
Driver Instructions
by Steve Taylor

Well, twist my nipple nuts and send me to Alaska. Here I am
again: that makes TWO months in a row. Sheesh, anyone would
think I was a sad lifeless git. (Just shut your mouth).

Anyway, welcome to a Fred Guide to Machine Code "Special". Over
the next couple of months this column's gonna be dedicated to
the technical (ish) documentation for "Driver", the new SAM
Wimp environment thingy. Basically, all you lucky Fred readers
will be the first people in the entire Universe to learn how to
write Driver Applications! Yummy.

Let's start at the beginning. Driver is a program. It's 32k in
length with a further 16k of graphics and data. And it runs on
any SAM. (With MasterDOS - a SAMDOS version is difficult but I'm
looking into it). This fabulous bit of software provides a user
interface for other software, in the form of a Windows, Icons,
Mouse and Pull-down menus environment.

{ NB. If you don't have a mouse, cursor keys can be used }

 WHO ARE YOU CALLING A WIMP?

A WIMP environment is designed to be completely user-friendly.
The screen is divided into windows (which can overlap), each of
which displays a task, an application program or some data
attached to an application. Various options are listed in menus,
but are only displayed when the user requests them. Applications
or tasks can be reduced to an icon, a small symbol which
represents the item. For example, a word processor could be
represented by a picture of a pencil.

Now, the user controls the environment using a mouse to direct a
pointer around the screen, and the mouse buttons to select
items. e.g. clicking on an icon or pulling down a menu.

(I could say that Driver is the SAM version of Windows, but of
course that would be breach of copyright so I won't.)

Driver is important in a lot of ways: It pages itself into
memory and allocates the stuff using the official guidelines -
making sure it's 100% compatible with other things (e.g.
MasterBASIC, the dump utility etc). Being 100% machine code, it
can co-exist with a BASIC program too.

It also handles the memory management of resident applications.
You can have up to 8 fully blown Driver applications sitting in
your Coupe simultaneously. Despite the fact that there isn't any
real multitasking between them, you can quite happily switch
between applications without affecting the state of the files
you're editing.

In fact, the applications themselves don't have to worry about
the amount of memory your SAM has - Driver allocates memory
pages as they are needed, with full use being made of external
megs. In theory, you can have files up to 128 16k pages long!!!

 WHY DO I WANT TO WRITE A DRIVER APPLICATION?
 --

A good question, mes amis. In a non-commercial situation you can
make use of the following advantages:

* A common user-interface, meaning that the user doesn't have to
learn lots of new commands from a manual or whatever, and
because I've spent a lot of time developing this "front end" it
looks much better and is more advanced than that of other SAM
applications.

* You don't have to write routines for mundane things like
cursor/ pointer movement, menus etc.

* Full compatibility with all SAMs, meaning that there's no need
to write separate versions for 256, 512, meg etc.

* Ability to share Driver with other applications at the same
point, transferring data between them (using clipboarding)

From a more commercial viewpoint:

* Driver users are going to want more applications than the ones
they get with in package.

The main advantage that I found when writing a few applications
is the lack of need for routines - everything seems to be
provided for you.

 HOW DOES IT ALL WORK, STEVE?

I'm glad you asked me that. Try and remember back to last month,
when I discussed the use of the frame interrupt for
multi-tasking. That principle is the one I've developed for
Driver.

Essentially, your application program sits and runs in lower
memory, paging the screen and data pages into upper memory.
(This arrangement is mainly to allow external RAM to be used. It
can only be paged into sections C and D).

At every frame interrupt, your program transfers control to
Driver, with does things like scanning the mouse, moving the
pointer, flashing the cursor, checking for button presses and so
on. If everything's OK control reverts back to the application.

However, if the user has clicked on a window, menu or whatever,
Driver kick starts the necessary routines.

Right. I think I'd better start adding some detail, 'cos this is
sounding kinda sketchy. At any one time, Driver is running in
one of 5 modes:

0 Wimp mode - all window and menu name gadgets are active.
1 Menu mode A - a menu gadget has been clicked, but there is
 no highlighted "bar"
2 Menu mode B - as above, except that the bar is present.
3 Dialogue mode - Only gadgets in a dialogue box are active.
4 Sleeper mode - No gadgets are active.

Gadgets? Just an umbrella term for the things that can be
clicked.

Notice that this splits things up nicely into three sections.
And that's just what I'll do.

 MODE 0 - WIMP MODE

Your application can be allocated up to 256 windows. Window 0 is
ALWAYS the desktop, covering the whole screen.

Windows possess several gadgets for controlling and manipulating
them. The available gadgets are as follows:-

Name Can't be clicked.
Move Can be clicked and dragged to move the window around.
Size Can be clicked and dragged to change the size of the
 window.
Close Can be clicked to close the window.
X Scroll A horizontal scroll bar, with left and right arrows
 and a little square indicating the current scroll
 position.
Y Scroll As above, but for vertical scrolling.

