions for direct rotation of data
in the general CPU registers, we can simplify subroutine BITS. In the 8080
Version,‘ the three instructions

MOV Al
ALID A
L [0 LrA

are used to move the data from a general register to the accumulator, perform
the shift, then move it back. The 2-byte, Z-80 arithmetic shift left instruction

SLA L

performs the shift directly in the L register.

The 8080 can output a byte only from the accumulator, and can input
a byte only to the accumulator. Furthermore, the address of the peripheral
must be located in memory immediately following the first byte of the input
or output instruction.

The port-input routine IPORT and the port-output routine OPORT in
the system monitor utilized subroutine PUTIO. This routine writes the
desired IN or OUT instruction in memory, the requested port address and
then a return instruction. There is a Z-80 instruction that can perform I/O
from any register. The address of the peripheral is located in register C in
this case. Since the port address does not have to be located in memory,
subroutine PUTIO can be eliminated. The resulting Z-80 code is 19 bytes
shorter than the 8080 version. See Listing 7.1 for the new versions of IPORT
(56B31) and OPORT (5B47).

Since you are nearly finished with the development of the monitor
program, you can gain some more space by removing the routines that print
the version number. There are four areas involved. First, delete the line near
the beginning that identifies the version number.

VERS EQU ‘177

Second, remove four lines starting with the label SIGNON. Third, delete the
two lines starting on the line after the label COLD.

Lo DE s STGNON
CALL SENDM

Fourth, remove the entire subroutine SENDM, but keep a copy of it in case
you want to incorporate it in another program.

PERIPHERAL PORT INITIALIZATION

There are two schools of thought on peripheral port initialization. One
“approach is to initialize ports only on a cold start or a warm start. The other
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way is to initialize a port each time it is used. The method you use depends
on the integrity of your system.

The approach taken in this chapter initializes ports only on a cold start.
The instructions are placed just after the label COLD. In anticipation of
adding a printer-output routine, we include the initialization for two sepa-
rate peripherals.

Ports which need initialization utilize a control register for this pur-
pose. The address of the control register is the same as the status register. A
CPU IN instruction reads the status register, while a CPU OUT instruction
to the same address writes into the control register. A typical initialization
procedure requires two OUT instructions. The first is used to reset the port;
the second is used to set the desired options. The values shown in the listing
correspond to a Motorola 6850 ACIA serial port set for eight data bits, one
stop bit, and no interrupts.

LD As3

ouT (CBTAT)»A 5 RESET

LD Ay 13H

ouT (CSTAT) s A § BET FEATURES

PRINTER OUTPUT ROUTINES

Up to this point, we have been writing programs for output to a console
video screen. We output an ASCII backspace character for error correction so
that the cursor will actually back up on the screen. We also included a pair
of scroll commands: control-S to freeze the display and control-Q to resume
the scrolling.

Sometimes, however, we want computer output we can look at after
the computer has been shut off. A printer or list device is what we need for
this purpose. We will not want to use the printer as a main console, though,
because it is too slow.

For sophisticated operating systems like CP/M, the software for the list
device is wholly separate. For example, we can divert a disk file to the printer
and none of the system commands will appear on the listing.

Our approach will be a little different. The video console will always
display all output whether the printer is on or not. Of course, when the
printer is engaged, the console speed will be reduced to that of the printer.
We will both enable and disable the printer with a control-P command, just
as in CP/M. We refer to the control-P command as a list toggle: the same
command turns it on or off. The output includes the echoing of the com-
mands typed in from the console keyboard.

Both the input and output routines will have to be changed if you want
to incorporate the printer routines. In addition, two new subroutines will
be added. First, add two new lines to the input routine; they will look fora
control-P from the console keyboard. If a control-P is found, the program
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will branch to a new subroutine called SETLST. The two new lines appear in
subroutine INPUTT (5815).

cpP CTRP AP
JR ZsSETLST FLIST

Subroutine SETLST (582C), containing 4 lines of code, is added just
after subroutine INSTAT.

SETLST: LD Ay (PORTN) $CHECK FLAG
- CPL # INVERT
LD (PORTN) A $SAVE
JR INFUTT FNEXT RYTE

This routine complements the printer flag (PORTN) when a control-P is
typed. The output routine uses this flag to determine whether to send out-
put to the printer. Notice that in Chapter 6, the identifier PORTN was used
to set up the port number for the I and O commands. This feature is not
~ needed for the Z-80 version, so we can use the location for the printer flag
instead. -

- The third new section is placed in the output routine OUTT (5835).

LD Ay (FORTN) SWHERE?
OR A $ ZEROT
JR NZsLOUT $LIST OUTFUT

This part checks the flag PORTN to see if output is to be sent to the printer.

The fourth routine is LOUT (585B); it follows OUT4. This routine
sends output to both the console and the printer. It first checks the status
port for the printer. When the output bit indicates ready, a byte is sent to
the printer. Since the console video screen operates so much faster than the
printer, there is no need to check the console-ready flag. The byte is there-
fore also sent directly to the console by the next instruction. The output
appears simultaneously at both devices.

DELAY AFTER A CARRIAGE RETURN

Video screens operate with electron beams that move very fast. Mechanical
printers, on the other hand, are much slower. For some printers, the time it
takes to execute a carriage return is so great that the first few characters of
the next line may be lost. The solution is to have the computer do something
else for a little while after it sends a carriage return.

One method of slowing down the computer is to arrange for it to send
binary zeros, called nulls, after each carriage return or carriage-return/line-
feed pair. One routine for accomplishing this is as follows.
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CRLF? LD AsCR $CARRIAGE RET
CALL ouTT $SEND
Lo AsLF SLINE FEED

caLL ouTT $ SEND

XOR A $GET A NULL
CaLL ouTT FSEND . IT

CALL ouTT A SECOND ONE
CalLL ouTT sA THIRD

JF ouTT $THE FOURTH

But this approach may cause trouble if the printer circuits attempt to inter-
pret the null characters.

A different approach is taken with the list-output routine, LOUT,
shown in Listing 7.1. After each carriage return is sent, the computer starts
executing a double loop. The inner loop is executed 250 times. The outer
loop is set according to the equivalent number of nulls that are needed. No
nulls are actually sent, though, in this case.

The disadvantage of this method is that the resultant delay time is a
function of the computer speed. A Z-80 running at 4 MHz would require
approximately twice the number of loops as would a 2-MHz Z-80. Thus, the
loop-initialization values may have to be adjusted to the particular computer.

Be careful to tailor the port-initialization routines to your system or
remove them if they are not needed. The time delay in the list-output rou-
tine should also be removed if it is not needed. If you are not sure whether
a delay is necessary, then leave it in, at least for the first version. Then use
the memory load command of the monitor itself to reduce the delay values
on the two loops. When you reduce the delay time to too small a value, then
you will notice that some of the characters are missing from the beginning of
some of the lines. *

A sample loop-change session could look like this.

»>D5870 387F

5870 CODS1678 1EFALID20 1520. + »
»1.5873

5873 » 78 3C

5873 ., 1E AX (to cuit)

The first command line is used to display the memory region containing the
loop constants. Then the outer loop value of 78 hex is changed to 3C hex
which is half the value. As long as you change the timing-loop values with
the printer disengaged, no problem should occur. After each change in the
timing loops, re-engage the printer with a control-P. Display several lines on
the printer by giving the D command. Check to see if any of the first few
characters of each line are missing. If everything is all right, then again
reduce the loop constant until characters are lost. (Be sure to disengage the
printer between each change.)




CHAPTER EIGHT

Number-Base Conversion

This chapter deals with assembly language routines that can be used to
convert data from one form to another. The first part deals with the conver-
sion of a sequence of ASCII characters called a string into a binary number.
The second part reverses the procedure; binary numbers are converted into
ASCII strings. The characters in each string represent digits in one of the
common bases 2, 8, 10, or 16. The corresponding binary number may be
4 bits, 8 bits, or 16 bits in size.

All of the programs in this chapter are designed to run with the system
monitor developed in Chapters 6 and 7. Some of the monitor’s input and
output facilities are needed. These include the console input buffer which
supplies the characters, the binary-to-hexadecimal conversion routine which
will print the answer in hexadecimal, and the console output routine needed
for the error message.

The monitor error-correction features are available during input. Press-
ing the DEL (or RUB) key or the backspace (control-H) key will delete the
previously typed character and remove it from the console video screen. If
the list routines have been incorporated into the monitor, the printer can be
turned on by typing a control-P. When you have finished with each routine,
you can return to the monitor simply by typing a control-X.

THE ASCII CODE

When a key is pressed on a computer terminal, a unique signal is sent to the
computer. There are several, very different ways of electronically encoding
this signal. ASCII, which stands for American Standard Code for Informa-
tion Interchange, is the most commonly used code. Appendix A gives the
128 ASCII characters with the corresponding values expressed in decimal,
hexadecimal, octal, and binary. EBCDIC, which is used by IBM, is another
coding technique.
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The ASCII table can be divided into four parts. Part 1 of the table
contains the nonprinting control characters. Part 2 contains most of the
special characters such as $, %, and #, and the digits 0-9. The uppercase
letters are found in part 3, and the lowercase letters are found in part 4.

Computer terminals typically have a keyboard that looks like a type-
writer. There is a shift key to change from lowercase letters to uppercase
letters. In addition to the shift key, there will usually be a control key. This
key will give the letter keys a third meaning. Thus the user can enter a
lowercase letter A, an uppercase letter A (a shift A), or a control-A. The bit
patterns are:

110 0001 lowercase A
100 0001 uppercase A
000 0001 control-A

It can be seen from the pattern that the shift key resets bit 5 while the con-
trol key resets both bits 5 and 6.

Some of the commonly used control functions such as the carriage »
return (control-M), line feed (control-J), the horizontal tab (control-I), and :
the backspace (control-H) may have their own separate keys.

All console input to the computer will be in the form of ASCII char-
acters. The console will send eight data bits for each character. But the
ASCII code contains only seven bits per character. Consequently, the eighth,
high-order bit is not needed. The user will need to have routines for convert-
ing strings of ASCII characters into the ultimate numbers that will reside in
memory. For example, if the operator enters the string

3014
from the console, the computer would actually receive the bit patterns

011 0111 (ASCII 3)
011 0000 (ASCII 0)
011 0001 (ASCII1)
011 0100 (ASCII 4)

The next step is to convert the string into a 16-bit number. The conversion
scheme that is chosen depends on whether the string represents a decimal
number, an octal number, or a hexadecimal number.

Additionally, a check is made to ensure that each character in the strmg
is within the proper range. For example, octal numbers must contain only
the digits zero through 7. The digits 8 and 9, the letters A through Z, and the
other characters are not used. Finally, we may need a special character,
called a delimiter, to indicate the end of a string. We will use a space ora
carriage return for this purpose. Thus the string of characters

1034 2347
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will be interpreted as two separate numbers since a space appears in the
middle.

- The ASCII string may need to be converted into a 4-bit nibble, an 8-bit
byte destined for a CPU register, or a 16-bit word meant for a double register.
Furthermore, the format may be either free entry or fixed entry. The choice
is a matter of personal taste. With free entry, leading zeros are not needed.
The entries :

0004
004
04

4

are all interpreted as the same number. An additional feature is that you can

- recover from an error by retyping the entry on the same line. Suppose that
the 4-digit number 1035 is desired but 1045 was typed by mistake. The
correct value can be immediately typed without a space.

10351045
If two 4-digit numbers are needed, they must be separated by a delimiter.
1045 1055

With the fixed-entry format, the required number of digits, including leading
zeros, must be entered. But since an end-of-string indicator is not needed,
two numbers can be run together. The fixed-entry expression

10451055

will be interpreted as two separate numbers..

CONVERSION OF ASCII-ENCODED BINARY CHARACTERS
TO AN 8-BIT BINARY NUMBER IN REGISTER C

One of the simplest base-conversion routines is the ASCII-to-binary pro-
gram. This program takes a string of ASCII-encoded ones and zeros from the
console input buffer and produces an 8-bit binary number in register C. The
hexadecimal equivalent of the nimber is printed on the console. If the
operator types the string

10101100

the keyboard actually transmits the following sequence.
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011 0001
011 0000
011 0001
011 0000
011 0001
011 0001
011 0000
011 0000

The conversion routine will take this combination, convert it to the binary
number

10101100

and place it into the C register.

