
***** BETA DOS FOR THE PLUS D *****

– CONTENTS –

INTRODUCTION 1

CAT 2

FORMAT 3

SAVE file TO file 3

SAVE OVER 3

LOAD @ and SAVE @ 4

SERIAL FILES 5

Creating a Serial File 5
Reading a Serial File 6
CLEAR # and Clearing Disc Errors 7

MOVE 7

RANDOM ACCESS FILES 8

Creating a Simple Random-Access file 8
Reading a Simple Random-Access File 9

POINT 9

Altering a Random-Access File 10
Extending a Random-Access File 11

Random-Access Functions:

File Pointer Function 11
File Length Function 11
End-of-File Function 12

Data Packing in Random-Access Files 12

Variable-Length Records 14

POINT with OVER option 14

Opening Multiple Files 15

MOVE and Random-Access Files 15

SOME DIFFERENCES FROM G+DOS 16

PEEKING THE PLUS D‘s MEMORY 17

SYSTEM VARIABLES 17

BACKUP UTILITY 18

COMPRESSION UTILITY 18

Amendments (added 1/7/2004 by spt)
 Undocumented Commands 19
 CAT 1”””” 19
 Useful Poke @`s 19

Beta Dos Bug Fixer
 FIXER Listing 20

******** Copyright Beta soft 1990 *********

Scanned, Typed, OCR-ed, and PDF by

Steve Parry-Thomas 27 June 2004.

This PDF was created to preserve the manual for the future.

For all ZX Spectrum, Plus D
And WoS users

(PDF For Michael & Joshua)

- 1 -
**
INTRODUCIION

Beta DOS provides a number of major enhancements to the G+DOS
supplied with the PLUS D system, without occupying any of the
Spectrum's RAM or requiring you to replace the PLUS
D's ROM. You
can still use your G+DOS discs, and Beta DOS should be
compatible with any software that does not make use of the PLUS
D's internal RAM. The installation program BDM (Beta DOS Maker)
merges the Beta DOS code with your existing system file, which
can then be SAVEd as a complete disc operating system.

By kind permission of FORMAT, the INDUG magazine, published
enhancements to convert G+DOS 2 to 2a are included in the BDM
installation program; conversion is done automatically before
Beta DOS's code is added to your system file. The ability to
escape from keyboard lock-ups by pressing the disc interface
button followed by the zero key has also been included, using a
method similar to that described in FORMAT magazine.

This program requires a PLUS D with ROM version la (the ROM
version is printed when you load the system file). It is
normally supplied on a 3.5" B00K formatted disc, but can be
supplied on tape on request.

MAKING A BETA DOS SYSTEM FILE

1. Load G+DOS as you would normally. Have ready either a
 newly - Formatted disc, or one without a system file.

2. Load BDM from the Beta DOS disc. It will auto-run.

3. The program will prompt you to insert a disc containing the

normal G+DOS. The G+DOS system file will be loaded,
converted to G+DOS 2a if required, and the Beta DOS code
will be integrated with it to form a complete Beta DOS.

4. When prompted, press any key to save Beta DOS onto the disc

you have ready, using the name "+sysBeta". The Spectrum
will then NEW itself. RUN to load Beta DOS. In future you
can load Beta DOS as you would G+DOS.

5. You might like to FORMAT some new discs using Beta DOS.

FORMAT gives you the option of creating a larger catalogue,
and the new disc format allows faster data transfer.

6. Beta DOS can be copied onto further discs using e.g:

SAVE dl"+sysBeta" TO dl"+sysBeta"

The program CANNOT be SAVEd directly from the PLUS D’s RAM
using e.g. SAVE "+sysBeta" CODE, unlike G+DOS.

This program tool; me a lot of work to write, and the price is
reasonable - please buy it, don't steal it!

If you have any questions, suggestions or problems write to;

ANDY WRIGHT
 BETASOFT, 21 WHYCHE AVENUE, KINGS HEATH, BIRMINGHAM, B14 6LQ

- 2 -
CAT

The CAT command can now be used on its own to give a catalogue
of files on the current, drive. Simple CATs, Such as CAT or CAT
1! or CAT 2! will work much faster than before, and
automatically sort file names into alphabetical order. To be
precise, CAT sorts into order according to the ASCII code, so
e.g. "+" precedes numerals, which precede capitals,' which
precede lower-case letters. Because simple catalogues are
normally printed in 3 columns, you will get something like this
on the screen:

* MGT PLUS D DISC 1 CATALOGUE *

+sysBeta Snap B prog1
 prog2 prog3 squash
 test

Number of Free K-Bytes == 620
 7 File(s), 73 Free Slots

If you do not want a sorted catalogue, you can turn off the
alphabetic sorting without sacrificing the higher speed, using a
POKE explained in the "System Variables" section.

It is possible to alter the number of columns used by the
catalogue by POKEing a system variable that holds "columns to
use". If you POKE @126,1 you will get a 1-column catalogue like
this:

* MGT PLUS D DISC 1 CATALOGUE *

+sysBeta
 Snap B
 Prog1
 prog2
 prog3
 squash
 test

Number of Free K-Bytes = 620
 7 File(s), 73 Free Slots

You might want to use e.g. POKE @126,6 when doing CAT #3;1! to a
printer able to print 60 or more characters per line. POKE
@126,3 to restore the normal 3-column output.

At the end of all CATs, you will see an indication of the number
of files in the catalogue, and the number of catalogue "slots"
still available for extra file names.

You can send a sorted catalogue to a disc file using something
like this:

OPEN #6;dl"catalogl": CAT 6;1!: CLOSE #*6

Omit the "!" to send the more detailed type of catalogue.

Note: The improved CAT requires enough free memory to store all
the possible file names temporarily, if this is not available,
the original G+DOS routine will be used instead, giving a
slower, unsorted catalogue and a "file count" of zero. A disc
with a 4-track catalogue holding up to 80 files needs 800 bytes
of free memory for a faster CAT.

- 3 -
FORMAT

The FORMAT command allows you to specify how many tracks are to
be used for the disc catalogue, and thus how many files the disc
will be able to hold. If you do not specify a value, the normal
4-trach catalogue is assumed. Each catalogue track holds 20 file
names. Some examples:

FORMAT dl
 FORMAT dl,4 Both allow the normal 80 files and give 7B0K
 of disc space free for files on an 800K disc.

FORMAT dl,5 Allows 100 files and gives 775K free.
 FORMAT dl,10 Allows 200 files and gives 750K free.
 FORMAT dl,39 Allows 780 files and gives 605K free.

Thirty-nine tracks is the maximum you can allocate to the
catalogue, and four tracks is the minimum.

Notes: Discs PORMATed with more than 4 catalogue tracks should
not be used with B+DOS. You should also not make SNAPSHOTS onto
discs with more than 4 catalogue tracks.