Any combination of the above gadgets is possible. The desktop is
given, as a default, name and close gadgets only. (You shouldn't
change these, except to add scroll bars).

Each window's "type" can be fully specified using 8 bits. D0 is
set if you don't want the window area to be cleared before its
contents are printed. (For example, if the window contains a
large graphic image).

D7 is used to specify whether the window is Selectively-Active
or Permanently-Active. A SAW (Selectively-Active-Window) must be
clicked to "activate" it, unless it is currently active. A PAW
does not. The distinction is made to provide for situations
where windows can overlap (the active window is brought to the
front). Incidentally, PAWs are always displayed on top of SAWs.

NB. The desktop (window 0) has an additional gadget, a menu bar.
It is also permanently active, but is displayed behind all other
windows.

The full 8 bit description for each window is as follows:-

 D0 Set to avoid window-clearing.
 D1 Set for name gadget.
 D2 Set for close gadget.
 D3 Set for move gadget.
 D4 Set for size gadget.
 D5 Set for x scroll bar.
 D6 Set for y scroll bar.
 D7 Set for SAW, reset for PAW.

Driver has a 256 byte long table holding this type for each
window, called wintype_tab.

In addition to the gadgets/ type of each window, there are also
256 byte long tables for x coords, y coords, x sizes, y sizes, x
scroll positions and y scroll positions.

16 bytes are allocated for each window's name, and there is one
further table - 256 bytes holding the order that the windows are
displayed on screen. (The entries in this table are the window
numbers, with the first byte 0 for the desktop, followed by the
next displayed window, then the next etc.)

All these tables are held in the 16k data page I mentioned
previously, at the following offsets within the page:

Address (hex) Name Comments
--

 1000 wintab Order of windows.
 1100 wintype_tab Types.
 1200 winx_tab X coords.
 1300 winy_tab Y coords.
 1400 winxsize_tab X sizes.
 1500 winysize_tab Y sizes.
 1600 winscrollx_tab X scroll positions.
 1700 winscrolly_tab Y scroll positions.
 1800 winnames Window names. 16 bytes for
 ->27FF each.

Note that the lsb of the address corresponds to the window
number.

I should also mention here the co-ordinate system. Driver uses
mode 3 (hi-res), but with "fat" co-ordinates. ie. in the x axis,
0 is at the left and 255 is at the far right. Also, in the y
axis, 0 is at the TOP with 191 at the bottom.

The text characters used are based on a 6x7 thin pixel grid. In
other words, each character uses 3 coords horizontally and 7
coords vertically. This allows 85x26 characters on screen. (I
use my own font, not the ROM's)

Finally, the scroll bar tables' entries represent the scroll bar
position as a fraction of 255. This means that 0 indicates that
the bar is far left (or top), and 255 is far right (or bottom).
The scroll bars on screen are scaled to retain this. Your
application must translate these values into things like the
position through a text file, for example.

 MODES 1 AND 2 - MENU MODES

The menus are separated from WIMP mode for simplicity. And they
are very simple indeed. On your application desktop you have a
menu bar strip thingy that, when clicked, pulls down the
appropriate menu. I'll start by describing the menu
representation in your application.

* Each menu as stored as the following sequence of bytes:

 name + carriage return.
 number of options
 coords (x,y)
 option 1, option 2, option 3... etc.

The name is stored as ASCII. It can be as long as you like,
finishing with a carriage return (0D hex).

The number of options is simply a byte with, um, the number of
menu options.

Co-ordinates are ABSOLUTE (using 0,0 at top left of the screen)

* Each option is stored as:

 type
 data
 text + carriage return.

The type, similar to that for windows, indicates what the
option does. A menu option can be on or off (if it's off, it is
printed as yellow on white and can't be selected). It can also
run a routine when selected, open a sub-menu, toggle a flag or
do absolutely nothing at all except split up bits of the menu as
a line.

The data is always 8 bytes long: addresses for the routine (or 0
if not applicable), for the sub-menu (0 if N/A) for the flag and
finally values for flag on/off.

Note that even if the option doesn't toggle a flag you can still
assign one - use 0000 as the flag address to avoid this. If the
byte at the flag address matches the "flag on" value a little
tick is placed at the left of the option.

Finally, the text is in simple ASCII format, again with 0D hex
to terminate. The text is padded out (when it is printed) to be
24 chars long - it mustn't exceed 24 characters.

There is a little bit extra detail I could give you here,
connected with sort cut keypresses, but I'll leave that 'til
later.

NB. If the "option" is actually a line, just use 0D hex as the
text.

One more thing - sub menus are represented in exactly the same
way, except that their name is never printed anywhere, so you
might as well just use 0D hex.