Type the routine shown in Listing 8.1 Set the assembly locatlon some-
where below the monitor’s stack and include the address of the monitor
using the EQU directive. The monitor I/O routines are defined relative to
the monitor’s address.

Listing 8.1, ASCII-encoded binarg to binare in C.

THIS FROGRAM IS DESIGNEID' TO OFERATE
WITH THE SYSTEM MONITOR AT 5800 HEX.

s
H
§
§
y
A

JaN 295 80
»
35000 ORG S000H
?
5800 = MONIT EQU S800H
49806 = ouTT EQU MONITH+6
S80C = INFLN EQU MONIT+OCH
G80F = GETCH EQU MONITHOFH
812 = OUTHX EQU MONITH12H
¥
5000 3EOD START: MVI Ay ODH sCARR RET
$002 Cnosss CALL ouTT
5005 3EO0A MVI ArOAH §LINE FEED
5007 Cnoséss CaLL ouTT
S500A CDOCSS8 calLL INFLN sGET A LINE
500D CRIR30 CALL BRRIN § CONVERT
5010 Cp1258 CAaLL OUTHX JHEX VALUE
5013 3E20 MVI As’ 7
50135 CDOsS8 CaLL ouTT
§
5 THE NEXT INSTRUCTION IS NEEDED WHEN
5 THE ROUTINE IN LISTING 8.9 IS8 AFFENDED
§ caLlL BRITS FRIN TO ASCII
5018 C30050 JMF START SNEXT VALUE

SUBROUTINE TO CONVERT UF TO 8 ASCII-
ENCODED BRINARY CHARACTERS INTO AN
8~-BIT BINARY NUMBER IN C

e ar sar @r >
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S01R ES EBIN? FUSH
S01C 210000 LXI
S501F CDOFS8 ERINZ: CaALL
H022 DA3ASO Je
5025 D630 SUI
5027 DA3S50 JC
G024 FEO2 CFI
S02C D23INGS0 JNC
S02F 29 DAD
5030 RS ORA
5031 &F MoV
5032 C31F50 JMF
: 14

i CHECK FOR

H
9035 FEFO EBIN4: CPI
5037 C23n50 JNZ
503A 4D BRIN3Z: MOV
503k E1 FOF
S03C C9 RET

?

i PRINT

¥
~G03D Ci ERROR: FOF
S503E C1 FOF
503F 3E3F MVI
5041 CDO&S8 CaLL
5044 300350 JMF

Assemble the program and load it into memory; start it up by branch-
ing to the beginning of the program, the address of START. The monitor
prompt symbol of > will appear on the console. Test the routine by entering
the following binary numbers. Be sure to add a carriage return to the end of

each line.

>0
00
>1
01
*10
02
»11
03
>101
05
>1111
OF
*11110000
FoO
+*10101010
. AA

(gou ture this)

Of course, only ASCII zeros and ones are acceptable binary characters.
Leading zeros are not necessary. If more than eight characters are entered,
only the last eight are used. A question mark will be printed if a nonbinary

H

HsO
GETCH
ERIN3
/o/
ERIN4
-

ERROR
H

L

LsA
REINZ

RLANK

AT END

$BAVE REGS
sCLEAR

$GET CHAR

SLINE END

sCONV TO BINARY
o0

Foxd
$SHIFT LEFT
sAND NEW CHAR

FNEXT

(7 “-70’) AND OFFH

ERROR
CyL
H

E
B
Ay’ P
ouTT
START

(prodram resronds with this)

(binary 10 is hexadecimal 2)

(binary 101 is hexadecimal 5)

$NOT BLANK
8 BITS TO C
s RESTORE

T ON IMFROFER INFUT

$RAISE STACK

s TRY AGAIN
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character is typed. Typing errors can be corrected with a backspace or
DEL keys. \

The program consists of three parts. The first and third parts will be
common to other conversion programs in this chapter. The first part calls
the monitor to obtain data from the console. The last part converts the data
to the hexadecimal equivalent and prints it on the console if valid. If the
entry is invalid, a question mark is printed.

The conversion routine occupies the middle portion of the program. It
works as follows: Since HL is used as a working register, the origihal con-
tents are first saved on the stack. While this step is not necessary in this case,
it may be needed in a real application. The HL register is then zeroed.

As each new character is obtained from the input buffer, it is converted
from ASCII to binary by subtracting 30 hex, the value of the ASCII zero.
An ASCII zero, which has a value 30 hex, becomes a binary zero. Similarly,
an ASCII 1, which has a value of 31 hex, becomes a binary 1.

011 0000 ABCII =zero
011 0000 subtract ASCII =ero

000 0000 binary zero

011 0001 ASCIT 1
011 0000 subtract ASCII zero

000 0001 binarwy 1

A check is made at this point to ensure that an invalid character has not
been typed. Only three characters are acceptable: An ASCII zero, an ASCII
1, and a space. If the carry flag is set after the subtraction of an ASCII zero,
then the input value was neither a zero nor a 1. But it might be a space
character. A jump is made to subroutine BBIN4 in this case. This routine
determines whether the current character is a space or some other character.
A space is the normal end-of-string character (delimiter); other characters
are not.

Each character is also checked to see that it is not greater than an
ASCII 1. In either case, if any character in the string is found to be other
than an ASCII zero or 1, then the subroutine is terminated with a jump to
the error routine. At this point, the stack is raised with a POP instruction,
and control returns to START at the top of the program.

If the input value is a zero or 1, the procedure continues. The current
value in the HL register is multiplied by two, the binary number base. This
arithmetic shift left is accomplished by adding the HL register to itself with
the double-precision add DAD H. An alternate method would be to place
the sum in the accumulator. In this case the multiplication is performed with
an ADD A instruction. But then the intermediate sum would have to be
saved in another register while the new character was checked.

The new character, which is now a binary zero or 1 in the accumulator,
is added to the value in HL. The addition of the 8-bit accumulator to the
16-bit HL register generally requires several steps.
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1. Add Lto A.

2. Move sum in A to L.
3. Increment H if carry is set.

But in this particular case, the carry flag will never be set. Consequently, a
simpler method of addition can be used. The one chosen for this application
is to perform a logical OR operation with the L register and the accumulator.

We frequently find it useful to input computer data in the form of decimal
numbers. We may then need a program to convert ASCII-encoded decimal
numbers into binary form. The program given in Listing 8.2 will perform

CONVERSION OF ASCII DECIMAL CHARACTERS
TO A BINARY NUMBER

this task for us.

Listing 8.2, ASCII decimal to binarw in HL.

5000

5800
5806
580C
S80F

5812

5000
5002
50085
w007
S00A
S00D
5010
5011
5014
5018
5018
G014

501D

5020

S021

o

HonoH

JEOD
Crnosess
JEO0A
Chos58
cnocss
Ch2050
4C
Crnizss
4D
Cni2ss
3E20
Cnosss

£30050

ns
210000

JAN 225 80
ORG 5000H
§

MONIT EQU
ouTT EQU
INFLN EQU

GETCH EQU
DUTHX EQU

¢

8TART? MVI
CALL
MVI
.CALL
CaLlL
caLL
MOV
CALL
MOV
caLL
MVI
CALL

“r ar ar er

CaLL
JHF

=20 T DI Y

BING FUSH
LXI

THIS FROGRAM IS DESIGNED TO OFERATE
WITH THE SYSTEM MONITOR AT 5800 HEX

S800H
MONIT+é
MONITH+OCH
MONITH+OFH
MONITH12H

Ay ODH sCARR RET
ouTT

As OAH FLINE FEED
ouTT

INFLN PGET A LINE

DEIN PASCII TO DEC
CrH FHIGH HALF
OUTHX

Cel

OUTHX  5LOW HALF
Ar’ §SPACE
ouTT

THE NEXT INSTRUCTION IS NEEDED WHEN
THE ROUTINE IN LISTING 8.11 IS USED

RIND FRIN/DECIMAL
START FNEXT VALUE

ASCII DECIMAL TO 16-BIT IN Hsl

D i SAVE REGS
Hs O sCLEAR
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5024
5027
G024
502C
S02F
G031
5034
5035
5036
5037
5038
5039
S03A
03k
5030
B03E

54
Sh
29
29
19
29
SF

19

5041
5043
5046
5047

ni
ce

5048
5049
3044
504C
S04F

El
E1

CDOFS58
DA4650
N630
DA4150
FEOA
D248350

FEFO
24850

DRINZS

1600

C32450

FRINT

RROR?

JE3F
Cno&ss8
C30050

CALL
Jc
SUI
Jc
CrI
JNC
MoV
MOV
DAL
DAL
DAD
nan
MOV
MVI
DaDR
JMFP

. FOR

CFI
JNZ
FOF
RET

7 ON

FOF
FOF
MVI
caLL
JMF

GETCH
DERIN3
IOI
DBRIN4
10
ERROR
Do H
EvsL

H

H

n

H

EsA
Iy 0

i
DRINZ

RLANK AT END

(7 “~70’) AND

ERROR
D

IMFROFER

H
H
Ay P’
ouTT
START

$GET CHAR

SLINE END

SCONV TO RINARY
510

i o= 10
sCOPY HslL
5 INTO DyE
sTIMES 2

s TIMES 4
sTIMES O
sTIMES 10
§NEW RYTE
$AND NEW BRYTE
FNEXT

OFFH
FNOT BLANK
$RESTORE

INFUT

FRESTORE
§STACK

§TRY AGAIN

This new program uses our monitor for some of the necessary sub-
routines, just like the ASCII binary-to-binary program given in the previous
section. Assemble the program, load it into memory, and branch to START.
Again, the monitor prompt symbol > will appear. Try this routine by
entering the following decimal numbers. Remember to type a carriage
return at the end of each line.

>0
0000
1
0001
*10

0A

=16
000F
64
0100
1024
0400
»65545
FFFF
»65547
0002

(wou ture this)

(comruter resronse)

(decimal 10)
(gives 0A hex)
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If the input consists of valid decimal characters, then the response will be
the corresponding hexadecimal value. If an invalid character is typed, a
question mark is printed as an error message and the program is restarted.

Since this routine generates a 16-bit binary number, the largest possible
value is one less than 2 to the power 16. This is equivalent to a decimal
‘number of 65,545. If a larger number than this is entered, the excess over
65,545 is lost. Thus, an input of 65547 will give a value of 0002. Remember
that the monitor error-correction features and the control-P list toggle are
available.

The algorithm is similar to the one in the previous section. The HL
register pair is initially zeroed. The incoming character is converted from
ASCII to binary, then checked to see that it is in the range 0-9. The current
value is multiplied by 10 (the number base) prior to adding in the new
character. The multiplication is accomplished with the double-register add
instructions as follows.

MOV DyH (durlicate H in D)
MoV EsL (durlicate E in L)

DAD H (double initial value)
DAL H (quadrurle it)

DAL n (5 times initial value)
nan H (doubles making 10 times

the initial value)

The total is first duplicated in the DE register. Two double-precision DAD H
operations multiply the original value by 4. Adding in the original value with
the DAD D makes it 5. A final DAD H produces the desired multiplication
by 10.