As well as allowing you to specify a larger catalogue, FORMAT is
more user-friendly. Instead of simply overwriting 6000-odd bytes
at 49152 as it used to, FORMAT uses the free memory available to
BASIC, so nothing that is in use will be overwritten. (If you
get an "Out of memory" error, you can use CLEAR with a number
like 65000, to raise RAMTOP, or just CLEAR to delete variables,
or NEW - all of which give more free space.)

An improved disc format allows data to be transferred to and
from the disc 10% faster than before. (Discs formatted by Beta
DOS can still be used by G+DOS, provided the catalogue is
normal-sized.)

SAVE file TO file

Beta DOS can copy any file type, including 48K and 128K
Snapshots, OPENTYPE files and execute files. (If you have a
single-drive system, this may require multiple disc swaps.)
G+DOS overwrites important memory areas while copying, and has
to do a NEW even if it succeeds in copying a file, whereas Beta
DOS uses only free memory. This means that you might decide to
CLEAR a high value (e.g. 65000) and/or NEW if you are copying
files and wish to minimize disc swapping. The SAVE file TO file
command now also tells you the file name it is loading or saving
as copying proceeds - particularly useful when copying multiple
files using wildcards. For convenience, you can press ENTER as
well as SPACE when disc swapping, in response to "Insert TARGET
disc - press SPACE" or "Insert SOURCE disc - press SPACE".
When using two disc drives, SAVE dl"file name" TO d2"file name"
usually stops with drive two running continuously. I have not
been able to correct this problem: as with G+DOS, you need to
use drive two in order to stop it. CAT 2 is an easy method.

SAVE OVER

You can use. e.g. SAVE OVER dl"file name" to overwrite an
existing file without the "Overwrite?" prompt being given. This
is particularly useful when re-saving d multi-part program, or a
SCREEN$ file you do not want to corrupt.

- 4 -
LOAD @ and SAVE @

These commands now allow multiple sectors to be handled in one
go, by including a final parameter to specify the number of
sectors. When sector 10 is reached, sector 1 of the next track
is used, allowing multi-tract: SAVE/LOAD. This is much faster
than using many single—sector operations. For example:

SAVE @1,10,1,16384,96

This SAVEs memory to drive 1, starting at Track 10, Sector 1 and
taking the data from 16384 onwards. 96 sectors are SAVEd (48K)
so all of tracks 10-18 and sectors 1-6 of track 19 will be used.
This takes about 3 seconds.

LOAD @1,0,1,35000,40

This LOADs data from drive 1, starting at Track 0, Sector 1 and
placing it in memory at 35000 onwards. Forty sectors are LOADed
- this 20K of data comprises the normal catalogue tracks.
LOADing will take under 2 seconds.

When a LOAD @ or SAVE @ reaches the highest-numbered track on
one side of a disc (track 79 on an 80—track disc) and has to
step to the next track, it will move to the first track on side
two of the disc. The tracks are numbered 0—79 on side 1 and
128-207 on side 2, so the move is from track 79 to track 128. It
is worth remembering this gap in track numbering when writing
utilities that use these commands.

If you omit the last parameter (sectors) it Is assumed to be 1,
and the commands act as they do under G+DOS, with one exceptions
G+DOS has a problem with SAVE @ - if a new track is stepped to
just before the sector is written, and the disc was stationary
beforehand, the sector will often be incorrectly written. This
makes it, and often the next sector, unreadable until the disc
is re-Formatted. Beta DOS corrects this problem.

The high speed of Beta DOS's multi-sector LOAD @ and SAVE @ is
exploited in the BACKUP program on your Beta DOS disc. The
program is written entirely in Basic and I encourage you to have
a look at it.

- 5 -
SERIAL FILES

Serial files are described rather briefly in the PLUS D manual,
under the heading "Using Streams and Channels", but many users
will be unfamiliar with some of the concepts involved. Since the
random-access facilities provided by Beta DOS are closely
integrated with the serial file facilities of G+DOS, you need to
understand serial files first - hence the existence of this
section!

Creating a Serial File

To create a serial file, you must first of all OPEN the file for
output, specifing a stream number and a file name, for example:

10 OPEN #4;dl"testfile"OUT

(Beta DOS allows you to use RND in place of OUT for greater
reliability - see the section "Some Differences From G+DOS".)
The disc operating system will check to see if "testfile"
already exists on drive 1, and ask you whether you want to
overwrite the old copy if It finds one. Stream 4 will be
assigned to the file, unless stream 4 is already in use. (You
can use any stream number from 4 to 15.) Prom now on, PRINT
commands qualified by "#4" will PRINT to the disc file, rather
than the screen. For example:

20 FOR n=l TO 50
 30 PRINT n;" abcdefghi"
 40 PRINT #4;n;" abcdefghi"
 5B NEXT n

You can see what is being sent to the disc file because line 30
prints a copy to the screen. The file will contain 50 strings,
from "1 abcdefghi" to "50 abcdefghi". In many applications these
strings may be referred to as RECORDS.
If every single character had to be placed immediately onto the
disc, writing to a file would be very slow. Instead, characters
are accumulated in a special buffer in memory until there are
enough of them to fill a whole disc sector. Then the disc drive
is started up, if need be, and the whole sector is written in
one go. Similar buffers are used when files are read. The PLUS D
stores 510 data characters in each sector. Two more bytes are
used by the DOS, giving a total of 512 bytes per sector. The use
of a buffer means that the program above is incomplete; when the
FOR-NEXT loop finishes, the buffer will be only part-full, and
if nothing is done the information in it will be lost forever.
Therefore we need to CLOSE the files

60 CLOSE #*4
 70 STOP

This writes the last buffer to the disc, and also creates an
entry in the disc catalogue. The type is shown as "OPENTYPE".
The "*" is very important! If it is omitted the line will be
accepted, but the computer will crash when the line is executed
because of a bug in the Spectrum ROM, and you will lose your
program.

- 6 –
READING A SERIAL FILE

Having created a serial file as described above, we will now
read it. Again the file must be OPENed, but this time with the
IN keyword. The stream number you specify in the OPEN statement
can later be used to read data from the file using either INPUT
or INKEY$ #.

100 OPEN #4;dl"testfile"IN
 110 INPUT #4;a$
 120 PRINT a$
 130 GO TO 110

The example above will show the file contents and then stop with
an "END o-f file" report. To close the file, you should type:

CLOSE #*4

Although closing an input file is not as vital as closing an
output file, input files use memory for a buffer just as output
files do, and this cannot be reused without a CLOSE. Besides,
the stream needs to be closed if it is to be used again.