This is the second part of the Driver Special; last month I
discussed how Driver works, and started on modes 0, 1 and 2:
WIMP and menu modes.

In a momentary lapse of concentration I failed to mention the
exact flags for menu options:

 D0 Set if the option is "on".
 D1 Set to run a routine on selection.
 D2 Set to open a sub-menu.
 D3 Set to toggle a flag.
 D4 Set to indicate that the option is simply a line.

Note that if you want an option to display a flag, but to run a
routine when selected, you simply set both D1 and D3.

Right, now that that's straight, let's continue with

 MODE THREE: DIALOGUE MODE

Now, this is good. When you want your application to converse
with the user, you can open up a special window (without any of
the normal window gadgets) called a dialogue box. Now, you can
fill the box with a variety of its own gadgets, in a shorthand
form which lets you create quite complex structures without any
coding.

In your application, the data for a box looks like this:

 0-1 x coord (0-255), y coord for top left of box.
 2-3 x size (fat coords), y size.
 4 "Reprint screen" flag. One byte, either 0 or 1.
 A value of 1 will reprint the screen when the box
 is closed.
 5-6 Vector. See below.
 7-end Gadget data.
 end Terminating FFh byte.

The vectored address gets constantly called when the box is
open, to make provision for some sort of background tasking
using a dialogue box. For example, you could have a box with
some sort of meter indicating how much of a file there is left
to load/ print, while the thing is loading or printing. In
nearly all situations the vector is zero, meaning no call.

Entry to the vector is:

 A = 1/0 if the box is/isn't being closed.
 B = 0 - CANCEL
 1 - OK (for when it is being closed)

Return the same registers with the same values, or change the
values if you want.

Note that the vector address is bit 15 dependant - see Vectors
later on.

 The Gadgets.

There are 8 dialogue box gadgets which should provide for every
eventuality. The data for each consists of a number 0-7 followed
by some parameters: (You just list them end to end; type,
parameters, type, parameters.... FFh)

0 - Button: A 32x16 sized box with curved edges and a bit of
text inside (up to 9 characters - the text is centred
automatically). You can assign a flag to it, so it can be on and
off. When it is clicked, a routine is run (see notes below).
Examples of buttons I use? OK, CANCEL, CONTINUE etc..

 1-2 relative coords
 3-4 flag address
 5 flag-on value
 6-7 address of routine to call when button clicked
 8-9 address of text to put inside. (Text ends with
 FFh)
 10-11 address of active-flag. If the byte at that
 address is 0 the gadget is inactive and cannot be
 clicked.

1 - Text: Simply a bit of text in the box.

 1-2 relative coords
 3-4 address of text (ends with FFh)
 5-6 address to find colour.
 (No click response)

2 - Text box: Similar to using INPUT in a BASIC program. Just
put the text in a workspace (see below) and look at the
workspace afterwards to see what the user has typed/ changed. A
variety of uses, the main one being the entry of file names and
the like.

 1-2 relative coords
 3 workspace no (0-7)
 4-5 active-flag address (see above)

3 - Number box: Similar to text boxes, except that it only
allows the entry of numbers between 0 and 65535. It needs a
temporary workspace, but you set it up with a variable (2 bytes
of course) and look at the variable afterwards. Uses? Things
like setting page ranges and so on.

 1-2 relative coords
 3 workspace no (0-7)
 4-5 active-flag address (see above)
 6-7 variable address

4 - Icon: A rectangular symbol. Make sure it's on a white
background like the rest of the dialogue box. I normally use one
to represent the purpose of the dialogue, like "attention" and
"information" symbols.

 1 internal page no. (0 to use application/ driver
data)
 2-3 address of icon data (D15 = 0 to use
application
 D16 = 1 to use page no.
above)
 4-5 size (x,y)
 6-7 relative coords
 7-8 active-flag address (see above)
 No click response.

5 - Switch: A bit like buttons, but more like flag menu options.
A switch consists of a little square with or without a cross in
it (on or off) which you can click, followed by a text label.
Like flag options, you can make the on/off values the same, so
that clicking merely selects it, or you can make them different
so that clicking toggles it on/off.

 1-2 relative coords
 3-4 text address
 5-6 flag address
 7 flag-on value
 8 flag-off value
 9-10 active-flag address (see above)

6 - User: Provided to let you design your own gadgets. When the
user clicks it your routine is called (see notes below). I use
it, together with text, icon and box gadgets to make scroll
boxes which look complex but are build out of only these four
gadgets.

 1-2 relative coords
 3-4 size (x,y)
 5-6 routine to call when gadget clicked.
 Nothing printed on screen.

7 - Box: Simply a rectangle drawn in the dialogue box.

 1-2 relative coords
 3-4 size (x,y)
 No click response.