If only an 8-bit binary number is needed, then the multiplication can
be performed in the accumulator rather than in the HL register. This will
free the HL register for some other use, such as a memory pointer. The 8-bit
version is given in Listing 8.3

Listing 8.3, ASCII decimsl to binarw in C
3 THIS FPROGRAM IS DESIGNED TO OFERATE
WITH THE SYSTEM MONITOR AT 5800 HEX

a
?
a
¥
s
7
&

JAN 12, 80

¥
5000 ORG S000H

§
5800 = MONIT EQU S800H
U806 = ouTT EQU MONIT+6
a8o0c = INPLN EQU MONITHOCH
G80OF = GETCH EQU MONIT+OFH
a9812 = OUTHX EQU MONIT+12H

§
5000 3EOD START: MVI Ay ODH sCARR RET
5002 CnO658 CALL OUTT
5003 3EO0A MVI Ay OAH sLINE FEED

2007 Chos658 caLt ouTT
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S500A CROCSS CAaLL INFLN SGET A LINE
S00D0 CR1650 calL DRIN §DEC TO RIN
5010 CD1258 CALL OUTHX FHEX

.5013 C30030 JMF START

CONVERT ASCII-DECIMAL TO 8-RIT RINARY

ar e ar

5016 OEOQO DERINS MVI Cr0 sCLEAR C
5018 CLHOFSs DRINZ2: CaALL GETCH $GET CHAR
S501p 18 RC FLINE END
501C D630 SUIx ‘0 FCONV TO BINARY
S01E DA3250 JC IRING RO ¢

5021 FEOA CrIX 10

S5023 N23850 JNC ERROR §o» 10
5026 57 MOV Ity A FSAVE NEW
5027 79 MOV Al F5UM

5028 87 AL A sTIMES 2
S029 4F MoV CyA $ SAVE

5026 87 ADD A sTIMES 4
S02B 87 AL A sTIMES 8
S502C 81 Al C sTIMES 10
5020 82 ADD n sCOMBINE
SO2E 4F MoV CrA $SAVE IN C
S02F £31850 JHF DRIN2 FNEXT

H
i CHECK FOR BLANK AT END
§

5032 FEFO DEIN4: CFI (/ *~70’) AND OFFH
5034 C23850 JNZ ERROR  NOT BLANK
5037 C9 RET
i FRINT ? ON IMFROFER INFUT
;
5038 F1 ERROR: FOF FSW $RESTORE
5039 3E3F MUT Ay
503K CDO&58 CALL ouTT
503E €30050 NI START  §TRY AGAIN
;
5041 ENI

CONVERSION OF ASCII HEXADECIMAL CHARACTERS
TO A 16-BIT BINARY NUMBER IN HL

The development of a routine to convert a string of ASCII-encoded hexa-
decimal characters into a 16-bit binary number will now be considered. This
is the routine most frequently used in a system monitor. In fact, this was one
of the first routines to be incorporated into our system monitor. Somewhere
along the way there will have to be a multiplication by 16, since this is the
base of the hexadecimal number. The multiplication can be easily performed
by shifting the results left by four bits. Shifting left one bit is equivalent to
multiplying by 2. Consequently, shifting by two bits performs a multiplica-
tion by 4.

For the binary routine we considered first, only the characters 1 and
zero were valid. In the decimal routine that followed, the range of valid
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input was zero to 9. The hexadecimal routine we will now consider is com-
plicated by the fact that both the digits 0-9 and the letters A-F are valid.

Two separate algorithms will be considered; one produces an 8-bit
result, the other gives a 16-bit result. The program given in Listing 8.4 is
‘similar to the previous ones. It will convert a string of ASCII-encoded hex
characters into a 16-bit binary number in the H,L register pair. The double-
precision add, DAD H, is used four times to perform the multiplication
by 16.

lListing 8.4, ASCII hex to bhinarw in HL.

THIS FROGRAM IS DESIGNED TO OFERATE
WITH THE SYSTEM MONITOR AT 5800 HEX

a
4
s
¥
a
¥
a
¢
a
14

JAN 18, 80
5000 ORG 5000H
?
9800 = MONIT EQU 5800H
5806 = ouTT EQU MONITHé
580C = INPLN EQU MONIT+OCH
S80F = GETCH EQU MONIT+HOFH
812 = QUTHX EQU MONIT+12H
2
G000 3EOD START: MVI Ay OIH FCARR RET
S002 CnOss58 calLl ouTT
G005 3E0A MUI Ay OAH sLINE FEED
3007 CDO&S8 CcaLl ouTT
S00A CDOCSS caLl INFLN SGET A LINE
00D CD2150 caLL READHL  $CONVERT
3010 4C Mov CsH
5011 CD1258 caLL OUTHX SHIGH HALF
5014 4D MOV CsL
3015 Cp1238 CALL OUTHX FLOW HALF
5018 3E20 MVI As’ s SFACE
G01A CROKEB CALL ouTT
Soin 7¢ MOV AvH PHIGH BYTE
14
# THE NEXT INSTRUCTION IS NEEDED
# WHEN LISTING 8.10 IS AFPENDED
¥ CALL. RECS $H IN DECIMAL
©901E C30050 JMF START SNEXT VaLUE
¥
5 READ UF TO 4 ASCII HEX DIGITS FROM
i CONSOLE ANDI CONVERT TO 16~BIT
i BINARY NUMBER IN H»L
¥
G021 210000 READHL ¢ LXI Hs 0 s CLEAR
5024 CDOFS8 RIOHL2:  CALL GETCH GET CHAR
5027 D8 RC FLINE END
5028 CD3ESO CALL NIE $TO BINARY
S02E DA3750 .Jde RIOHL 4 sNOT HEX
S502E 29 nap H sTIMES 2
S02F 29 DAL H sTIMES 4
9030 29 nAan H s TIMES 8

5031 29 DAD H FTIMES 16
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5032
5033
35034

5037
5039
5034
503k

S03E
5040
5041
5043
95044
5045
5047
5048
5049
G04R

$504C
S04E
5051

Each

mark.

K5 ORA L iNEW CHAR'
&F MOV LvyA
C32450 JMF ROHL2 §NEXT
5 CHECK FOR BLANK AT END
y
FEFO RIOHL4Y CFPI (7 *=70’) ANI OFFH
co KNZ
E1l FOF H $RAISE STACK
34050 JHF ERROR
¥
5 CONVERT ASCII CHARACTERS TO RINARY
¥
630 NIES sUI 07 FASCIT RIAS
it} RC iow 0
FEL17 CrI 0741
3F CMC § INVERT
8 RC SERRORy = F
FEOA CFI 10
3F cHe 5 INVERT
0o RNC . SNUMEER 0-9
0607 SUI SR AR | .
cy RET SLETTER A—F
?
§ PRINT % ON IMPROFER INFUT
?
3E3F ERRORS MVI Ay T
Cnos658 CALL ouTT
C30050 JHF START FTRY AGAIN

ASCII character is converted to binary in subroutine NIB. This
routine subtracts an ASCII zero, then checks to see that the character is
valid. If it was originally in the range of an ASCII zero to ASCII 9, it will
now be converted to the binary number 0-9. If a hex character A-F was
entered, it will be converted to binary form by the additional subtraction of
7. Of course, nonhex characters will produce the error message of a question

Assemble the program, load it into memory, and start it up. Type the
following series of hex numbers. /

1
0001
>10
0010
A
0004
*FFFF
FFFF
>1234
2345

5

(only last 4 characters

used)

As with the other programs, leading zeros are not needed. If more than four
characters are input, only the last four are used. Return to the monitor with
a control-X.
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CONVERSION OF TWO ASCII HEXADECIMAL CHARACTERS
TO AN 8-BIT BINARY NUMBER IN REGISTER C

In the previous section, HL was used to convert hex characters into a binary
number. But, if the HL register pair is needed as a memory pointer, then the
accumulator can be used for this conversion. In this case, however, only an
8-bit binary number is produced. Listing 8.5 gives this version. Since the
routine uses a fixed format, exactly two characters must be typed. This
means that leading zeros must be entered.

Listing 8.5, ASCII hex to 8-bit binarg C.

5 THIS PROGRAM IS DESIGNED TO OFERATE
# WITH THE SYSTEM MONITOR AT 5800 HEX

H
i JAN 225 80
. $
5000 ORG S000H
b
5800 = MONIT EQU 5800H
5806 = ouTT EQU MONITH6
580C = INPLN EQU MONITHOCH
580F = GETCH EQU MONITHOFH
H
§ REMOVE NEXT LINE WHEN LISTING 8.12 ADDED
FOUTHX EQU MONITHi2H
§
5000 3EOD START: MVI Ay ODH sCARR RET
5002 CRO&S8 caLbL ouTT
5005 3E0A HVI As OAH sLINE FEED
5007 CDO&S8 Cal b ouTT
3004 CBOCS8 calL INPLN sGET A LINE
S00D CD1650 CAaLL RDHEX FASCII TO HEX
5010 CD4350 CALL OUTHX sBIN TO HEX
5013 C30050 N, START

CONVERT 2 ASCII-HEX CHARACTERS TO
AN 8-BIT BINARY NUMBER IN C

T e w9 er

5016 CD2450 DHEX?: CaLL HEX2 SLEFT CHAR
5019 87 ADD A FTIMES 2
5014 87 ADD [ FTIMES 4
S501B 87 ADD A FTIMES 8
501C 87 ‘ ADD A STIMES 16
501D 4F MOV Crar $ SAVE

D01E CD2450 CAaLL HEX2 FRIGHT CHAR
5021 B1 ORA C s COMBINE
5022 4F MOV CrA

5023 C9 RET

5024 CDROFS8 CaLL GETCH FHEX CHAR

CONVERT ASCII CHARACTERS TO RINARY

ar 9 e L ‘ap
m
x
N
L2 d
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5027 630 5UI ‘0 $ASCII EBIAS
5029 DA3PS0 JC ERROR 500

302C FE17 CFI ‘F/'=’0'+1

S02E D23950 JNC ERROR $ERROR» > F
5031 FEOA CFI 10

5033 I8 RC s NUMBER 0-9
5034 D607 SuUI A9

5036 FEOA CPI 10

5038 DO RNC SLETTER A-F

-

5 FRINT 7 ON IMPROPER INPUT

a

9039 F1 ERROR: FOF FSW $RAISE STACK
503a F1 FOFP FSY

S03B 3E3F MVI As "T’

503D CDO6S8 CaLL ouTT

5040 C30050 JHF START sTRY AGAIN

The multiplication by 16 is performed in the accumulator by using four
ADD A instructions. The ADD A instruction is equivalent to an arithmetic
shift left. Data is moved from the lower four bits to the upper four, and {ills
the lower bits with zero.

Assemble the program shown in the listing, load it into memory, and
try it out. Remember, for this version, exactly two hex characters must be
entered.

*01
01
10
i0
>0A
0A
*12
i2

If everything is all right, return to the monitor with a control-X.

CONVERSION OF ASCII OCTAL CHARACTERS
TO A 16-BIT BINARY NUMBER IN REGISTER HL

We did not use octal operations in the system monitor developed in Chapter
6, yet they can be very useful in trying to understand 8080 assembly lan-
guage instructions. From the 8080 instruction set in Appendix D, it can be
seen that the registers are assigned values as shown in the following table.
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register value

emory

SO UL WNHEO
PECOTIEHOOW

Thus the register-move operations are obvious from the octal representation,
but not from the hex or decimal form.

octal hex decimal oreration
iol 41 65 MOV  BsC
123 53 83 MOV  TDiyE
147 77 119 MOV MsA

While octal numbers appear to be better than hexadecimal for express-
ing the 8080 operation codes, they leave something to be desired as memory
pointers. The problem is that 16-bit addresses must be considered as two
8-bit bytes. But octal numbers represent groupings of three bits, and 8 is not
evenly divisible by 3. An address of FFFF hex is equivalent to 177777 octal.
But if this address is stored in two consecutive bytes, each byte will contain
FF hex or 377 octal. This peculiarity of octal has given rise to the expres-
sion ‘“‘crazy octal.” A value of FFFF hex is 377:377 crazy octal.

hex octal crazw octal'
FF 377 000:377
FFF 7777 0172:377
7FFF 77777 177377

FFFF 177777 377:377

Assemble the program, load it into memory, and try it out. The octal
numbers input to this routine can be in the range of 0 to 177777. Try
various octal numbers.

>0

0000
»10
0008
»20
0010
177
007F
»377
O0FF
>400
0100
»123436
A72E
>200000 (too big)
0000
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Listing 8.6 ASCII octal to binary in HL.