Each INPUT reads one of the strings originally PRINTed to the
file, and you may wonder how this is done - in other words,- how
does the DOS know where a string ends? The answer is that each
string is "terminated" by a special character, CHR$ 13, which is
called "carriage return", a name dating from the days of
teletypes. When you enter something like:

PRINT "one"; PRINT "two"

the Spectrum actually sends "o", "n", "e", CHR$ 13, "t", "w",
"o", CHR$ 13 to a ROM routine that puts the normal letters on
the screen but RESPONDS TO the CHR$ 13s by printing on the next
line. Printing to a disc file is similar, but the CHR$ l3s are
actually stored on the disc, instead of being responded to. When
you come to INPUT from the file, the DOS reads characters from
whatever point it has got to in the file until it finds a CHR$
13. It then assigns these characters to the variable specified
in the INPUT command. (The CHR$ 13 itself is thrown away.)

INKEY$ can be used to read a disc file one character at a time.
Unlike INKEY$ from the keyboard, INKEY$ from disc always gets a
character. Try changing line 110 above to:

110 LET d$=INKEY$#4

I suggest you also add a new line:

90 CLOSE #*4

This prevents "Stream used" errors and is often convenient. Now
RUN 90 to try the program with the existing line 120, then with
these variants;

120 PRINT a$;
or 120 PRINT a$;" ";CODE a$

The last version will show up the CHR$ l3s explicitly. You can
create other files that contain "control codes" (which cause
actions) other than CHR$ 13. For example, the print comma which
tabulates screen output sends CHR$ 6s to a disc file, and INK,
PAPER, TAB etc. send special character sequences.

- 7 –
INPUT LINE

If some of the strings being INPUTed contain quotes - for
example, "Bide-a-Wee" as a quoted house name in an address
(ugh!) you will need to use INPUT LINE, just as you would if
the INPUT was from the keyboard. For example:

INPUT #4; LINE a$

More About Opening and Closing Files

It is possible to OPEN a file without specifying IN or OUT; in
that case, the DOS assumes you mean OUT if the file does not
already exist in the catalogue, and assumes you mean IN if it
does.

As well as its use for closing a particular stream, CLOSE lets
you close ALL open files using the form:

CLOSE #*

CLEAR # clears all open files, but without doing a CLOSE. This
makes no difference to IN files, but OUT files will be lost.

CLEARING DISC ERRORS

CLEAR # also has an additional role on the PLUS Ds it resets a
"number of files open" counter to zero. This counter is
important, because if it is not zero and you change the disc in
the drive, the free space on the new disc cannot be used
properly by SAVE. Normally OPEN, CLOSE and the other DOS
commands maintain a correct counter value, but some errors can
result in odd values which require CLEAR # to be used. For
example, trying to FORMAT a write-protected disc sets the
counter to 255! The counter value can be read using one of the
new Beta DOS functions (see SYSTEM VARIABLES).

MOVE

The MOVE command reads a file, a character at a time, and writes
it to another file or a stream. It actually uses something very
like successive INKEY$ #s and PRINT #s to do this, but the
process is invisible to the user, and the streams and buffers
associated with the disc files are OPENed and CLOSEd
automatically by the DOS. For example:

MOVE dl"testfile" TO dl"copyfile"

"Testfile" must exist and "copyfile" should not, unless you want
to overwrite it. This is a fairly slow method of copying a file
and SAVE file TO file (which works with Serial files if you use
Beta DOS) is much faster for long files. However, MOVE is more
flexible. For example, if you had two files called "first" and
"second" you could create a single longer file that contained
copies of them both like this:

10 OPEN #5;dl"conibined"OUT
 20 MOVE dl"first" TO #5
 30 MOVE dl"second" TO #5
 40 CLOSE #*5

You can also MOVE files, to stream 2, which is the main part of
The screen, stream 3,which is the printer, and random-access
files (see later).

- 8 -

RANDOM ACCESS FILES

Although serial files can be very useful they have major this
disadvantage that to locate a particular item in a file you
need to read all the previous items,. To alter an item you have
to read and rewrite the entire file. For some applications, this
can be very inconvenient, and the problem gets worse as the file
gets bigger. Beta DOS provides RANDOM ACCESS filing. This means
you can examine or change any part of a file without having to
load the whole thing. The normal OPENTYPE files are used, but
they are OPENed with the RND extension; e.g.:

OPEN #5;d1”testx” RND
 OPEN #strm;d2”file name” RND

This allows you to write to the file, using PRINT #, as you
could if you had used OUT, and read it using INPUT # or INKEY$
#, as you could if you had used IN. In fact you can change all
the INs and OUTs in the examples for serial files to RNDs and
the programs will work as before. (But see the section "Some
Differences from G+DOS" for information on more subtle
distinctions.)

Creating a Simple Random-Access File

Although you can OPEN any existing OPENTYPE file using RND,
explanations will be more straightforward if we create a simple
test file, as shown below. Those who hate typing will be pleased
to learn that the examples are included on their Beta DOS disc.
LOAD dl"prog1" now.

10 CLOSE #*4
 20 OPEN #4;dl"test"RND
 30 LET a$="abcdefghi"
 40 FOR n=l to 200
 50 LET a$(TO 3)=STR$ n
 6B PRINT AT 10,10;a$
 70 PRINT #4;a$
 B0 NEXT n
 90 CLOSE #*4
 100 STOP

Just RUN to create the file on one of the blank discs you
formatted earlier. I have used the first 3 characters of each
string to store a record number so that we can easily check
which one we are looking at in our experiments. The file will
consist of 200 strings or records, from "1 defghi" to
"200defghi". Although the text of each string is 9 characters
long, each one will take up 10 characters of disc space because
they are terminated by carriage return characters (CHR$ 13s).
These strings are an example of FIXED-LENGTH records, and the
advantages of using this system will become apparent later.

In our example, it was easy to count the characters in a$ and
know how long the records would be, but when you use longer
strings a better way is to use DIM. For example:

25 DIM a$(99)

would ensure each string was 99 characters long and took 100
bytes of disc space. All this should be plain sailing if you
followed the discussion of serial files; if line 20 had ended in
OUT everything would have worked exactly the same way. The disc
file you have created is a normal OPENTYPE file.

-9-

Reading a Simple Random Access Files

Assuming you have an existing OPENTYPE file, you can OPEN it
With the RND qualifier and handle the file just as if you had
Used IN, reading one record after another. As you do this, an
Internal FILE POINTER advances through the file as INPUT # or
INKEY$ are used. This points to the next character to be read.
For example, if you INPUT a 10-character string, the pointer
Advances by 11, because of the CHR$ 13 terminator. (OUT files
Have a similar pointer which points to the next position to
Write to, which is always at the end of the file.)