 Notes

* If a gadget is "inactive" is displayed faded and cannot be
selected. You can use this "active-flag" facility to activate,
say, a text box when a switch is toggled on, or simply use it to
ignore options that aren't available.

* Button routine entered with B = gadget no. (0 being the first
in the list). Zero flag set if button is on.

Return A = 0 - no response.
 1 - reprint gadgets in box. (If your routine has
changed flags)
 2 - close box OK
 3 - close box CANCEL

* Colour for text gadget: D0-D1 = paper col. (0-3)
 D2-D3 = pen col. (0-3)

* User gadget: Click routine entered with A = gadget no. DE =
gadget's relative coords within dialogue box. BC = click offset
within gadget.

When I use a register pair to pass co-ordinates or size, the lsb
is for x, the msb for y. eg. When I use DE to pass coords (as I
often do), E holds x coords, D holds y. To convert this to a
screen address in upper memory do:

 SCF
 RR D
 RR E

Simple, eh?

* There are 8 workspaces for text and number boxes, found in the
Driver data page at an offset of 3800h. Each is 256 bytes long.
You only need to deal directly when using text boxes; you copy
the text in before opening the box (with a terminating FFh
byte), and copy it back when the box gets closed. In fact, all
the text mentioned above uses FFh to terminate.

 ADDRESSING

Now, a note on addressing. Your application program runs in
lower memory, and pages data into upper memory. However, to
distinguish addresses in your application from addresses in
Driver and the File Manager (which also run in lower memory),
you have to set bit 15 of the address. In effect, you add 8000h
to it.

This applies to all the above variable, flag, text and routine
addresses except that for icons. It also applies to the menus
mentioned last month.

When you want to interface with Driver, you page it into upper
memory, and when it wants to interface with your application it
pages itself into upper memory. So, although your routine
addresses might have D15 set, they get run in lower memory, and
you must ensure that Driver is paged into sections C and D when
you return.

Also, Driver keeps track of the application stack as well as its
own, so you don't have to worry about that at all.

 VECTORS

As mentioned previously, Driver runs in parallel with your
application, using the frame interrupt. Well, there are
occasions when you need to intervene in Driver routines. This is
done by using vectors in a similar way to the ROM. Because
writing Driver applications is a tad confusing at first, I tried
to use things you'd all be familiar with.

For those of you who aren't too sure about vectors, they are
simply variables which hold the address of a routine to call in
certain situations. If you don't want to use the vector you
simply put 0 in the vector.

Again, make sure that all the addresses are "high" (with bit 15
set).

There is a table of application vectors inside Driver, and you
set these up when your application is opened. If you want, you
can actually set them again to change the values, but they must

all be changed together.

There are 17 vectors in version 1.0 of Driver:

0. Close window: Called when a window close gadget has been
clicked. (Not window 0, the application desktop)

Enters A = window no.
Return CY set to keep the window open.

1. Print window: Called during the construction of a window on
the screen, after clearing space and drawing the frame. You're
supposed to print the window contents and return, whereupon the
gadgets are added. There are helpful routines for putting text
and graphics in window, more of which next month.

Enters A = window no.
 BC = size. (Remember, lsb (C) = x, msb (B) = y)
 DE = coords.
 B'C' = scroll bar positions.

2. Click: Called when a window interior has been clicked (not a
gadget). You're supposed to run the necessary routine(s).

Enters A = window no.
 BC = scroll bar positions.
 DE = click offset within window, after adjusting for the
 name/ menu/ frame.

3. Short-cut key in WIMP mode: Called after the user presses
CNTRL with another key (with or without SHIFT/ SYMBOL). This
lets you provide short-cuts for things like open/ save/ print/
underline etc.

Enters A = key no. (from SAM keyboard map in p180 of Users
 Guide)
 +70 for SHIFT
 +140 for SYMBOL.

4. Reserved.

5. Close application: Enters after application desktop closed.
You can use it to run a dialogue box, save changes to a file or
whatever.

Return A = 0 (close) or 1 (don't)

6. New window: Called when an active SAW is closed (after the
close window vector). You can use it to provide the number of
the new active SAW. I used it in the file manager to save
changes to folders.

Enters A = window no.
Return A = new active SAW.

If the vector is 0 (no routine) the next SAW on the screen is
used.

7. Move window: Called when a window is moved. You can use it to
adjust the position, or to keep track of it. (Although the
position of windows is held in a table, documented last month)

Enters A = window no.
 BC = size.
 DE = new coords.
Return DE = new coords.

8. Resize window: As above, but called after the window's size
is changed.

Enters A = window no.
 BC = new size.
 DE = coords.
Return BC = new size.

9. New SAW: Called when a new SAW is activated by clicking it. I
used it to do things like save folder attributes.

Enters A = new active SAW.
 B = old active SAW.