5000

5800
59806
580C
S580F
5812

5000
5002
5005
S007
S00A
500D
5010
5011
5014
5015
5018
5014

501D

5020
5021
5024
5027
5024
S502C
S02F
9031
5034
5035
5036
5037
5038
5034
S03R

onuun

3EOD
Cnosese
3E0A
Cnoss8
cnocss
CD2050
4C
Cniz2s8
4D
Cni258
3E20
CDo658

€30050

ns
210000
CDOF58
DA4350
D630
DA3ESO
FEO8
D24550
29

29

29

SF
1600
19
£32450

FEFO
C24550
ni

ce

ar @y w@r er ap

Q
Pl
7]

a

9
MONIT
ouTT
INFLN
GETCH
OUTHX

9
START?

| wr e a9

INFUT

ar @ e

RIDOCT

OBINZ:

§
$ CHECK
§

OBRIN4S

ORIN3S

a
y

THIS FROGRAM IS DESIGNED TO OFERATE
WITH THE SYSTEM MONITOR AT 5800 HEX

JAaN 22579

S000H

EQU S800H

EQU MONIT+é

EQU MONIT+OCH

EQU MONIT+OFH

EQU MONIT+12H

MY AsOIH  $CARR RET
CALL  OUTT

MVI Ay 0AH sLINE FEED
CALL ouTT '

cAaLL INPLN FGET A LINE
caLL RDOCT 50CT TO BIN

MoV CsH $HIGH HALF
calLL OUTHX s BIN-HEX
Mov CsL sLOW HALF
caLL OUTHX § BRIN-HEX
MVI Ay’ 7 § SFACE

CaLL ouTT

THE NEXT INSTRUCTION IS NEEDED WHEN
THE ROUTINE IN LISTING 8.13 IS USED

caLL OUTOCT FRIN-OCT
JHFP START FNEXT VALUE

HyL FROM CONSOLE

FUSH n §SAVE REGS
LXI Hs 0O $CLEAR
CALL GETCH $GET CHAR
JC OBIN3 sLINE END
SuUI ‘0’ $TO RINARY
JC ORIN4 5 40

CFI 8

JNC ERROR 3 > 8

DAL H sTIMES 2
DAL H sTIMES 4
nan H STIMES 8
Mov Esh SNEW BYTE
MVI >0 .
paD I FAND NEW BYTE
JMP ORINZ FNEXT

FOR BLANK AT END

CFI ¢’/ =’0’) AND OFFH
JNZ ERROR #NOT BLANK
FOF D $RESTORE
RET
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FRINT ? ON IMFROFER INFUT

9045 E1 ERROR: FOF H SRAISE STACK

9046 E1 FOP H

5047 3E3F MVUI As '’

3049 CRO458 caLL ouTT

504C C30050 JMF START s TRY AGAIN

This routine will convert a string of ASCII-encoded octal characters
into a 16-bit binary number in the HL register pair. The current value in the
- HL register pair is multiplied by 8 (the number base) by performing three
DAD H instructions. The new byte is converted from ASCII to binary by
subtracting an ASCII zero. It is checked at this time to ensure that it is in
the proper octal range of 0 to 7. The addition of the new digit to the present
value is more complicated than it was for the binary or hex routines. The
problem is that there can be a carry out from the low-order byte. For this
reason, the new byte is placed into the DE register pair, then combined with
the value in HL by using the double-precision DAD D instruction.

CONVERSION OF THREE ASCII OCTAL CHARACTERS
TO AN 8-BIT BINARY NUMBER IN REGISTER C

The routine given in Listing 8.7 will convert exactly three ASCII-encoded
octal characters into an 8-bit octal number in register C. The routine is pro-
grammed for fixed-format input; therefore, exactly three characters must be
given. Assemble the program, load it into memory, and start it up. Type in
the following octal numbers, including the leading zeros.

*000
00
010
08
*020
10
177
7F
»377
FF

Since the largest 8-bit number is 255 decimal or 377 octal, the first digit
must be in the range 0-3. The remaining two digits must be in the range 0-17.
A check is made to ensure that the characters are in the proper range. The
first ASCII character in the input string is converted to binary by subtracting
an ASCII zero. The result is multiplied by 8 with three ADD A instructions
and the result is saved in the C register. The next character is converted to
binary and added to the first with the ORA C instruction. The new sum is
multiplied by 8 again with three ADD A instructions, then saved in the C
register. Finally, the third character is converted to binary and added in. The
final result is moved to the C register.
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Listing 8.7. ASCII octal 8-bit binary in C.
IF THREE DIGITSs LEFT ONE MUST RE <4

THIS PROGRAM IS DESIGNED TO OFERATE
WITH THE SYSTEM MONITOR AT S800 HEX

JAN 225 80

.
H
§
H
.
?
R
t
§
.
5

0
N

$5000 RG SO000H
14
5800 = MONIT EQU S800H
5806 = ouTT EQuU MONITH+6
580C = INPLN EQU MONITHOCH
S8OF = GETCH EQu MONIT+OFH
w812 = OUTHX EQU MONIT+12H
$
5000 3EOD START: MVI AsODH sCARR RET
3002 CRoss8 CaLL ouTT
G005 3EO0A MVI AsOAH sLINE FEED
3007 CRO658 cAaLL ouTT
500A CDOLCSS caLL INFLN SGET A LINE
500D CD1BS0 CALL ocTe $0CT/RBIN
5010 CD1258 caLl OUTHX SPRINT HEX
3013 3E20 MVI As’ ¢ F BLANK
30135 CDos58 CAaLL ouTT
b4
5 THE NEXT INSTRUCTION IS NEEDED WHEN
5§ THE ROUTINE IN LISTING 8,14 IS USED
§ CALL acT FBIN TO ASCII
3018 C30050 JHF START SNEXT VALUE

CONVERT ASCII-ENCODED OCTAL
TO 8-BIT RINARY NUMBER IN C

3 e wr a o

S501B CD3550 cT8¢ CaLL OCTIN #15T CHAR

S01E FEO4 CFI 4 sFIRST
S020 D24750 JNC ERROR sTOO LARGE
3023 87 ADD A sTIMES 2
5024 87 ADD A sTIMES 4
5025 87 ADD A sTIMES 8
0026 4F MOV CrA FSAVE ERYTE
5027 CD3350 CALL OCTIN §2NDIN CHAR
S502A R1 ORA c s COMBINE
S502B 87 ADD A sTIMES 2
S02C 87 ADD A iTIMES 4
5020 87 ADD A sTIMES 8
S02E 4F MOV Csa

J02F Ch3350 caLL OCTIN $ 3RD CHAR
5032 B1 ORA Cc $ COMEINE
S033 4F MOV CrA $SAVE IN C
9034 C9 RET

§

# CONVERT INFUT CHARACTER 0-7 TO RINARY
§ .

5035 CDOFS8 OCTIN: CALL GETCH

5038 DA4650 JC ERR2 $NO CHAR

S03B D630 SUI ‘0 FASCII RIAS

3030 DA46S0 Je ERR2 s TOO sMALL
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5040 FEO8 CPI 8
5042 D24650 JNC ERR2 $TOO LARGE
5045 C9 RET

PRINT ? ON IMPROPER INFUT

ar a er

5046 Ct . ERR2¢ POF R SRAISE STACK
5047 C1 ERRORS FOF B

5048 3E3F MVI Ay P’

5044 CDO658 cALL ouTT

5040 C30050 JMP START sTRY AGAIN

CONVERSION OF TWO ASCII BCD DIGITS
TO AN 8-BIT BINARY NUMBER IN REGISTER C

The binary coded decimal (BCD) notation was introduced in Chapter 2. This
method of encoding is less efficient than the binary notation. It takes more
memory space to encode numbers, and mathematical operations can be
considerably slower. The BCD notation, however, has two advantages. One
is that conversion from decimal to BCD is simpler than conversion from
decimal to binary. The second advantage is freedom from round-off error.

The conversion routine given in Listing 8.8 accepts exactly two ASCII-
encoded decimal digits and converts them into an. 8-bit BCD number in the
C register. The routine can be repeatedly called to convert numbers with-
more than two characters.

Listing 8.8. ASCII hex to BCD in C.

THIS FROGRAM IS DESIGNED TO OFERATE
WITH THE SYSTEM MONITOR AT 5800 HEX

“ar @r @ Gr 6o

JAN 13, 80
5000 ORG 5000H
‘ ¢
5800 = MONIT EQU S800H
5806 = ouTT EQU MONIT+Hé
580C = INFLN EQu MONIT+OCH
S80F = GETCH EQU MONIT+HOFH
5812 = - OUTHX EQU MONITH12H
?
5000 3EOD START: MVI AsOIH $CARR RET
5002 CROLSE - CALL ouTT
5005 3EOA MVI ArOAH FLINE FEED
5007 CLO65H CALL DUTT
5004 CDOCSHSH CaLL INFLN fGET A LINE
500D CD2050 RDHL2: CALL HEX2 FLEFT CHAR
5010 87 ALD A sTIMES 2
5011 87 ADD A sTIMES 4
5012 87 ALl A FTIMES 8
5013 87 AL A s TIMES 16

5014 4F » MOV CshA § SAVE
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9015 CR2050 CALL HEX2 FRIGHT CHAR
3018 R1 ORA C FCOMBINE
3019 4F MOV CrA

S01A CD1258 CaLL OUTHX FFRINT

301D €30050 JMF START FNEXT

G020 CDOFS8 EX23 CaLL GETCH sHEX CHAR

?

H

#

# CONVERT ASCII CHARACTERS TO RINARY
5

N

5023 630 Ip: SUI ‘07 JASCII RIAS
5025 DAZRSO JC ERROR P 0

5028 FEOA CFI 10

5024 I8 RC FNUMBRER 0-9

FRINT 7 ON IMFROFER INFUT

.
$
.
$
$
E

S02R 3E3F RROR? MVI Ay ‘77

G020 CDO6SH CaLL ouTT

G030 £30050 JMF START s TRY AGAIN
§

G033 END

With the BCD notation, there is a 2:1 correspondence between the
number of BCD digits and the necessary number of bytes. Or, put another
way, two decimal digits are stored in each byte. This arrangement is some-
times called packed decimal. The right decimal digit is encoded in the low-
order four bits and the left digit is encoded into the high-order four bits.

38 0011 1000
27 0010 0111
59 0101 1001

BCD encoding involves essentially the same steps as does the hex-to-binary
routine, except that only the characters 0 through 9 are allowed. The bit
patterns corresponding to the hexadecimal numbers A through F are not
allowed.

CONVERSION OF AN 8-BIT BINARY NUMBER IN C
TO A STRING OF EIGHT ASCII BINARY CHARACTERS

In the first part of this chapter we developed programs to convert strings of
ASCll-encoded characters into binary numbers. The programs in the follow-
ing sections will perform the reverse operation. Binary numbers will be
converted into strings of ASCII-encoded characters. Furthermore, we will
combine the new routines with those already developed so that they may be
more easily tested.

The program shown in Listing 8.9 can be used to convert an 8-bit
binary number in register C into eight ASCII-encoded binary characters. The
resulting characters are sent to the console in this case, but they could be
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placed into sequential memory locations instead. This routine is incorpo-
rated into the system monitor developed in Chapters 6 and 7.

Listing 8.9 EBinary in C to ASCII binary,

THIS FROGRAM IS DESIGNED TO RUN WITH
THE SYSTEM MONITOR AND WITH THE
PROGRAM SHOWN IN LISTING 8.1

FRINT AN 8~EIT EINARY NUMBER IN C AS
8 ASCII-ENCODED BITS

Gr %er WP W wr @r G

5044 0608 RITS: MVI Ey8 8 RITS
504C 79 RITZ: MoV AyC FGET EBYTE
5040 87 Al A iSET CARRY
S504E 4F MOV CrA §FUT RACK
504F 3E18 MVI Ay '07/2 FHALF OF O
- 5051 8F AlC A F DOURLE+CARRY
HOG2 ChO458 CALL ouTT §ONE BIT
5055 05 DCR B s COUNT
50856 C24C50 JNZ RITZ2 38 TIMES
5089 C9 RET

§
5034 END

Make a duplicate copy of the source program shown in Listing 8.1.
This routine was used to convert ASClI-encoded binary characters into an
8-bit binary number in C. Remove the semicolon from the instruction that
reads

¥ CALL RITS FBIN TO ASCII

Also delete the END directive if you used one. Add the lines given in Listing
8.9 to the end of the program.

The new routine works in the following way. Register B is initialized
with the value of 8, the number of bits to be generated. Register C begins
with the original binary byte. The bits of this byte are shifted to the left one
at a time into the carry flag. The carry flag is then added to an ASCII zero
to produce a 0 or a 1 at'the console. For the 8080 version, the byte is moved
to the accumulator, shifted left with an add instruction, then returned to
register C.

If the current high-order bit is a zero, then the carry flag is reset and a
zero is printed. If the current high-order bit is a 1, then the carry flag is set
and a 1 is printed. The count in the B register is decremented after each
character is printed. When the count reaches zero, the process is terminated.

Notice that the addition of the carry flag to the ASCII zero could have
been accomplished with the instructions

MVI Ar Q7
ACI 0
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However, this will require four bytes. The code we will use, which is not so
obvious, requires only three bytes.