The file pointer used by Beta DOS starts with a value of zero
Before the first character is read, so we can say that the first
character is at position zero in the file. Just before we read
the last character in the file, the pointer mil have a value 1
less than the file length. The file can be thought of as a
sequence of characters numbered from zero to (file length-1).
When the last character has been read, the pointer value will
equal the file length, Any further reads will give an
end-of-file error. The file pointer of a serial IN or OUT file
cannot be changed by the user; it simply increases automatically
during PRINT, INPUT and INKEY$. In contrast, Random-Access files
(OPENTYPE files OPENed using RND) allow the file pointer to be
freely altered using the POINT command.

POINT

The syntax is;

POINT #stream,position

The file Pointer for the file associated with the specified
Stream is immediately moved to the specified position. (This
will often cause a new sector to be loaded from disc.)

Note: If you are using 48K mode and have forgotten how to type
POINT, it is Extended/sym-shift 8. The appearance of listings
can be improved by typing a space first, to get the indentation
right.

Now try this, by using RUN 200

200 CLOSE #*4
210 OPEN #4;d1;”test” RND
220 INPUT "Record? ";rec; POINT #4,(rec-1)*10
230 INPUT #4;a$
240 PRINT a$
250 60 TO 220

You should be able to see the advantages of having fixed-length
records - the pointer value for any record can be easily
obtained from the record number, allowing you to INPUT from any
record in the file very quickly. If the record you want is in
the current sector, it will be obtained particularly quickly,
but even if it is at the other end of a 700K file, and the disc
is stationary, the record can be obtained in 1 or 2 seconds.

Notes: POINT with a value less than zero will give an "integer
out of range" error, and POINT with a value greater than the
file length will give an "END of file" error.

- 10 –

Altering a Random-Access File

An OPENTYPE file OPENed in random-access mode can be written to
as flexibly as it can be read. The file pointer indicates the
position that data will be written to, as well as read from, so
POINT allows any record to be altered. The program below
demonstrates random reading and writing of our trusty "test"
file. It leaves the record number intact to provide reassurance,
although we always know which record we are dealing with simply
from the file pointer value we set using POINT: record=file
pointer/record length+1. (Later you will see how to read the
value of the file pointer directly.) Now LOAD dl"prog2".

10 CLOSE #*4
20 OPEN #4;dl"test"RND
30 DIM a$(9)
40 PRINT "Read, Write or Exit? (R/W/E) "
50 LET c$=INKEY$
60 IF c$="W" OR c$="w" THEN GO SUB 100
70 IF c$="R" OR c$="r" THEN GO SUB 300
80 IF c$<>"E" AND c$<>"e" THEN GO TO 50
90 CLOSE #*4: STOP

100 INPUT "Record to write? ";r
110 IF r=0 THEN RETURN
120 POINT f»4,(r-l)»10
130 INPUT #4;a$
140 PRINT "Old text:";a$
150 PRINT "New text?"
160 INPUT n$
170 IF n$="" THEN BO TO 100
180 LET a$(4 TO)=n$
170 POINT #4,(r-l)*10
200 PRINT #4;a$
210 GO TO 100

300 INPUT "Record to read? ";r
310 IF r=0 THEN RETURN
320 POINT #4,(r-l)*10
330 INPUT #4;a$
340 PRINT a$
350 GO TO 300

I suggest you play with the program, reading and writing records
all over the file. (You might want to add a check to prevent the
use of record numbers greater than the number of records in the
file.) Enter a "record number" of 0 to stop writing or reading.
(In fact the write subroutine at line 100 can serve for reading
as well, since if you press ENTER when prompted for "New text?"
the record will not be altered.) Notice that POINT is used at
line 120 to set the file pointer for an INPUT, and then again at
line 190 for a PRINT to the same record, because the INPUT will
have moved the painter. When you are finished press "E" to exit
and CLOSE the file. The disc may or may not run, depending on
whether you have altered the current sector or not.

- 11 -

RANDOM-ACCESS FUNCTIONS

FN P - Reading the File Pointer

As well as being able to move the file pointer using POINT, Beta
DOS is able to read the current pointer position using a new
function, FN P. (LOAD dl"rafprog" now.) To use the function you
need to have a line like this somewhere in your programs

1 DEF FN p(x)=USR 8

(You can MERGE d1"line1" to obtain a line with all the new
function definitions in it.) FN p(stream) will tell you the
pointer position for a random-access file associated with the
specified stream; e.g.

10 OPEN #4;dl"test"RND
20 PRINT FN p(4);" ";
30 INPUT #4;a$: PRINT a$
40 GO TO 20

This function is most useful when a file contains variable-
length strings and the file pointer moves by different amounts
with each INPUT. You can find out the position of a particular
string and get back to it later using POINT.

FN L - File LENGTH
Extending a Random-Access File

You can extend an OPENTYPE file easily by setting the file
pointer to the end of the file using POINT before you use PRINT
to add new data. To do this you need to know the length of the
file, and Beta DOS provides a new function to tell you - FN L.
To use it you must include somewhere in the program a line like
line 100 below:

100 DEF FN L(x)=USR 8
110 CLOSE #*4
120 OPEN #4;dl"test"RND
130 LET length=FN L(4)
140 POINT #4;length
150 FOR n=l TO 10
160 PRINT #4;"extended "
170 PRINT FN L(4)
175 NEXT n
180 CLOSE #*4: STOP

This will add some data to the end of our much-used "test" file,
printing the current file length as each string is added. If
line 140 had been omitted, the first part of the file would have
been overwritten by 10 "extended "s, because the file pointer
would have started at zero. The file length would have stayed
the same.

The file length is the maximum value you can use with POINT, so
if you want to extend a file, even with blank records, you must
POINT to the end and use PRINT # to increase the file size.

You may wonder why line 140 does not read: 140 POINT #4,FN L(4).
For technical reasons you cannot combine a Beta DOS or G+DOS
command with one of the new functions in a single statement. Use
a temporary variable to avoid this, like "length" in the example
above. Why do I keep using "L" instead of "l"? Because it saves
confusion with "1" in listings.

- 12 –

Now let's read the entire file to check that all is as we
expect:

200 CLOSE #*4
210 OPEN #4;dl"test"RND
220 INPUT #4;a$
230 PRINT a$
240 GO TO 220

This finishes with an "END of file" report, which can be a
problem when you are writing a real program. It is possible to
end the file with a "rogue value" like "zzz" and use a line
like: 240 IF a$<>"zzz" THEN GO TO 220 but this is not very
convenient. Beta DOS provides a new function to tell you when
the end of the file has been reached so that you can avoid
further INPUTS - see below.