10. Pointer. This is nice. It gets called every frame in WIMP
mode, and lets you change the image used for the pointer
depending where it is. For example, IconMaster uses a cross in
the editing window and Notepad uses a funny wee "I" thing (I
think it's called a caret) in the text window.

Enters A = window pointed to.
 DE = adjusted relative coords. (Just like the click
 vector, although you get negative y values for the
 name/ menu bar)
 BC = window size.

Return A = page of graphic (0 for application/ Driver data)
 HL = address of new pointer to use. If D7 of H is set,
 Driver data page is used.

OR A=H=0 for no change.

11. Scroll up: Called when the scroll-up window gadget is
clicked.

Enters A = window no.
 B = current scroll bar position (0-255)
 C = 0 for step, 1 for page.
Return B = new position.

12/13/14. Scroll down/left/right: As above.

15. Mouse scan: Use this to bypass Driver's own scan. You might
want to in a graphics package using mode 3 "thin" pixels,
although Driver still uses fat ones, so the pointer is still
working from 0-255.

Enters DE = pointer coords
Return DE = new pointer coords.

16. Pointer speed. Use this to change to speed of the pointer
when key control is in use. (ie. no mouse). The normal speed is
2 pixels per frame in both directions. The vector is called
before the coords are changed in WIMP mode. I used it to change
speed to 1 pixel per frame when more accuracy was needed in
IconMaster and Preferences.

In fact, I stored the window num from the Pointer vector, and
used that to judge which speed was needed: slow in the editing
window, fast elsewhere.

Enters BC = normal speed (0202h)
Return BC = speed to use.

NB. The key scanning is still done by Driver.

That's the 17 vectors in version 1.0, but I would suggest
leaving about 20 zero bytes afterward, to ensure compatibility
with later versions.

You should also make sure that Driver is paged into upper memory
before returning, and remember that the stack is taken care of.

Last time round I looked at application vectors - today it's the
turn of the jump table.

Essentially, vectors transfer control from Driver to the
application and the jump table transfers control from the
application back to Driver. Simple, yeah? Oh shut your face.

There are about 50 entries in version 1.0, at three byte
intervals:

0. JINTERRUPT: Call every frame interrupt.

1. JNMI: Call to reset colours and break back to basic. Also
useful for breakpoints when debugging code.

2. JMENU.INIT: Call to initialise menu list with HL = address of
list. Remember that all addresses must have D15 set to separate
them from the Driver code, although they get accessed in lower
memory. See last month for more information on this.

The menu list data consists of the addresses (D15 set) of the
menus in order, using 0 to end the list.

9. JVECTOR.INIT: Enter with HL = address of vector list. The
list consists of the addresses for the vectors in turn (see last
month), with 0 indicating that the vector is not used.

10. JAPPL.INIT: Application initialisation. Enter with HL =
application name, DE pointing to the page table and BC =
variable table. The first is obvious (end the name with FFh) and
gets used for the desktop window. The others are explained later
on.

11. JGRAPHIC.INIT: Graphics initialisation. Includes the
character set being copied from the Driver data page, the arrow
pointer being turned on and the screen being printed.

12. JPRINT.SCREEN: Call to print all the windows in turn,
starting with the application desktop. The pointer and cursor
are turned off beforehand and then restored afterwards - sleeper
mode is also turned off.

13. JPR.PARTSCREEN: Call to print all the windows in turn,
starting with the "A"th one displayed. For example, entry with A
= 0 has the same effect as JPRINT.SCREEN, A = 1 will start with
the first one after the desktop and so on.
Pointer and cursor dealt with as above.

24: JPRINT.WINDOW: Prints window A on the screen. Make sure the
pointer and cursor are turned off.

27: JPRINT.SCROLLS: Reprints the scroll bars and move gadget for
window A. Useful when something in a window changes and they
need to be adjusted. (Of course, each of the three gadgets is
only printed is the window has it.)

30: JOPEN.WINDOW: Open window number A at coords DE, with size
BC. H holds the type and IX points to its name. (The name ends
with FFh and is centred when the window is printed. Even if the
window has no name gadget you must assign something!)

Alternatively, enter with A = 0 and a window number will be
allocated and returned in A. CY is set if there are no windows
available.

The screen display is not changed.

33. JCLOSE.WINDOW: Enter with A = window number to close,
including 0 to close the applications. The relevant vector
(Close window or close application) will be called by the
routine. Screen not updated.

34. JWINDOW.ICON: Prints an icon in window A, trimming it at the
right and bottom to fit in. Enter with HL = address of data, DE
= relative coords within window, BC = real size, B'C' = size to
use after trimming top/left. (Normally the same as BC). Just to
confuse you, if HL is >=8000h the Driver data page is used,
otherwise the application is used.

If the icon is to be trimmed top/left, DE would be 0 and B'C'
would hold the size AFTER trimming. Any further trimming at
right/bottom is dealt with.