MVI Ay’0'/2
AlC A

If you have a Z-80 CPU, this routine can be simplified and shortened
by three bytes. Performing the rotation directly in the C register reduces
the program by one byte. Two additional bytes are gained by using the
decrement B, jump-not-zero operation. Now the accumulator can be zeroed
with an exclusive-or operation and the carry can be added directly to an
ASCII zero.

RITS? LD By 8 58 BITS

BRIT2? XOR A $ZERD A
sLA L SSHIFT L LEFT
ADC Ay 0 $ADD CARRY TO O
caLL ouTT $SEND
DUNZ RIT2 38 TIMES
RET

Assemble the combined program, load it into memory, and start it up.
Be sure that the monitor is in place at the address of MONIT. The new:
binary-to-ASCII binary routine has been added in addition to the original
binary to ASCII hex in the system monitor (OUTHX). Consequently, each
number will now be rendered in both hex and binary. Type in the following
binary numbers.

=0 (vou tuyre this)

00 00000000 (both hex and binary are diven)
»1

01 00000001

*101

05 00000101

*10101010

AA 10101010

11110000

FO 11110000

Remember that the error-correction features of the monitor are available. If
you inadvertently type a control-X, you will end up in the monitor itself.
You can return from the monitor to the new program, however, by typing

*BS000

if this is where you assembled the new routine.
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CONVERSION OF AN '8-BIT BINARY NUMBER
INTO THREE ASCII DECIMAL CHARACTERS

An 8-bit binary number can be converted into a string of ASCII-encoded
~decimal characters by repeated subtraction of powers of 10, the number
base. The corresponding decimal number will lie in the range of zero to 255.
The value of 100 (decimal) is repeatedly subtracted from the original binary
number until the result becomes negative. One less than the number of
subtractions is the number of hundreds in the decimal form. The result,
which in this case can only be 0, 1, or 2, is added to the value of an ASCII
zero, then sent to the console.
As an example of the 100s subtraction, consider the number 137.

137
—100 (one subtraction)

37
—100 (too many)

(negative number)

Since there was one subtraction of 100 before the number became negative,
the number is in the range 100 to 199.

The value of the last 100 is added back to make the number positive
again. Then the value of 10 is repeatedly subtracted from the new value
until a negative result is again obtained. The number of tens in the decimal
form is one smaller than the number of subtractions. This count is added to
an ASCII zero and sent to the console for the middle digit. The value of ten
is added back to the remainder. This adjusted remainder is then added to an
ASCII zero to produce the units digit. It too is sent to the console.

Continuing with the example:

(negative number)

+100 (add back last 100)
37

_—10 (first subtraction)

217
—10 (2nd subtraction)

17

_—10 (3rd subtraction)
7

—10 (too many)

(negative number)
110 (add back last 10)

T (units)

Since there were three subtractions of 10 before the remainder became
negative, the middle digit is a 3. Finally, the right digit is 7, the remainder
after the last subtraction of 10.
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Lisiting 8.10 gives the instructions for the conversion of an 8-bit binary
number in register H. Register D initially contains the value of 100 (decimal)
that is to be repeatedly subtracted from the number in H. As soon as the
result of the subtraction becomes negative, the last 100 is added back, and
the value in D is changed to a 10 by subtraction of 90. Register C is used to
count the number of subtractions. It is initialized with the value of one less
than an ASCII zero to simplify the conversion.

Listing 8,10, Bimary in A to ASCII decimal,

5057
5058
5059
505k
305D
SOSF
5060
9061
5064
5065
5066
9067
5069
S06C
a06n
S06E
506F
5072
5075
5077
5078
5074
S07R
507C
307F
5081
5084
5085
5086

5087

nG

("
1E00
1664
QE2F
oc

P2
DR2GF50
82

47

79
FE31
na27z250

Ca7750
Ch0658
1EFF
7A
[65A
57

78
n25050
Cé30
Cnosss
Ci

n

ce

2% s wr @> 9r "a» OF G @B A e

EC8:

DEC81:
DEC82:

DEC84:

DEC85:

s

FER 27, 80

FUSH
FUSH
MVI
MVI
MVI
INR
SuUr
JNC
ADD
MOV
MOV
CFI
JNC
MOV
ORA
MOV
Jz
CAaLL
MVI
MoV
SUI
MOV
MoV
JNC
AlI
CAaLL
FOF
FoF
RET

END

DECIMAL DIGITS,

I

E

EvyO
0,100
Cy 0 ~1
C

I
nECag2
D

ErA
AyC
/1!
DECB4
AsE

A

AsC
DEC8S
ouTT
EsOFFH
AsDl
20
IsA
Ay R
LECS81
/0/
QuUTT
B

n

THIS FROGRAM IS DESIGNED TO RUN WITH
THE SYSTEM MONITOR AND WITH THE
FROGRAM SHOWN IN LISTING 8.4

FRINT BINARY NUMBER IN A AS ASCII
LEADING ZEROS SUFFRESSED

FLEADING O FLAG

100 OR 10
FSTILL +

sADD RACK
FREMAINDER
FGET 100/10

§ ZERO®?

$YES

$CHECK FLAG
PRESET?
JRESTORE RYTE
SLEANING ZERO
FPRINT IT
FSET O FLAG

100 TO 10
FREMAINDER

FAGAIN
FASCIT RIAS

There is an additional feature added to this routine: leading-zero sup-
pression. Leading zeros are typically suppressed when a number is expressed
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in decimal form. On the other hand, leading zeros are commonly left in
place for binary, octal, and hexadecimal numbers. Thus, we write

1
2
18
197
207
for decimal numbers, but

00001111 (binary)
040 (octal) (
OFE3 (hexadecimal)

for the others.

One reason for keeping leading zeros is to make it easier to distinguish
octal or hex numbers from decimal numbers. With this convention, the
number 0137 would be interpreted as an octal or hex value rather than a
decimal number. The suppression of leading zeros is not a difficult task, but
it does require some additional code. It is not sufficient to merely remove
all zeros, for then the number 0307 becomes 37.

One technique is to utilize a zero-suppression flag which is initially
‘reset. Zeros are omitted as long as the flag remains reset. Then the flag is set
when the first nonzero character is encountered. Subsequent zeros are not
removed since the flag is set.

The necessary zero-suppression code has been included in the routine
shown in Listing 8.10. Register E is used for the flag; it is initially reset. -
Then each character is checked with a CPI '1’ instruction to see if it is an
ASCII zero. If the value is not a zero, it is printed and the flag is set to FF
hex. On the other hand, if the digit is a zero, the flag is checked. If it is
found to be reset, the zero is not printed. Only three decimal characters can
be produced from the original byte; consequently, just the first two need to
be checked. If the value of the byte is zero, a single ASCII zero is printed.

The B, C, D, and E registers are utilized in the operations. Conse-
quently, the original values are initially saved on the stack, then restored at

. ‘the conclusion of the routine.

Duplicate the program shown in Listing 8.4, the ASCII-hex to binary
routine. Keep one of the copies as a backup, then rename the other one
HEXDEC.ASM. Remove the semicolon at the beginning of the line

i CcalL DECS

and remove the END directive at the end of the program. Add the lines given
in Listing 8.10. Assemble the combination program, load it into memory,
and start it up by branching to the address of START. We have coupled the
16-bit hex input program with the 8-bit decimal output program. Conse-
‘quently, only the high-order byte will be converted to decimal. This is the
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byte in the H register. Try the combined program with the following hex
numbers.

>0

0000 0

»1

0001 0O

*100

0100 1

=A00

0A00 10 (hex A is decimal 10)
>1000

1000 16 (10 hex is 16 decimal)
»FFFF

FFFF 235 (FF hex is 255 decimal)

This binary-to-decimal routine can be very useful at the CP/M systems
level. Suppose that you want to save a program that starts at 100 hex and
runs to 2736 hex. If the decimal routine is incorporated into a hexadecimal
math routine of the system monitor, you have only to type

*H2800 100 (command)
2900 2700 39 (resronse)

The response of 39 is the decimal number of 256-byte blocks to be saved.
Then you can give the CP/M command

AXSAVE 39 FILENAME.EXT

CONVERSION OF A 16-BIT BINARY NUMBER
INTO FIVE ASCII DECIMAL CHARACTERS

In the previous section, we developed a routine to convert an 8-bit binary
number into three ASCII-encoded decimal characters. We will now write a
routine for converting a 16-bit binary number in HL into 5 ASCII-encoded
decimal characters. This double-precision decimal number will range from
zero to 65,535.

Duplicate the decimal-to-16-bit binary program in Listing 8.2. Remove
the semicolon from the line

P CALL DBIN

and the END directive if you used one. Add the program shown in Listing
8.11 to the end.
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Listing 8.11

5055
5057
S09A
505D
5060
5063
5066
5069
S506C
S06F
5070

5072

5075
5077
5078
5079

507C
G070
S07E
S07F
5080
5081
5082
5083
5084

5085
5087
508aA
S08E
508C
508D
S08E

5091
5093

5096

0600
11Fong
Cnzs550
1118FC
Ch7350
119CFF
Cn7350
11F&6FF
Cn7350
70
£630
C30658

DA7750

76

7B

SF
13
i9
79

C30658

06FF
C30658

2
9
2
9
a

9

Binary in HL to ASCII decimal.

THIS FROGRAM IS DESIGNEDRD TO RUN WITH
THE SYSTEM MONITOR AND WITH THE
FROGRAM SHOWN IN LISTING 8.2

FER 22y 79

FRINT BINARY NUMRER IN HsL A8 ASCII
DECIMAL DIGITS. LEADING ZERO SUFFRESSED.

IND? MVI EsO JLEADING O FLAG
LXI Ny,-10000 $2°8 COMFL
CaLL SURTR 10 THOUS
LXT Dy-1000
CaLL SUBTR § THOUS
LXI ny~100
caLL SURTR FHUNDREDNS
LXI - Dy~10
CALL SURTR $TENS
MOV Avl
ADI ‘0 FASCII BIAS
JMF ouTT FUNITS

SUBTRACT FOWER OF TEN AND COUNT

SUBTR: MVI Cy’07~1 $ASCII COUNT
SURT2:! INR C
DA I sADD NEG NUMEER
Jc SURT2 s REEF GOING
§
§ ONE. TOO MANYs ALD ONE EBACK
§
MoV AvD $COMPLEMENT
CHA i DE
MOV DrA
MOV AvE
cHa
MoV Esh
INX D FAND
DAL I FALD BACK
MoV AsC §GET COUNT
i .
# CHECK FOR ZERO
#
CFI 1’ FLESS THAN 17
JNC NZERO i NO
Mov AsE $CHECK 0 FLAG
ORA A JSET?
MoV AsC §RESTORE
RZ FSKIF LEADING O
JHF ouTT §INTERIOR ZERO
§
$# SET FLAG FOR NON-ZERO CHARACTER
§
NZERO: MVI ByOFFH $SET O FLAG

ar

JMF ouTT PPRINT IT

END
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This 16-bit version is similar to the 8-bit version of the previous section.
This time we start with the subtraction of the decimal value 10,000 instead
of 100. The number of subtractions is counted as before. When the result -
becomes negative, the last 10,000 is added back. The number of subtractions
that was performed is the desired digit for the ten-thousandths position.

Since the 8080 CPU does not incorporate a 16-bit subtraction operation,
the subtraction is obtained by adding the corresponding two’s complement

LXI Dy~10000

¢ @

* ® *

nAD D

The carry flag will be set for each addition (subtraction) except the last. The

carry flag is then reset for the operation corresponding to the result becom-

ing negative. The JC instruction in subroutine SUBTR causes the computer

to loop the correct number of times. Suppose, for example, that the binary

number in HL corresponds to the decimal number 32,128. This is the
equivalent of the hexadecimal value 7D80. The two’s complement of 10,000

is D8FO0 hex. The sum of these two is

decimal hexadecimal
32,128 7080
-107000 +08F O

225128 5670

Thus the addition of 7D80 and D8FO0 hex is equivalent to subtracting
10,000 from 32,128.