FN E - END-Of File Function

To use this function you need a line like this somewhere in your
program:

190 DEF FN e(x)=USR 8

The function returns a zero if the last character in the
specified stream has not been read yet, or a one if it has. The
example above could make use of a modified line 240:

240 IF FN e(4)=0 THEN GO TO 220

Unfortunately you can only use these three new functions on
OPENTYPE files which have been OPENed using RND.
DATA PACKING IN RANDOM-ACCESS FILES

Our "test" file is fairly small and simple. A real example would
probably use longer records, with different parts of the records
dedicated to particular purposes. (These areas are called
"fields".) For example, if each record is created by PRINTing a
100-character string to the file, you might place data in a
record as shown below. (This partial program is not on your
disc.)

100 DIM d$(100)
110 INPUT "Author? ";a$
120 LET d$(TO 40)=a$
130 INPUT "Title? ";t$
140 LET d$(41 TO 96)=t$
150 INPUT "Year of publication? ";y$
160 LET d$(97 TO 100)=y$
170 PRINT #something;d$

(You can also do a direct INPUT d$(TO 40) but the method above
is handier when you come to add error—trapping.)

Having read such a record from a file, you could display the
information like this;

500 PRINT "Author:";d$(TO 40)
510 PRINT "Title:"id$(41 TO 96)
520 PRINT "Year:";d$(97 TO 100)

- 13 –

Some data can have an annoying number of fields – an address,
For example, can include street, district, town, county and
Postcode. If you reserve enough space for the maximum field
Length assumed possible, you waste LOTS of disc space. An
Alternative approach is to stay with a fixed-length for each
complete record, but handle the contents a bit more flexibly.
For sample, we could store a number of variable-length items
per record as shown in the incomplete program section below:

600 DIM d$(100)
610 LET t$=""
620 INPUT a$
630 IF a$="" THEN GO TO 660
640 LET t$=t$+a$+CHR$ 13
650 GO TO 620
660 LET d$=t$
670 PRINT #4;d$
680 REM rest of program

The items are separated by carriage returns, which means we need
multiple INPUTS to read each complete record, as shown by the
incomplete input routine below:

900 LET ptr=FN p(4)
910 INPUT #4;a$
920 PRINT a$
930 IF FN p(4)<ptr+100 THEN GO TO 910

The use of FN P as shown allows a variable number of sub-strings
to be stored in each record. The data could be built up into a
single string, instead of being printed, by something like LET
t$=t$+a$+CHR$ 13, lf you Preferred. You could also have stored
the data on disc using something other than CHR$ 13 as a
separator. Any character with a code between 128 and 255 will
do, since it probably will not occur in the data itself - e.g.
CHR$ 128. This will allow you to read the record with a single
INPUT, but require you to search for the separators in order to
distinguish individual items.

STORING NUMBERS

Let's assume you want to store numeric data in a file. Sometimes
you can simply PRINT the number, as in: PRINT #5;x. However you
will have more control over exactly what part of the file is
used if you do something likes LET d$(10 TO 12)=STR$ x. The
details of the best method to use will depend very much on the
range and precision of numerical values you want to store and
on how keen you are to save space. For example, if x is a whole
number between 0 and 255 you can use e.g.: LET d$(65)=CHR$ x.
(LET x=CODE d$(65) is the reverse.) You can limit a value to a
fixed number of decimal places using e.g. LET x=INT (x*100)/100
before storage (this limits to two decimal places).

- 14 –

VARIABLE-LENGTH RECORDS

Sometimes fixed-length records are unsuitable because the data
you are dealing with is so variable in size that too much disc
space would be wasted. Sometimes variable-length records may be
just simpler to program, particularly if you rarely or never
want to update a record (which is tricky, expecially if the new
data is longer). Also, you may want to read data from existing
serial files made up of variable-length records. Once you are
used to random-access you may find the delay associated with
reading a record part-way through such a file (using multiple
INPUTS) rather Irritating. Unfortunately, the variable record
length means that it is not possible to use the normal form of
POINT to access a given record; e.g.:

POINT #stream,(record number-l)* record length

There are devious ways round this, like keeping a file of
fixed-length data giving pointer values to each variable-length
record in another file, or a later part of the same file. But
let's keep things simple, and exploit another feature of POINT
instead. Something like:

POINT #5, OVER 10

will start from wherever the current file pointer is, and pass
over 10 carriage returns before setting a new pointer position.
So to point to the 2000th. record in a file, we could use:

POINT #5,0: POINT #5, OVER 1999

This will point to the start of the file, and then pass OVER
1999 carriage returns. Although POINT will have to read the
first 1999 records in order to do this, it reads at about 22.5K
per second, so that for many files the time required is
insignificant. Besides, if you know what record you have just
INPUT, you often do not have to start at the beginning of the
file again. For example, if you have INPUTed record number 200B,
and want to INPUT record 2100 next, POINT #5, OVER 99 will work.
It is even possible to re-define the character POINT OVER
"passes over" as the program runs, using POKE @125, (character
code), so you can separate records by one character (say, CHR$
128) and fields by another, and use POINT OVER to find both the
record and the field you want, very quickly. To illustrate this,
the listing below creates a file of 1000 records, each
terminated by CHR$ 128 and containing 6 random-length fields
ending in CHR$ 13. The semi-colons at the end of lines 60 and 80
prevent carriage returns being sent to the file. You can load
the program from the Beta DOS disc using LOAD dl"prog3". RUN to
create the file. This will take some time, as the file will be
about 150K long. Go for a tea or coffee break!

10 CLOSE #*4
20 OPEN #4;dl "varifile" RND
30 FOR r=l TO 1000
40 PRINT AT 10,10;r
50 FOR f=1 TO 6
60 PRINT #4;"Record;";r;" Fields";f;
70 PRINT #4;" abcdefghijklrnn"(TO RND*14)
80 NEXT f: PRINT #4;CHR« 128;
90 NEXT r
100 CLOSE #*4
110 STOP

- 15 –

When you get back, the program below will let you read any
desired field and record from the files:

200 CLOSE #*4
 210 OPEN #4;dl"varifile"RND
 220 POINT #4,0
 230 INPUT "Record? ";r
 240 IF r=0 THEN STOP
 250 INPUT "Field? ";f
 260 POKE @125,128
 270 IF r<>1 THEN POINT #4; OVER r-1
 280 POKE @125,13
 290 IF f<>1 THEN POINT #4; OVER f-l
 300 INPUT #4;r$: PRINT r$
 310 60 TO 220

OPENING MULTIPLE FILES

Our examples have only dealt with one file being open at a time,
but it is quite possible to have many files open at once in
random-access mode. However, if the files you are using involve
writing to a new file, or extending an old one, then all those
files must be on the same disc and disc drive. (Other files can
use the second drive.) This is similar to the way in which G+DOS
requires all OUT files to be on the same drive.

Open files take almost 800 bytes of RAM so you may run out of
memory when you try to do an OPEN.