42. JWINDOW.TEXT: Print some text in window A. DE holds the
relative coords, and IX holds the address of the text. As above,
trimming is done automatically at right/bottom, but you must
enter with C = number of characters to skip (normally 0). To
trim at the left, therefore, enter with E = 0 and C = no
characters to skip over.

Also enter with A' = paper colour (0-3), B = pen colour.

45. JPOINTER.ON: Enter with A = page, HL = address of pointer
data. If A = H = 0, the existing pointer is used.

48. JPOINTER.OFF: Pointer is removed from screen and turned off.
The vector JSLEEPER.ON is also called.

51. JCURSOR.ON: Cursor turned on at absolute coords DE. If the
cursor is already on, it is removed from the screen and
repositioned. However, the mode is not changed (this might mean
calling JSLEEPER.OFF to change back to WIMP mode.)

54. JCURSOR.OFF: Cursor removed from screen and turned off.

57. Reserved.

60. Reserved.

63. JSET.MODE: Set Driver mode A.

66. JSLEEPER.ON: Stores current mode and sets mode 4 (sleeper),
de-activating all gadgets.

69. JSLEEPER.OFF: Resets previous mode stored by JSLEEPER.ON.

72. JFPAGES: Returns number of free 16k pages in A. If more than
255 are free, 255 is returned.

75. JRESERVE.PAGE: Allocate and reserve page for application.
Entries are made in application page table (see later), and the
number of pages reserved is increased. If no page is available,
the routine returns CY.

78. JRELEASE.PAGE: Releases page at top of page table and
decreases page total.

81. JPAGE: Enter with A = logical page number (0-127). Returns
physical page numbers in A and B. This is the standard
representation of a data page: A represents the HMPR value, and
B the LEPR (External page in section C) value. The routine also
returns C = lepr, so that on return your application does:

 OUT (hmpr),A
 OUT (C),B

84. JRUNCLI: Enter with HL = address of BASIC line data in
application. The line is run through the ROM and returns with A
= error number or 0 with CY set for an error.

87. JBASIC: Return to BASIC.

90. JDESKTOP: Return to Driver Desktop.

93. Reserved.

96. JGETKEY: Returns key from head of queue in A (ascii code). A
= 0 if no key was pressed.

99. JFLUSH: Flush out keyboard queue.

102. JSAVEAS: Opens the "Save as..." dialogue box. Entry is with
HL pointing to the file data, which is altered on exit to suit
the file details selected by the user. On return, A = 1 (OK) or
0 (CANCEL).

File data consists of 15 bytes:

 0/1 Disk number
 2 Drive
 3 Sub directory number
 4 File type (not relevant to "Save as")
 5-14 File name, including trailing spaces.

105. JOPENAS: Opens the "Open a file" dialogue box. Entry and
exit are as for JSAVEAS. (This is where the file type becomes
important).

For opening a file, I would suggest using a default file name
with a wildcard, like "*.icn" which would list only those files.
This is what Icon Master does.

108. JSCROLLUP: Scroll window A up either a bit (C=0) or a lot
(C=1). These correspond to clicking either the up arrow or the
space above the scroll bar indicator. The Scroll Up vector is
called, and the window(s) redrawn.

111. JSCROLLDOWN: As above, but scrolls down.

114. JSCROLLLEFT: As above.

117. JSCROLLRIGHT: As above.

120. JCUT: Cut BC bytes from HL onto the clipboard. BC must
range from 1-256 and HL must be in the application page. CY is
returned if the clipboard is full. (It can grow as long as
memory allows)

123. JPASTE: Paste BC bytes from the clipboard to HL in the
application page. BC must be from 1-256. CY is returned if there
is no data left, with BC holding the number of bytes left
unpasted.

126. JEMPTYCLIP: Empty clipboard, releasing all its pages, and
reset the JCUT pointer to the start.

129. JRESETPASTE: Reset JPASTE pointer to the start of the
clipboard.

132. JKEYCONTROL: Enter with A = 1 if the keyboard is to be
shared between keyboard control of the pointer (if the user has
no mouse) and something else, like entering text. Otherwise A =
0. The user toggles between the two modes using [SYMBOL]-[EDIT].

135. JSELECT.SAW: Select window number A. The affected windows
are redrawn on the screen.

138. JBLOCKS: Use HL as the base address for the window gadget
blocks. (See Set Variables)

141. JCOPYCHARS: Copy character set from the Driver Data page to
a space above the screen. Driver keeps a copy there to speed up
printing text (the pointer is also stored above the screen), but
some DOS routines might corrupt it.

144. JFREE.PAGE: Returns the top free page available in AB, or
CY if none free. No entries are made in any table.

147. JALLOCATE: Allocate page AB in ROM/DOS tables, using value
in C. If C is zero, the page is freed. The application page
table is not affected.