The last subtraction that causes the result to become negative has to be
undone. This could be accomplished by adding 10,000. However, the addi-
tion is accomplished in subroutine SUBTR which is also used to add back
the 1,000, 100, and 10 for the equivalent steps of each decade. Therefore,
we won’t know, in general, which value to add. The solution is to obtain the
necessary value from the two’s complement of the two’s complement for
the current value. This two’s complement is first obtained by complementing
both the D and the E register to produce the one’s complement. Then the
DE register pair is incremented. Subroutine SUBTR is first called with DE
set to —10,000, then to —1,000, ~100, and —10. At this point, the units dlglt
is contained in the L register.

This double-precision routine also incorporates instructions for sup-
pressing leading zeros. The approach is similar to the one used in the previous
section except that the H register is used for the zero flag.

Assemble the combination program, load it into memory, and start it
up. Enter the following decimal numbers. The response will include both the
hexadecimal and the decimal values of the input number.
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>0

0000 O

*1

0001 1
>100

0064 100
>1024

0400 1024
»655395
FFFF 45535

At this point you may want to incorporate decimal numbers into the system
monitor. When we incorporated an ASCII-input feature into the monitor we
used the apostrophe to indicate this fact. It is customary to precede decimal
numbers by a number sign. For example, the following input would indicate
decimal input.

*H#1024 $200

CONVERSION OF AN 8-BIT BINARY NUMBER
INTO TWO ASCII HEXADECIMAL CHARACTERS

The conversion of an 8-bit binary byte into two ASCII-encoded hexadecimal
‘characters is an interesting exercise. The high-order four bits are represented
by one hex character, and the low-order four bits are represented by the
other hex character. Since the upper character is printed first, the upper four
bits are rotated down to the lower position. These new lower four bits are
converted to ASCII to produce the first character. Then the original low-
order four bits are converted to ASCII to get the second character.

The nibble conversion appears to be straightforward. The upper four
bits are zeroed by performing a masking AND with the value of OF hex. The
lower four bits are then converted to ASCII by the addition of an ASCII 0.
If the result is in the range 0-9, then the conversion is complete. Otherwise,
a binary 7 is added to the result, converting it to an ASCII-encoded letter of
A through F.

To see why this conversion works, look at the ASCII table in Appendix
A. The ASCII number 9 has a decimal value of 57. The ASCII letter A has a
decimal value of 65. But the hexadecimal value of A follows the value of 9.
Therefore, we need to add 7 to any valid hex number larger than 9 to con-
vert it into the appropriate ASCII letter A through F.

The program shown in Listing 8.12 will convert an 8-bit binary number
in the C register into two ASCII characters and send them to the console.
Duplicate the program in Listing 8.5. Remove the external reference to
subroutine OUTHX near the beginning. ‘

OUTHX EQU MONIT+12H

Our new program will perform the same function. Also remove the final
END directive if you used one. Copy the lines from Listing 8.12 on the end
of the program. Assemble the combined program, load it into memory, and
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start it up. Our monitor will still have to be in memory since we will need
the I/O routines. This current version, Listing 8.12, with the built-in binary-
to-hex routine, should respond exactly the same as the earlier version,
Listing 8.5. The only difference is that we are converting binary to hex
within the program rather than using a routine in the monitor.

Listing 8.12 Rirasre in C to ASCIT hex

THIS PROGRAM IS DESIGNED TO RUN WITH
THE SYSTEM MONITOR AND WITH THE
FROGRAM SHOWN IN LISTING 8.5

JanN 18, 80

ROUTINE TO OUTFUT 2 HEX CHARACTERS FROM C
8-FIT RINARY TO ASCII HEX CONVERSION

£ ser @ e @ e @ wr e an

3043 79 UTHX: MoV AsC JGET BYTE
3044 1F RAR FROTATE
9045 1F RAR § FOUR
G046 1F RAR § BITS TO
5047 1F RAR $ THE RIGHT
9048 CR4cso CALL HEX1 SUFFER CHAR
S04 79 MOV AsC iLOWER CHAR
14
S04C E6OF HEX13 ANI OFH SLOW 4 RITS
S04E €630 ADI ‘0 SASCII ZERO
5050 FE3A CFI AR 3! $0 TO 9
3032 DA0LSE Jc ouTT FYES
3055 C607 ADI 7 #§ CONVERT
G057 €£30658 JHMP ouTT FA TO F
¢
S054A END

The algorithm used to convert the binary nibble to a hex character
clearly demonstrates the technique. But there is a more efficient method for
CPUs such as the 8080 and Z-80 that incorporate the decimal adjust accum-
ulator (DAA) instruction. Change the second, third, fourth, and fifth lines
of subroutine HEX1 so the subroutine looks like

HEX1: ANI OFH (same)
ADI F0H (new)
Daa (new)
ACT 40H (new)
DAA (new)
JHP OQUTT (same)

Conversion of a 16-bit binary value into four hex characters is obtained
by calling the 8-bit routine twice. For example, the HL register pair can be
printed with the following routine. ‘

OQUTHL: MOV CoH.
CaLL OUTHX
MOV Col

caLL OUTHX
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Conversion of a binary number to a string of ASCII-encoded BCD
characters does not require a special routine. It is performed simply by
calling the binary-to-hex routine OUTHX.

CONVERSION OF A 16-BIT BINARY NUMBER
INTO SIX ASCII OCTAL CHARACTERS

A 16-bit binary number in the HL register pair can be converted into six
ASCII-encoded octal characters by repeatedly shifting the double register to
the left. We make use of the double-register add instruction DAD H. This
instruction adds the register pair HL to itself. The operation is equivalent to
a double-precision arithmetic shift left. All 16 bits are shifted left and a zero
is moved into the lowest order bit. The carry flag is set if the original highest-
order bit was a logical one. The carry bit is reset otherwise.

The routine is shown in Listing 8.13. As the bits of the double register
are shifted out the high end, they are converted to the corresponding octal
number in the accumulator. The largest 16-bit octal number is 177777;
~ consequently, the first octal character (starting from the left) can only be a
zero or a one. The remaining five characters can range from zero through 7.
They are obtained from groups of three bits.

Listing 8.13 Binarwy in HL to ASCII octal.

THIS FROGRAM IS DESIGNED TO RUN WITH
THE SYSTEM MONITOR AND WITH THE
FROGRAM SHOWN IN LISTING 8.6

JAN 18y 80

ROUTINE TO OUTPUT A 16-BIT BINARY
VALUE IN HsL AS OCTAL CHARACTERS

.
H
.
H
.
§
.
§
.
$
s
$
s
§
.
H
.
§

0

5052 ES uTOCT: FUSH H §SAVE VALUE
5053 CS FUSH R

5054 0605 MVI By $5 CHAR
5056 AF XRA A # ZERQ

5057 29 nAD H FHIGH RIT
5058 CE30 ACI 0 FADDEDR IN
505A CLO&GS8 CaLL ouTT SPRINT IT
505D 3E06 ocT2: MVI Asb SROTATE 60Q
505F 29 AR H i CARRY
- 5060 17 RAL sROTATE TO A
5061 29 nan H FAGAIN

5062 17 RAL 3TO A

5063 29 nan H $3RD TIME
5064 17 RAL sTO A

5065 CDO&SE cAaLL ouTT PFPRINT CHAR
5068 05 DCR B § COUNT

5069 C23050 JINZ 0cT2 $5 TIMES
506C C1 FOF E

506D E1 POP H

S06E C? RET

ey

S06F END
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The first step shown in Listing 8.13 saves the HL and BC registers on
the stack. This operation may not always be necessary. The XRA operation
is used to zero the accumulator. It must be performed before the DAD H
instruction since it resets the carry flag. The DAD instruction will set the
carry flag if the high-order bit was a 1, or reset the flag if the high-order bit
was a zero. The carry flag is then added to an ASCII zero and sent to the
console. _

The remaining five digits are generated in a loop starting at label OCT2.
Register B is preloaded with the value of 5 to count the remaining digits.
We need to transfer the current three high-order bits from the H register into
the accumulator. This is accomplished by three DAD H instructions. After
each one, the carry flag will reflect the state of the most recent high-order
bit of H. After each DAD instruction, we perform a rotate accumulator
instruction. This moves the carry bit into the low-order bit of A. After three
such operations, the three low-order bits of the accumulator will contain
the proper octal bit pattern for the appropriate character. But they are in
binary form and we need to convert them to ASCII for printing.

"The bit pattern for the ASCII zero is 011 0000. Notice that it contains
zeros in the lower four bit positions. At the beginning of the OCT2 loop we
preloaded the accumulator with a binary 6 which has a bit pattern of-
000 0110. At the conclusion of the OCT2 loop, the three rotations will
convert this binary 6 into a 60 octal which is equivalent to an ASCII zero.
This effectively converts the three lower-order bits, shifted in from the carry
flag, into ASCII-encoded octal.

The Z-80 version can be a little shorter if the instruction

DJUNZ ocT2
is used in place of

DCR B
JNZ ocTz2

CONVERSION OF AN 8-BIT BINARY NUMBER
INTO THREE ASCII OCTAL CHARACTERS

In the previous section we derived a subroutine for the conversion of a 16-bit
binary number into ASCII characters. The conversion of an 8-bit binary
number to octal will be considered here. We could use the H,L double
register, as previously, to perform the necessary shifts. However, if the H,L
register is needed for something else, such as a pointer to memory, then
another method would be better.

The routine shown in Listing 8.14 performs the needed rotations in the
accumulator. The original binary byte is in the C register. The byte is moved
to the accumulator and two left circular rotate instructions are performed.
This effectively moves the two high-order bits down to the two low-order
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positions. It is equivalent to performing six right circular rotations. The
remaining bits are zeroed with a logical AND 3 step. The ubiquitous ASCII
zero is added, and the result is sent to the console.

The middle character is obtained by rotating the original byte to the
right. A logical AND 7 isolates these low-order bits. The ASCII zero is added
and the byte is sent to the console. The original byte is retrieved a third
time. Now the three bits of the third character are properly positioned.
Hence no rotation is needed. The masking AND operation is still needed,
however. Finally, the ASCII zero is added prior to printing.

Type the program shown in Listing 8.14. Add the new program to the
end of the octal-to-binary program shown in Listing 8.7. Assemble the com-
bination, load it into memory, and branch to the beginning. Remember that
the input requires exactly three octal characters. If less than three are used,
an error message of a question mark will be printed. If more than three
characters are typed, only the first three will be used.

Listing 8.14. 8-bit binarw in C to ASCII

THIS FROGRAM IS DESIGNED TO RUN WITH
THE SYSTEM MONITOR AND WITH THE
FROGRAM SHOWN IN LISTING 8.7

JAN 22 80

ROUTINE TO OUTPUT AN 8-BIT BINARY
VALUE AS THREE OCTAL CHARACTERS

W WP > Wr @E A S WP WP

5053 79 0cT: MoV AsC SGET IT
5054 07 RLC $2 HIGH RITS
5055 07 RLC
5056 E603 ANI 3 $ MASK
5058 CR6S55S0 CALL 0cT3
5058 79 MOV AsC FGET AGAIN
505C OF RRC FMIDDLE RITS
5050 OF RRC
S505E OF RRC
S05F CD63350 caLL ocT?
5062 79 MOV ArC $RIGHT RITS
5063 E&407 oCT2: ANI 7 i3 BITS
5065 C630 0cT3: ADRI ‘0’ FASCII BIAS
5067 C30658 JME ouTT SFPRINT

?
906A END

CONVERSION OF A 16-BIT BINARY NUMBER TO SPLIT OCTAL

Some of the 8080 and Z-80 instructions can have either 8-bit or 16-bit
operands. Typical 8-bit operations for the 8080 are

MVI As10
ADI 3
ANI 7
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The 16-bit operations include

CALL 100H
JHP S005H
LXI Hs O

But the 8-bit architecture of microcomputers means that 16-bit operands are
stored as two consecutive bytes. Each byte can be represented as two hexa-
decimal characters. And the entire 16-bit value can be represented by a
combination of all four of these hex characters. For example, the 16 bits

11110000 10101010
can be represented with the hex characters
FOAA

Alternately, the left byte can be represented by an FO hex, and the right
byte can be expressed as AA hex. There is no problem here since each hex
character represents four bits, and both 8 and 16 are evenly divisible by 4.

Octal representation is more complex. In this case, each octal character
represents three bits (or sometimes two). Since neither 8 nor 16 is evenly
divisible by 3, a problem can occur. Consider the 16-bit value

1 111 010 011 101 010
It can be represented in the octal notation as

172352
This is the result that the program in Listing 8.13 would produce at the
system console. The problem is that the 16 bits are actually stored in two
adjacent 8-bit locations. If the bit pattern is grouped into 8-bit bytes, it
looks like this.