MOVE and Random—Access Files

It is possible to MOVE a file to a stream OPENed to a
random—access file. Since MOVE uses the equivalent of PRINT # to
transfer data, the results are easy to predict. If you have just
OPENed the random-access file, the file pointer will be at zero
and the MQVEd data will overwrite the existing file until it has
all been overwritten and the file begins to extend. If you use
POINT and the file length function to set the file pointer to
the file end, the data will extend the file without overwriting
any of the existing data.

- 16 –

SOME DIFFERENCES FROM G+DOS

There is a problem with G+DOS`s save-a-sector routine; if the
disc has stopped, and the destination sector requires the disc
head to move to a new track, the sector may be written before
the disc has reached full speed. This can corrupt the sector
being written, and often the next one on the same track. In mild
cases the sector can still be read, but with difficulty. Often
the only cure is to re-FORMAT the disc. The problem can occur
during SAVE @ using G+DOS - Beta DOS corrects this. It can also
occur when a serial output file is being written, and Beta DOS
does not correct this for files OPENed using OUT. However, a
file OPENed using RND can be used as a serial output file and
does not suffer from the fault.

If you use RND instead of OUT:

Writing will be much more reliable.

There will be no error message if the file exists, and you might
overwrite a file without wanting to. You can check for this
possibility using the file Length function, FN L, which will be
zero if you have just OPENed a new file.

If you use RND instead of Ins
There will be no error message if the file does not exist, until
you try to INPUT from it. (This will give an "END of file"
report.)

There will be no error message if you write to the file.

The most common source of accidental attempts to write to an
input file is the INPUT command. The examples below will produce
a "Writing a READ file" report with a file OPENed with IN,
whether you are using Beta DOS or G+DOS:

INPUT #4;"address? ";a$
INPUT #4;a$,b$

This is because the prompt, and less obviously, the print comma,
both try to write to stream 4. When you are using a file OPENed
using RND, Beta DOS presumes you do not really want to write to
a disc file during an INPUT, and ignores any such attempts
without doing any writing.

Using G+DOS it is possible to part-OPEN a disc file if you press
Break or there is a disc error during OPEN. This can cause a
reset if you then try to CLOSE, OPEN or CLEAR #. This should no
longer be possible, although you may have to use CLEAR # to
reclaim the memory used by OPEN.

Rarely, G+DOS can lock-up the Spectrum due to interrupts being
disabled on return from a disc operation. This means that the
keyboard is ignored. Beta DOS has enough sections of G+DOS
attached to it to have the same problem, but it allows you to
escape from this situation by pressing the disc interface button
and then the zero key (a method first described in FORMAT
magazine)

- 17 –
PEEKING THE PLUS D`S MEMORY

Beta DOS provides two extra functions which can be useful,
particularly if you are interested in the "techie" side of
things. FN S provides a PEEK of "Shadow" ROM and RAM i.e. the
ROM and ROM in the PLUS D, which is normally switched off unless
a disc operation is in progress. The little program below will
let you examine the PLUS D-s ROM at addresses 0-8191, its RAM at
8192-16383, and the normal Spectrum RAM at 16384-65535.

10 DEF FN s(x)=USR 8
20 INPUT "address?";a
30 PRINT a;" ";FN s(a)
40 LET a=a+l: GO TO 30

(For a more complex example of the use of FN S, look at the
BACKUP program on your Beta DOS disc.) This function relates in
a very simple way to POKE @, which allows POKEs to be made to
the PLUS D RAM. POKE @0,x POKEs a value into address 8192 - the
first (“zeroth”) byte of shadow RAM. You can read the value you
POKEd with PRINT FN s(8192), or, for an even easier method use
a second function, FN A, which simply calls FN S with an offset;

1 DEF FN s(x)=USR 8: DEF FN a(x)=FN s(x+8192)

Then PRINT FN a(address) will refer to the same byte as POKE
@address,x.

SYSTEM VARIABLES

You can use POKE @ and FN A to change or monitor the state of
Beta DOS using the following system variables.

124 DTKS The number of tracks in the catalogue. Set by
SAVE,LOAD, CAT, ERASE. Will be 4 for a disc
with a normal 80-file catalogue.

125 DELIM Character code used by POINT as a
record terminator. Usually 13, for a CHR$ 13.

126 COLS Number of columns in a simple CAT. Usually 3.
127 COMP Compression flag. If "squash" has been loaded,

this will be 1, signalling "compress Snapshots".
POKE @127,0 to turn off compression.

4480 PTRLET Usually 80 (P) Letter for Pointer function.
4481 EOFLET Usually 69 (E) Letter for End of File function.
4482 SPKLET Usually 83 (S) Letter for Shadow PEEK function.
4483 LENLET Usually 7& (L) Letter for Length of File function.

Locations 4480-4483 contain the character codes for ,FNs P, E, S
and L. If you have programs that already use these function
letters, you can redefine the letters used by the Beta DOS
functions by POKEing new character codes here. For example, POKE
@4480,81 to allow use of DEF FN Q(x)»USR 8 and FN Q(x) in place
of FN P(x).

4484 SRTFG Usually 1, which turns on alphabetic sorting of
simple CATs. POKE @4484,0 to turn this off.

7652 NBOT Beta/G+DOS. POKE @7652,0; NEW.- RUN to re-boot DOS
7663 SAMCNT Beta/G+DOS "files open" counter. Zeroed by. CLEAR #.

To prepare a copy of Beta DOS which will be already POKEd when
you load it, instead of: POKE Saddr,value use this:

10 CLEAR 29999: LOAD dl"+sysBeta"CODE 30000
20 POKE addr+30000, value: SAVE dl "+sysBeta"CODE 30000,6850

- 18 –
BACKUP UTILITY

The BACKUP utility on your disc is a Basic program that uses
LOAD @ and SAVE @ to copy all the files on a disc in 38K or
larger chunks. The new Shadow PEEK function (FN S) is used to
read the PLUS D's sector allocation map for the source disc so
that unused tracks are not normally copied. If you are using a
128K Spectrum in 128K mode the RAM disc is used as a temporary
store to minimise disc swapping. The program shows you how many
swaps are needed unless it can do the Backup in one go. If you
are lucky enough to have two disc drives, alter line 40 of the
program to LET dd=2. The program will then copy from drive 1 to
drive 2 without any disc swaps.

SQUASH - COMPRESSION UTILITY FOR 4BK and 128K SNAPSHOTS

This utility is provided as a separate EXECUTE file because
there isn't enough space in the PLUS D's RAM to include it as an
integral part of Beta DOS. To use the utility, simply LOAD
dl"squash"x and the program will load and integrate itself with
either Beta DOS or G+DOS in the PLUS D's RAM. Beta DOS will lose
the ability to sort file names in a CAT alphabetically, and the
new functions will no longer work, because they have been
over-written. (Don't worry - CAT still works, it just doesn't
sort, and use of the functions will give a "FN without DEF FN"
report - the program will not crash.) When "squash" is used with
G+DOS, no facilities will be lost, and the modified G+DOS can be
saved using e.g. SAVE dl"+sys sq' CODE 8192,6656 if desired.