 HOW TO USE THE JUMP TABLE

Using the jump table is simple. Just page Driver into section C
and CALL the relevant entry. The numbers given above are offsets
- the table is at 8400h in the Driver page, although I'll
probably change this at the last minute. Anyway, one of the the
set variables (see the section a few pages on) contains the jump
table base addess. Note, though, that interrupts are disabled on
exit.

The first couple of entries deserve examples. You should be
running interrupts in mode 1, and your handler is called at
0038h:

maskable.int PUSH AF
 IN A,(status)
 RRA
 JP NC,line.int
 RRA
 RRA
 RRA
 JP NC,frame.int
maskint.end POP AF
 EI
 RET
 .
 .
frame.int IN A,(hmpr)
 PUSH AF
 LD A,(driver.page)
 OUT (hmpr),A
 CALL jint
 POP AF
 OUT (hmpr),A
 POP AF
 EI
 RET

The non-maskable interrupt is called at 0066h:

nmi LD SP,stack

 CALL driver_in
 JP jnmi

This should make it clear that you can run additional routines
off the frame interrupt, or a line interrupt. It is possible to
run such an interrupt about 20 lines into the screen, and change
both the mode and palette. You might want to change the graphics
for both the window gadget blocks and the pointer to make them
compatible with mode 4. Modes 1 and 2 should be avoided, though.
Uses? Art applications, of course.

 MEMORY MANAGEMENT

As I mentioned last month, Driver applications run in lower
memory, paging data, graphics, the screen and Driver itself into
sections C and D. This is to let you use external RAM which can
only be paged there.

The external RAM is paged using HMPR and another two ports -
LEPR (128 dec) which controls section C, and HEPR (129 dec) for
section D. HMPR has D7 set to access the extra memory. So, we
can represent any page with two numbers - the HMPR value (0-31
for internal memory, 128 for external) in A and the LEPR value
(0-255) in B.

All the extra pages used by your application are held in a table
somewhere inside it (PAGETAB). This is 257 bytes long: the first
byte represents the number of data pages (0-128), and then the
pages are listed using the above format (HMPR for page 0, LEPR
for page 0; HMPR for page 1, LEPR for page 1 etc..) JPAGE will
return the two values for a logical page number 0-127, although
I found it easier to do it myself.

You tell Driver the location of the table via JAPPL.INIT (see
above). JRESERVE.PAGE will find a free page (using external
memory if possible) and add it into PAGETAB, updating the number
of pages. JRELEASE.PAGE does the opposite, freeing the top page.

The problem with this (and about the only programming problem
for applications), is that the application data has to be
treated in 16k blocks, and the pages won't be concurrent. Not
very easy to manipulate, especially for things like word
processed documents where you need to keep shuffling memory
about. I'll tell you how I got round this drawback with Notepad
next month. (Incidentally, you can write documents on Notepad up
to 2 MEG BIG!!! - A nice result after having to cope with such a
nasty problem!)

There are advantages, though: you don't have to worry about how
much memory the machine has, and more than one application can
reside and run at the same time. Then the user can cut and paste
bits of data between documents without having to load and save.
(More on clipboarding next month.)

The one further drawback with the paging is loading and saving.
Apart from having to do so using machine code, you can't just
use the DOS's usual load and save routines. Instead, you read
and write blocks of data at a time. Again, I'll detail this more
next month.

One final point: If your application is only going to use 2 data
pages (for example, in an art program), you could alway use code
like this to page them into either section C or D. Enter with HL
= address (8000h-BFFFh for page 0, C000h-FFFFh for page 1):

data_in PUSH AF
 PUSH BC
 PUSH HL
 LD HL,pagetab+1
 LD C,(HL) ; Page 0 hmpr
 INC HL
 LD A,(HL) ; Page 0 lepr
 OUT (lepr),A
 INC HL
 LD B,(HL) ; Page 1 hmpr
 INC HL
 LD A,(HL)
 OUT (hepr),A ; Page 1 hepr
 POP HL
 LD A,B ; Use page 0
 BIT 6,H
 JR Z,di1
 LD A,C ; Use page 1
 DEC A ; Take 1 off for hmpr
 XOR C
 AND 31 ; Merge D7, in case of XMEM
 XOR C
di1 OUT (hmpr),A ; Page it
 POP BC
 POP AF
 RET

You could modify this to use four pages, with all the memory
addressed by a single 16-bit word. If the application needs to
use more than that, you'll find yourself having to address the
memory using 3 bytes. Nasty!

 ** IMPORTANT **

I must stress, once again, that you have to SET BIT 15 on any
address that you give Driver to do with your application. The
ONLY exception to this is when dealing with icons. Despite this,
your application always runs in lower memory.