11 110 100 11 101 010
In this arrangement, the two correspoﬁding octal bytes are represented as

364 352

The result, which has been termed split octal or crazy octal, looks very
different from the corresponding 16-bit octal value of 172352. The two
octal bytes of split-octal notation are sometimes separated by a colon to
distinguish the representation from the regular 16-bit octal.

364:352
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The split-octal notation can be readily implemented, as shown in
Listing 8.15. This program is adapted from the 8-bit octal-to-binary and
binary-to-octal routines given in Listings 8.7 and 8.14. The first part takes
two separate octal bytes and converts them to an 8-bit binary number. The
second part converts the binary byte into two octal bytes. Each split-octal
number is entered from the console as two groups of three characters. A
space or colon can be used to separate the two parts.

Listing 8.15, Srlit-octal routines

5000

5800
5806
S80C
580F

5812

5000
5002
5005
5007

S00A -

S00D
5010
5011
5014
S015
5018
5014
S01D

5020

G023
5026
$5027
S024A
S502D
5030
5031

W

Cnos58
Cnesso
£30050

Cn32a0
31
COoFG8
DASFSO
Cn3250
59
(R

wr 3 e W 9r Wr W W S SR Gs 9>

MONIT
ouTT

INFLN
GETCH
OUTHX

9
START?

3 e @ ar

@r ‘ar ‘ar cer

RG

cT88:

é OCTAL CHARACTERS SEFARATED RBY A
SPACE ARE ENTERED FROM THE CONSOLE.
A 16-BIT RINARY NUMRER IS FRODUCED

IN DIvE.

THIS IS RECONVERTED

TO OCTAL

THIS PROGRAM IS DESIGNED TO OFERATE
WITH THE SYSTEM MONITOR AT 5800 HEX

22y

JAN 80

S000H

EQU
EQu
EQU
EQU
EQU

MVI
CAaLL
MVUI
CAaLL
call .
CaLL
MOV
calLl
MoV
CAaLL
MVI
caLl
caLL
JMP

6 SFLIT-0CTAL

CALL
MOV
CaLL
JeC
CaLL
MOV
RET

S800H

MONIT+6

MONIT+OCH

MONIT+OFH

MONIT+H12H

A OIIH s CARR RET

ouTT

Ay 0AH fLINE FEED

ouTT

INFLN SGET A LINE

ocTes 6 OCT CHAR
- CsD sFIRST

OUTHX $TO HEX

CrE i SECOND

OUTHX $TO HEX

Ag 7 § BLANK

auTT

ouTso #TO RINARY

START FNEXT VALUE

CHAR TO 16-RIT BINARY

ocTs $FIRST

DsC i SAVE

GETCH 3 SFACE

ERR3 FONLY 1 CHAR

ocT8 $ SECOND

EsC i SAVE

CONVERT ASCII-ENCODED OCTAL

T0 8-BIT

RINARY NUMEBER IN C
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5032
5035
G037
5034A
S03m
5030
503D
S03E
5041
5042
5043
9044
5045
5046
5049
G044
504B

504C
504F
5032
5054
5057
3059

5050

505D
S05E
905F
50460
5062

5065

5068
5069
906C
S06E
5071

5072
5073
5074
9075
5077
S07A
507k
507C
507D
SO07E

Ch4C50
FEO4
D23ESO

CD4C50
El
4F
cy

CDOFS58
DASDS0
D630
DASDSO
FEO8
n25050
c9

JE3F
Cnosss
€30050

4A
Cnz250
3E3A
Chos58
4B

79

Q7

07
E603
Cng4s0
79

OF

OF

OF
cng2so

ocTs: CAaLL
CrI
JNC
AL
ADD
ADD
MOy
CaLL
ORA
A
ADD
ADlD
MOV
calL
ORA
MoV
RET

CONVERT INFUT

) < e o

CTIN:? CALL
JC

SUI

JNC
RET

5
$ PRINT

9

FOF

ERRZ:

ERROR: FOF

ERR3? FOF
MVI
caLL
JHP

16-RIT RINARY

£ wr ar ar

uTgo: MOV
cALL
MVI
CALL

MoV

O e e e e

cT: MOV
RLC
RLC
ANI
CALL
MOV
RRC
RRC
RRC
CALL

? ON IMFROFER

ROUTINE TO OUTPUT AN
VALUE AS THREE OCTAL CHARACTERS

OCTIN $1ST CHAR

4 $FIRST i

ERROR §TOO LARGE

A s TIMES 2

A sTIMES 4

A s TIMES 8

CrA $SAVE RYTE

OCTIN 7 2ND CHAR

c . $COMBINE

A s TIMES 2

A sTIMES 4

A s TIMES 8

CrA

OCTIN §3RD CHAR

C FCOMRBINE

CeA FSAVE IN C

CHARACTER 0-7 TO BINARY

GETCH

ERR2 iNO CHAR

‘0 $ASCII RIAS

ERR2 $TOO SHMALL

8

ERR2 s TOO LARGE
INFUT

B FRAISE STACK

R

E

Ay "7’

ouTT

START i TRY AGAIN

IN DsE TO SFLIT OCTAL

CsD FFIRST BYTE
ocT #TO OCT

Av’ ¢

ouTT s SEFARATOR
CrE $ SECOND

8~RIT RINARY

AsC $6GET IT
$2 HIGH RITS
3 $ MASK
ocT3
AyC $GET AGAIN
FMIDDLE RITS
ocT2
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5081 79 MOV ArC SRIGHT RITS
5082 E&607 ocT2¢ ANI 7 #3 RITS
. 5084 C630 0CcT3: ADI ‘0’ $ASCIT BIAS
5086 C30658 JMFP ouTT FPRINT
; .
5089 END

The input number is converted into a 16-bit binary number in the D,E
register pair by calling the 8-bit routine twice. The hex value is printed out
as usual, then the split-octal version. A colon in the middle separates the
‘two halves.

Assemble the program and try it out.

w177 377 (a srace serarator)
7FFF 177377
»1003200 (a colon serarator)
4080 1003200

This completes the base-conversion routines. At this point, you may want to
incorporate some of these routines into your system monitor.




CHAPTER NINE
Paper Tape and
Magnetic Tape Routines

It is possible to encode complete programs, such as a BASIC interpreter, into
ROM so that calculations, such as the square root of 19, can be performed as
soon as the computer is turned on. But more complicated problems will
require a source program. If the source program is used frequently, then it
would be inconvenient to reenter the source program each time it is needed.
One way to avoid this reentry problem is to save the source program some-
how and then reload it into the computer when it is needed.

But BASIC is not the only computer language. Some tasks are more
easily performed with other languages, such as Pascal or APL. Assembly
language is useful for systems programming. A full text editor program has
more features than the most complex BASIC interpreter. Thus, it is better
not to have the BASIC interpreter in ROM. Instead, a small monitor pro-
gram, such as the one developed in Chapter 6, can be placed in ROM. We
can use this small monitor to load larger programs from an external medium.

The floppy disk is a convenient medium for saving and reloading
programs. The cost, however, is greater than other storage media such as
paper tape or magnetic tape. Even if a floppy-disk system is utilized for
program storage, it might be wise to make backup copies on magnetic or
paper tape.

The simplest storage method is to utilize the paper tape accessory
available on some Teletype machines. With this approach, a separate com-
puter I/O port is unnecessary. Furthermore, paper tapes can be read directly
on the Teletype, without using a computer. The disadvantage of this method
is that the transfer rate is low, since the Teletype operates at only ten char-
acters per second.

A more complicated, but faster, method utilizes an ordinary magnetic
tape machine designed for home recording. In this case a separate I/O port
will usually be necessary, but the advantage is that the recording rate is
higher than for paper tape. Common data transfer rates range from 30 to
over 120 characters per second.

187
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The frequency response of audio tape recorders is limited to a maxi-
mum of 10 to 20 kHz. But since the computer operates at 2 or 4 MHz, the
signals from the computer cannot be directly copied onto tape.

One solution is to convert the computer’s digital signals into sine waves
that can be easily recorded. A -digital-to-analog (D/A) circuit is used for this
purpose. When the recorded program is subsequently played back into the
computer, a separate analog-to-digital (A/D) circuit reverses the process. It
converts the signal from a sine wave back into the digital form. The D/A and
A/D circuits are combined on a printed circuit board with the usual parallel-
to-serial converter for the I/O port.

THE CHECKSUM METHOD

‘Two separate tape-handling routines are given in this chapter; both may be
used with paper tape or magnetic tape. They are both suitable for storing
binary object programs, ASCII-encoded source programs, or just a set of
numbers. The information is stored in a file consisting of a sequence of
records. Each record contains a checksum that is used to detect errors.

Errors can be introduced at several places in the tape-recording and
playback process. The proximity of AC power cords to audio signal lines can
change the transmitted signal. Oxide layers may fall off the tape, or there
may be a defective spot on the recording surface. If the recording and play-
~back heads are dirty, they can incorrectly render the signal. The A/D conver-
sion step, when the tape is played back, can also give rise to errors.

In addition to the data, each record stored on the tape contains the
. record length, the memory address of the record, and a checksum byte. The
checksum byte is obtained by adding all of the data bytes in the record.
When the tape is read back, the computer sums up the data and compares
the result to the checksum value written on the tape at the end of the rec-
ord. A discrepancy indicates an error.

Since an 8-bit checksum is used in both programs, there are 256 possi-
ble combinations. Any single load error in the record will be discovered by
this method. In principle, it is possible that two errors in the same record
will combine to produce the expected checksum value. In practice, however,
this is not likely to be a problem. Double errors occur much less frequently
than single errrors. Furthermore, in a well-tuned system, single errors should
be infrequent. They are most likely to be caused by low-quality tape, a dirty
head, or a mistuned A/D converter circuit. Buy the best tape you can and
clean the heads often. A routine that can be used for aligning the A/D circuit
is incorporated in the second tape routine given later in this chapter.

AN ASCII-HEX TAPE PROGRAM

The tape program given in Listing 9.1 is based on an ASCII-encoded hexa-
decimal format. It can be used to produce paper tapes or magnetic tapes of
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computer programs. It can even produce a tape of itself. The program is
self-contained and assembled to run at 100 hex. No outside routines are
required. An additional feature of this program is that it can punch readable
labels on the leader of a paper tape. (Of course, this feature is not very
useful for magnetic tape recordings.) The label routine is discussed in the
next section of this chapter. ~

Listing ?.1.Hexadecimzal tare routines.

i HEXMON: A MONITOR TO DUMFs LOALy AND
¥ VERIFY INTEL HEX CHECKSUM TAFES
] WITH TAPE LABEL FOR HEADER
$
TITLE ‘hexmon with tlabel’
$
0100 ORG 100H
§
H
IR R R R R R R R R R R R R R R R R R R AR R R R NN
§
0010 = RLEN EQU 146 sRECORD LENGTH
$
0010 = CSTAT EQU 10H $CONSOLE STATUS
0011 = CDATA EQU CSTAT+1 FCONSOLE DATA
0001 = CIMSK EQU 1 §IN MASK
0002 = COMSK EQU 2 FO0UT MASK
0006 = FSTAT EQU L) SFUNCH STATUS
0007 = FIATA EQU FETAT+1 sFUNCH DATA
0001 = FIMSK EQU 1 FPUNCH IN MASK
0080 = FOMSK EQU B80H FFUNCH QUT MASK
§
000D = CR EQu 13 # CARRAGE RETURN
000A = LF EQU 10 sLINE FEED
Q07F = LEL EQU 127 :
0008 = CTRH EQU g #"H CONSOLE BACKUF
0000 = NNULS EQU 0 FCONSOLE NULLS
IR R R R R R R R R R R R R R R R R R R R R R AR R R R R R R ]
H
0100 C37001 START:  JMF CONTIN
H
# INPUT A BRYTE FROM THE CONSOLE
H
0103 DEB1O INFUTTS IN CSTAT
0105 E601 ANI CIMSK
0107 CA0301 JZ INFUTT
010A DB11 IN CDATA
010C E&7F ANI 7FH $STRIF FPARITY
010E C9 RET