When "squash" has been loaded, any 48K or 128K snapshot you make
will be compressed before saving. With 48K snapshots there will
be brief screen corruption as compression occurs. The files
created in this way appear as normal SNAPSHOTS in the directory,
but of course the size will be less than the normal 97 or 258
sectors.

The degree of compression will vary a lot according to the state
of the computer when the snapshot was made. If you have just
turned the machine on, and the screen is fairly clear, very
large compressions are possible because most of memory is filled
with repeated zeros. For a 128K snapshot, this may still be true
even after a game has been loaded, but compressions possible
with a professional 48K game are usually more modest - perhaps
to 80% of the original size. Still, you should be able to fit
lots more snapshots on a disc! Best results are achieved when
the memory is as unused as possible, so it is a good idea to
reset the machine before starting. You can do that with a Reset
button, if you have one, or use a facility provided by "squash"
- press the interface button and then SPACE.
When you come to reload a compressed snapshot you must use a DOS
which has had "squash" added to it. Both compressed and
uncompressed snapshots can then be loaded, so you can load a
series of normal snapshots and re-SAVE them in compressed form.
You will see brief screen corruption as compressed 4BK snapshots
are loaded.

It is possible that you might want to load compressed snapshots
and then save them as normal uncompressed snapshots. To do this,
POKE @127,0. Normal or compressed snapshots can then be loaded
but all saved snapshots will be normal . Compression can be
turned back on by POKE @127,1.

- 19 -

Undocumented Commands

CAT 1””””” Will return the amount of disk space left on
drive 1. [4 “s]

Useful Poke @`s

Poke @0,n [n=0 to 7] ; Default-. 7.
Flash border when loading
0 means NO flash at all.

POKE 03,n Step rate for disk drive. [Default 36ms]

POKE @299,64: POKE @2330.64
Resets Snapshot to 16K ,33 Sectors.

POKE @299,192: POKE @2330,192
Change above to 48K Snapshot.

POKE @3780,((8*paper)+ink)
Resets screen colour for CLS #.

POKE @6000,xxxx DOS Checksum.
poke 10 and you fool the DOS
into thinking its not loaded.

POKE @7652,0 Resets the DOS system

POKE @23755-8192,65535
Merge proof loader. First line must be:-
1 REM

POKE @23757-8192,65535
Before you save makes first line 64K
long, gives Out of Memory error.

PULS D MEMORY MAP:
0 - 8191 - ROM.
8192 - 16383 - RAM.

Beta Dos Fixer

10 REM BETADOS BUG FIXES
15 REM (INCLUDING SNAPFIX)
20 REM (PD) By Miles Kinloch
22 REM from FORMAT Vol 9.9
30 REM
32 REM Typed by SPT 14-06-04
40 CLEAR 4e4: RESTORE : LET check=1: LET c1=0: LET

c2=0: LET c3=0: FOR a=40001 TO 40065: READ d:
LET c1=c1+d: POKE a,d: NEXT a: DATA
33,0,160,17,1,160,1,193,26,54,0,237,176,201,221,
33,0,0,33,0,160,1,97,13,94,35,86,35,221,25,11,12
0,177,32,245,221,229,193,201,221,33,0,0,17,0,160
,1,194,26,26,183,32,2,221,25,19,11,120,17
7,32,244,221,229,193,201: REM Routine to perform
initial check of data

42 PRINT "Confirming data - please wait..."
45 IF c1<>6330 THEN PRINT "CHECK DATA - ERROR IN

LINE 40!": STOP
50 RANDOMIZE USR 40001: GO SUB 70: LET c2=USR

40015: IF c2<>40484 THEN PRINT "CHECK DATA -
ERROR IN BYTES!": STOP

52 LET c3=USR 40040: IF c3<>48180 THEN PRINT "CHECK
DATA - ERROR IN ADDRESS!":STOP

55 PRINT "Put a disk with a PREVIOUSLY UN-MODIFIED
Betados system file in Drive 1,then press any
key.": PAUSE 0

60 SAVE d1"+sys Beta"CODE 40960
65 CLS : PRINT "Please wait....": RESTORE 70: LET

check=0:
70 FOR a=44149 TO 44160: READ d: POKE a,d: NEXT a:

DATA 191,40,9,254,223,40,5,205,236,54,32,4: POKE
44156,254: POKE 44157,165: POKE 44158,0: REM
Fixes OPEN #command statement end

80 FOR a=46403 TO 46410: READ d: POKE a,d: NEXT a:
DATA 215,130,28,247,200,215,153,30: REM Fixes
FORMAT dn,n command to work on drive specified

90 FOR a=45175 TO 45236: READ d: POKE a,d: NEXT a:
DATA
78,111,46,32,111,102,32,70,114,101,101,32,75,45,
66,121,116,101,115,32,61,160,205,215,34,210,124,
4,205,220,2,195,72,24,237,115,102,32,205,178,50,
24,7,237,115,102,32,205,173,50,195,220,2,205,2,7
,58,16,62,195,181,36: REM Fixes command codes
67, 68 and 69, also sorts SAVE @/Load@ error bug

100 POKE 41726,172: POKE 41727,48: POKE 45729,166:
POKE 45730,48: POKE 45737,157: POKE 45738,48:
POKE 45446,220: POKE 45447,2: POKE 43178,153:
POKE 43179,48: POKE 43181,141: POKE 43182,48:
POKE 43267,162: POKE 43268,48: POKE 43270,141:
POKE 43271,48: POKE 45749,246: POKE 45750,50:
POKE 45789,42: POKE 45790,210: POKE 45791,58:
POKE 45798,204: POKE 45799,228: POKE 45800,12:
POKE 47627,195: POKE 47628,121: POKE 47629,49:
REM Miscellaneous POKEs to call new patches etc.

110 FOR a=45812 TO 45818: READ d: POKE a,d: NEXT a:
DATA 167,201,211,239,195,246,55: REM Clears
carry flag after successful SAVE@/LOAD@ command
spin proper drive before saving

120 FOR a=45250 TO 45318: READ d: POKE a,d:
NEXT a: DATA
22,1,7,73,110,115,101,114,116,32,83,79,85,
82,67,69,32,100,105,115,227,205,138,23,22,1,7,73
,110,115,101,114,116,32,84,65,82,71,69,84,32,100
,105,115,227,58,26,62,184,202,212,35,219,235
,50,210,35,58,211,35,211,235,58,210,35,50,211,35
,201: POKE 45246,24: FOR a=41935 TO 41939: READ
d: POKE a,d: NEXT a: DATA 195,239,48,0,0: REM
Increases speed and reliability of SAVE
...TO.... when copying between 2 drives

130 FOR a=44916 TO 44949: POKE a-4,PEEK a: NEXT a:
FOR a=44946 TO 44963: READ d: POKE a,d: NEXT a:
DATA 205,79,49,195,2,7,205,135,47,195,101,52,
205,152,47,195,121,40: FOR a=44971 TO 45006:
POKE a-7,PEEK a: NEXT a: FOR a=45000 TO 45011:
READ d: POKE a,d: NEXT a: DATA
195,79,49,235,237,91,197,58,58,79,62,233: FOR
a=41643 TO 41686: READ d: POKE a,d: NEXT a: DATA
217,229,217,33,197,34,229,237,115,102,32,195,203
,47,214,24,254,21,210,55,49,17,222,34,24,212,229
,205,215,34,225,217,225,217,205,142,22,195,80,0,
225,217,225,217: REM Preserve HL'

140 POKE 41621,35: POKE 41110,135: POKE 41694,135:
POKE 41696,152: POKE 41698,158: POKE 41702,164:
POKE 41710,170: POKE 41714,176: POKE 41722,182:
POKE 41734,211: POKE 44965,196: POKE 44971,135:
POKE 44977,196: POKE 44983,135: REM (Alters the
call to relocated routines)

150 POKE 41704,217: POKE 41705,52: REM Alters
command code 56 to be able to cope with disks
formatted for more than 80 files

160 FOR a=43828 TO 43848: READ d: POKE a,d: NEXT a:
DATA
205,79,49,205,218,43,48,13,24,93,205,72,49,205,2
,7,205,76,14,24,82: FOR a=42777 TO 42785: READ
d: POKEa,d: NEXT a: DATA
24,64,241,24,81,254,88,32,93: POKE 42701,77:
POKE 42770,11: POKE 42707,62: POKE 42708,43:
POKE 43803,10: REM Creates command LOAD d1 ect.
To change current drive. Also fixes form of MOVE
command: MOVE #s to dn"name"

170 POKE 46391,245: POKE 46392,205: POKE 46393,177:
POKE 46394,36: POKE 46395,241: REM Fixes FORMAT
d* command so syntax is accepted)in
conjunction with line180)

180 FOR a=42318 TO 42328: READ d: POKE a,d: NEXT a:
DATA 195,124,4,58,58,92,254,14,192,225,201: FOR
a=42154 TO 42164: READ d: POKE a,d: NEXT a: DATA
221,33,108,253,195,80,0,175,195,36,51: POKE
43147,205: POKE 43148,81: POKE 43149,37: POKE
43150,0: POKE 47636,170: POKE 47637,36: REM
Keeps IX correct after FN calls for
better compatibility with 128 BASIC, sorts error
message with SAVE " ", fixes problems with
capital D when saving or erasing. Also part of
ode for fixing FORMAT d* syntax bug.

185 FOR a=45396 TO 45439: READ d: POKE a,d:
NEXT a: DATA
205,138,23,127,32,77,71,84,32,38,32,66,101,116,9
7,83,111,102,116,32,40,49,57,57,48,41,32,66,68,7

9,83,32,49,46,51,13,141,62,201,50,155,32,24,212:
REM Relocate boot message in buffer area

190 FOR a=45078 TO 45093: READ d: POKE a,d: NEXT a:
DATA
205,79,49,195,132,5,254,160,200,254,83,200,195,1
98,55,225: FOR a=41213 TO 41217: POKE a,0: NEXT
a: POKE 42606,37: POKE 42607,48: POKE 47043,195:
POKE 47044,28: POKE 47045,48: POKE 46828,167:
POKE 46829,195: POKE 46830,142: POKE 46831,22:
POKE 47063,236: POKE 47064,54: REM Fixes
problems with printing to a file opened RND

191 REM Lines 192-197 SNAPFIX
192 FOR a=45250 TO 45294: READ d: POKE a,d: NEXT a:

DATA 73,110,115,101,114,116
,32,79,82,73,71,32,100,105,115,227,205,138,23,73
,110,115,101,114,116,32,84,65,82
,71,69,84,32,100,105,115,227,245,205,56,46,241,1
95,21,33

193 FOR a=44593 TO 44610: READ d: POKE a,d: NEXT a:
DATA 24,40,205,72,49,24,14,
42,254,63,62,103,195,234,45,205,185,46

194 POKE 45246,19: POKE 44576,18: POKE 44580,14:
POKE 41211,64: POKE 41206,195:
POKE 41122,231: POKE 41123,48: POKE 44736,195

195 FOR a=44739 TO 44747: READ d: POKE a,d: NEXT a:
DATA 205,185,46,33,56,0,34,141,92

196 FOR a=44519 TO 44530: READ d: POKE a,d: NEXT a:
DATA 195,125,15,35,35,35,35,190,192,195,112,40

197 FOR a=43120 TO 43127: READ d: POKE a,d: NEXT a:
DATA 35,175,190,192,43,34,254,63

200 CLS : IF check THEN RETURN : REM return here
from initial data check

210 INPUT "Is your spectrum a 128k machine (y/n)? ";
LINE a$: IF a$="N" OR a$="n" THEN GO TO 270

220 IF a$<>"Y" AND a$<>"y" THEN GO TO 210
230 INPUT "Is your spectrum a 2a machine (y/n)?

"''"Answer 'n' if it has been fitted with a 2a
ROM chip by installing B.G. Services conversion
kit."'' LINE a$:
IF a$="Y" OR a$="y" THEN POKE 42156,152: POKE
45088,67: GO TO 270

240 IF a$<>"N" AND a$<>"n" THEN GO TO 230
250 INPUT "Is your spectrum an original Sinclair

machine i.e. the type with the
black case (y/n)?"''"Note - some early 2's used
the old Sinclair casings, so answer 'n' it has
an Amstrad ROM."'' LINE a$: IF a$="Y" OR a$="y"
THEN POKE 45088,52: GO TO 270

260 IF a$<>"N" AND a$<>"n" THEN GO TO 250
270 PRINT "Press any key to resave Beta Dos.":

PAUSE 0: CLS
280 SAVE d1"+sys Beta" CODE 40960,6850
290 STOP
9999 SAVE d1"BetaFix"

For more information about Beta Dos bugs fixer & bugs Fixed see:

Format Magazine Vol 9.8 – 1996 thanks to Bob Brenchley and
Format Magazine Vol 9.9 – 1996 Miles Kinloch
Format Magazine Vol 9.10 – 1996

	Beta Dos Fixer