OUTFUT A CHARACTER TO CONSOLE

@ g ar
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010F
0110
0112
0114
0117
0118
0114

O11R

‘011cC

011F

0120
0121
0122
0123
0124
0125
0128

0129
012k
012D
012E
0130
0131

0134
0136
0137
0139
0134
013E
013D
013E
013F
0141
0143

0144
0145
0144
0149

F3
DR10O
E602
Cal1001
Fi
311
ce

ac
£D2001
4D

iF
€p2901
79

E60F
C690
27
CE40
27
C30F01

210000
CDo402

ouTT:
ouUTW:

.
H
a
¥
s
§

0

UTHL

) 9 er @ e

UTHX:

o er wr @ ar

EX1%

& ar ws ws e

IR:

INFUT

EADHL 3

RIOHL2S

FUSH FEW
IN CSTAT
ANI COMSBK
JZ ouTW
FOF FSW
ouT COATA
RET

OUTFPUT HsL TO CONSOLE
16-BIT RBRINARY TO HEX

MOV CyH JFETCH H
CaLL OUTHX SPRINT IT
MoV CrL SFETCH Ly PRINT IT

CONVERT A RINARY NUMBER TO TWO
HEX CHARACTERSy AND FRINT THEM

MOV AsC

RAR SROTATE

RAR 5 UFFER

RAR i CHARACTER
RAR # TO LOWER
CALL HEX1 SOUTPUT UPPER
MOV AsC §OUTFUT LOWER

OUTFUT A HEX CHARACTER
FROM LOWER FOUR RITS

ANI OFH JTAKE 4 BITS
ADI 144

DAA sDAA TRICK
ACI 64 .

naA sONCE AGAIN
JMF ouTT

CONVERT ASCII CHARACTER FROM CONSOLE
TO 4 BINARY RITS

SUI 0 FASCII RIAS

RC P 0

CrI ‘Fr~70"41

£Me 5§ INVERT

RC FERRORy > ‘F7
CFI i0

CHe § INVERT

RNC §NUMERER IS 0-9
SUI ‘A9 -1

CPI 10

RET i CHARACTER IS A-F

HsL FROM CONSOLE

FUSH 1

FUSH B

LXI HsO FSTART WITH O
caLl GETCH
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014C
014F
0152
0188
0156
0157
0158
0159
0134
015k

015€
0160
0163
0165
0168
01469
016A

O16E
0160
0170

0173
0174
0175
01764
0179
0174

0170
0180
0183

0186
0189
018C
018F
0191
0194
0196
0199
019k
019E
0140
01A3
01a3

DA6801
Cn3401
DASEOL
29
29
29
29
BS
6F
£34901

3E3F
CooFo1
€30001

1A
E7
cs
CDOFO1
13
£37301

312106
118603
€n7301

312106
ChacCo1
cno402
FES7
CAalao02
FES2
CAE602
FEA4S
CAES02
FESé&
CARE602
FEA47
C26B0O1

) @ e wr as

DHL4?

ROHLS?

a

§
ERROR?

U3 ver 9w wr

ENDM 2

s

7
CONTIN?

-

1

RSTRT?

JC
CALL
JC
DAD
DAD
DAD
LY
ORA
MOV
JHF

CHECK FOR
AT END OF

CPI
JZ

CFI
JNZ
FOF
FOF
RET

MVI
CaLL
Jup

LDAX
ORA
RZ
CALL
INX
JMF

LXI
LXI
CaLL

LXI
CALL
caLL
CFI
JZ
CFI

RDHLS FEND OF LINE

NIB $CONVERT TO BINARY
ROHLA4 #NOT HEX

H $16-RIT

H # SHIFT LEFT

H

H

L FCOMEBINE NEW

LvA

RDHL2 FNEXT

COMMA OR BLANK
ANDRESS

T =07 SCOMMAT
ROHLS FYESy OK
‘=707 $BLANKT
ERROR $NOD

R

D

YR 3 IMFROFER INFUT
ouTT
START STELL HOW AGAIN

SEND CHRACTERS FOINTED TO BY InE
UNTIL A BINARY ZERO IS FOUND

D FNEXT RYTE

A FSEE IF ZERO
s DONE

ouTT

D

SENDM

SFySTACK

D»SIGN SMESSAGE
SENDM FSEND IT

SFsSTACK
INPLN §GET A LINE
GETCH § INFUT THE TASK

‘W’ s UMF

FOUMF

‘R §READls NO AUTOSTART
FLOAD

E’ sLOAD AND EXECUTE
FLOARD

' FVERIFY

FLOAD

‘G 60 SOMEWHERE

ERROR
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- 01A8

O1AR

O1AC
O1AF
01R1
01B4
0iB7
01BA
O1RC
O1LBF
01C1
01C4
01Cs
0ic?
01CR
01CE
o1n0
oini
01D3
oin4
oin7
0108
0109
o1DA
oipn

01EQ
01E2
O1ES
O1E7

01EA
O1EB

O1EE
O1F0
01F3

Ch4401
E?

CDEEOQ1
3E3E
CDOFO1
212406
222106
0EQO
Cno3oi
FE20
DAEOO1
FE7F
CAF801
FESR
nAapoo1
E&6SF
77
3E20
B?
CAECO1
7E

23

oC
COOFO1
C3RCO1

FEOSB
CAF801
FEOD
C2BCO1

79
322306

3EOD
CDOFO1
3EOA

-
¥
»
9

JPCHL ¢

i @y @y wr e

NFLNZ

INFL2:

INPLIZ

INPL3Z

NPLC?

<r ar e

caLL
FCHL

CalLl
MVI
CALL
LXI
SHLID
MVI
CaLL
CFI
J
CFI
JZ
CPI
JC
ANI
MoV
MVI
CHp
Jz
MOV
INX
INR
CALL
JHF

CFI
JZ

CPI
JNZ

READHL

INPUT A LINE FROM THE
AND FUT IT

JUMP TO ANODTHER FROGRAM

s JUMP ADDRESS
FOKy GOODBYE

CONSOLE

INTO A BUFFER

CRLF

Ay ">’
ouTT

Hy IBUFF
IBUFP
Cs0
INPUTT

INFLC
DEL
INPLE
'Z41
INFL3
S5FH
MsA
Ay 32
C
INFLI
A M

H

C
ouTT
INFLI

CTRH
INFLE
CR
INFLI

END OF INFUT LINE

MoV AsC
8TA IBUFC
v
# CARRIAGE RETURNy LINE
CRLF2 MVI AsCR
CaLlL ouTT
MVI ArLF

S wr 0> ar

MACRO

s COMMAND FROMPT
$SEND TO CONSOLE

F RUFFER ADDRESS
FINITIALIZE FOINTER
SINITIALIZE COUNT
$CHAR FROM CONSOLE
§CONTROL CHART

$YESy GO FROCESS
sDELETE CHAR?
s YES

JUPFER CASE?

$NO

i MAKE UPFER

$FPUT IN BUFFER
$GET ERUFFER SIZE
FTEST IF FULL
$YESy LOOF
$RECALL CHARACTER
$ INCR POINTER
$AND INCR COUNT
$ECHO CHARACTER
$BET NEXT CHAR

PROCESS CONROL CHARACTER

§THT
SYES
$TEST IF RETURN
#NOy IGNORE CHAR

$LINE COUNT
$ SAVE

FEED

IF NULLS REQUIRED AFTER CRy LF
USE REPEAT
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01F5

O1F8
01F9?
O1FA
01FD
O1FE
OiFF
0201

0204
0205
0208
0208
020D
0210
0213
0214
0213
0218
0219

0214
021D
0220
0221
0224
0225
0226
0227
0224
022

022E

C30F01

79
B7
CABCO1
2B

oD
3E08
C3DA01

ES
2A2106
3A2306
D601
nA18oR
322306
7E

23
222106
El

ce

Ch4401
DAGRO1
EB
CD4401
ER
i3
ES
Ch4401
E3
cngsoz
Cng404

conRooz2

IF
caLL
XRA
REPT
CALL
ENDM
ENDIF
$

JMP

§
B
§
INPLEBS MOV
ORA
Jz

DpCX
DCR
MVI
JHP

> er e

$ BUFFER. SET

#

GETCH: PUSH
LHLD

GETC2: LDA
sul
JC
STA
MOV

BETC3: INX
SHLD

GETC4: FOF
RET

AR RN

§
§
§
§
FPOUMF:  CaALL
JC

XCHG
caLL
XCHG
INX

FUSH
CalL
XTHL
CaLL
CALL

START
PUNCH CR»

EWREC: CALL

| cas e 2 osar ses wx

DELETE ANY FRIOR

NEYW RECORDs
LFy

NNULS > O $ASSEMELE
OUTT
A SGET A NULL
- NNULS-1
OUTT
SNULLS

OUTT

CHARACTER
ArC “3CHAR COUNT
A 5 ZERO?
INFLI  $YES
H $BACK POINTER
€ SAND COUNT
ArCTRH 3 BACK CURSOR
INFLE  $PRINT IT

OBTAIN A CHARACTER FROM THE CONSOLE

CARRY IF EMFTY.

H
IBUFP
IRUFC
i
GETCAH
IBRUFC
ArM

H
IBUFF
H

FUNCH A FAFER TAFE

READHL
ERROR

READHL
I
H
READHL

LEADR
LABEL

FPCRLF

FIND THE RECORD LENGTH

$ SAVE REGS

$GET FOINTER
FGET COUNT

$DECR WITH CARRY
§NO CHARACTERS
SREFLACE COUNT
$GET CHARACTER

$ INCR FOINTER
$REFLACE FOINTER
FRESTORE REGS
CARRY IF NO CHAR

.
¥
AR R R R R R R R R R RN

#START ADDRESS
$TOO FEW FARAM

'

iSTOF AIDRESS

FAUTOSTART ADDR
$PUT ON STACK
#FUNCH LEADER
sFUNCH LABEL

ZERO THE CHECKSUM
2 NULLS AND COLON

SCRy LFs NULLS
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0234
0235
0236
0237
0238
0239
023A
023D
023F
0242
0243
0246
0247
0248
024p
024C
024D
024F
Q2352
0255
0256
0259
0254
025D
025K
025F
0262
0265

0268
0269
0264
026D
026E
0271
0272
0273
0273
0278
0279
027C
027F
0282

0285
0286
0288
028B
ozac
028F

7B

?S

4F

7A

9C

47
DAGEO1L
3E10
C24C02

0600
cneso2
Cneoo2
AF
cnesoz
7E
cnes02
23 -

1]
C25902
ChR6703
€33102

aF

47
cpeso2
El
cpeo02
7C

BS
3E00
CA7902
3C
Cpes02
Cne703
cpeso2
C38601

aF
063C
CDB80O2
035
£c28802
ce

ar

$COMPARE LOW STOP

§ TO LOW FOINTER
FDIFFERENCE IN C

$ COMFARE HIGH STOF

# TO HIGH FOINTER
sDIFFERENCE TO E

$ IMFROFPERs HsL » DyE
sFULL RECORD

s COMPARE TO E-L
$FULL RECORD LENGTH
JARE BOTH E~L AND

i D~E ZEROT

$YESy REC LENGTH = 0O
§ SHORT RECORD
§RECORD LENGTH TO C
$ZERO THE CHECKSUM
$FUNCH RECORD LENGTH
SPUNCH H/L

f§PUNCH RECORD TYFE O
FFUNCH MEMORY BYTE

# INCR. MEMORY FOINTER
sDECR RECORD LENGTH

FFUNCH CHECKSUM
$NEXT RECORD

PUNCH LAST RECORDs RECORD

ADNRESS»

$§ ZERD CHECKSUM
$ZERO RECORD LEN.

FAUTOSTART H/L
s CHECK FOR

# AUTOSTART

50 WITH CARRY
iNO AUTOSTART

$RECORD TYFE 1

§PUNCH CHECKSUM
FFUNCH TRAILER

FNEXT JOR

BLANK HEADER AND TRAILER

FTAFE NULLS

MOV AsE
SUE L
MoV CrA
MoV AsrD
SBE H
MOV EsA
Je ERROR
MVI ArRLEN
JINZ NEW2
CHP c
Jc NEW2
MoV AsR
g ORA c
Jz DONE
MOV AsC
NEW2: MOV CrA
MVI B»0
CALL FNHEX
cALL FUNHL
XRA A
CALL 