 DRIVER VARIABLES

To keep your application notified, certain Driver variables are
copied into a table during every Driver Interrupt. You define
the table with JAPPL.INIT:

0. Pointer x coordinate (absolute 0-255)
1. Pointer y coordinate (0-191, 0 is at the top)
2. Mode (0-4)
3. Shift flag. 1 if [SHIFT] is being held, else 0.
4. Mouse button (D0 set when left held, D1 = 0, D2 set when
 right held.)
5. Pointer flag.
6. Cursor flag.
7. Cursor x coordinate (as for pointer).
8. Cursor y coordinate (as for pointer).
9. Number of windows open, excluding desktop. (0-255)
10. Active SAW number. (1-255, or 0 if none selected)
11. Number of pages reserved by clipboard (0 if none).

After these twelve bytes, leave space for another 10 or so, to
ensure compatibility with future versions.

 SET ADDRESSES

Inside your application, there are several addresses that must
be set aside for specific purposes.

0000 Jumped to when the application is opened for the second
time (or later)
0003 Jumped to when the application is opened for the first
time only.
0006 Called when Driver is being closed. You must return the
address of PAGETAB (with D15 set, of course) in DE.
0009 Reserved for a future "Kickstart" program.

00F0 Name of the application (15 characters max), ending with
FFh. This is centred by the Driver Desktop under the
application's icon.
0100 Icon. 16x24 fat pixels in the usual format (192 bytes
long). Used by both the Driver Desktop and File Manager.

In the first four jumps, the stack is in upper memory, so you
need to provide your own. After this, Driver keeps track of the
application stack so that every time a vector transfers control
from Driver to the application the stack is correct.

One "problem" is the "Driver Closing" jump. Only the currently
open application's stack and page table are monitored, so when
Driver is closed (and all the applications with it), the stack
is in section C and you must return the PAGETAB in DE. You would
probably also want to run a dialogue box to save any changes to
a file, and your own stack would be needed:

0006 JP driver_closing
 .
 .
 .
driver_closing POP HL ; Return address
 LD SP,stack
 PUSH HL
 CALL close_resave
 CALL driver_in
 LD DE,pagetab+8000h
 RET

As you can see, Driver will revert to its own stack once you
return. "driver_in" simply pages Driver into upper memory. An
application vector, "close application", is called when the
application itself is closed and the fiddling with the stack
isn't necessay there.

Incidentally, Driver's page is stored in System Variable 5C97h,
and the Driver Data page is at 5C98h. You might like to copy
these at the start.

(The idea of the Kickstart thing is that you can put
applications in a folder and they will be installed when Driver
is loaded.)

 FIXED VARIABLES

As I mentioned earlier, at the start of the Driver code there
are variables at fixed addresses:

0010 PRTOKV.STORE
0012 CMDV.STORE
0014 MTOKV.STORE Stores for ROM vectors to do with the
keyword.
0016 KEYWORD.FLAG 0 if keyword installed, else 1.
0017 DVAR.OFFSET Offset of DVAR 0 within the DOS.
0019 Version number of Driver, times 10.
001A Settings Offset of preference settings within Driver
code.
001C ATAB.ADDRESS Offset of application table within Driver
code.
001E EDITOR.FLAG Normally FFh. Use 1 when writing an
application.
001F BLOCKS Address of window gadget blocks. To
customise the blocks (for example, when using a different screen
mode) change this with D15 set.
0021 Reserved
0023 Clock vector See below.
0026 MTask vector See below.
0029 SEL.APPL Address of selected application within
application table.
002B MAX.APPLS Maximum number of applications (normally
12).
002C JTAB Jump table address.

 MULTI-TASKING

Now, although when I discussed multi-tasking a few months back I
mentioned that I'd discounted the idea for Driver, I had a
slight change of heart. Although applications are mutually
independant when it comes to windows and menus, you can have
them running "invisibly" in the background.

This is acheived using the MTask vector mentioned above - this
isn't a normal application vector at all. Instead, you specify a
page and an address, and after the Driver interrupt has done
graphical stuff the vector is called in UPPER MEMORY. And, like
the "Driver closing" vector, the stack is left in Driver.

To let more than one application use the vector, another vector
is stored three bytes after the vectored address, and is run
after the first one. Three bytes after this, the third vector is
stored and then run.

Confused? Good. In practice, a "chain" of vectors looks
something like this:

Driver page, 0026h 18h
 0027h 8010h ; Page and address of first
vector.

Page 18h, 8010h JP mtask
 8013h 16h
 8014h 8123h ; Page and address of second
vector.

Page 16h, 8123h JP mtask
 8126h 15h
 8127h 8200h ; Page and address of third
vector.

Page 15h, 8200h JP mtask
 8203 00h
 8204 0000h ; No more vectors.

Of course, is there aren't any vectors, MTask vector will be
0,0,0.

To set a vector, the following routine (run in lower memory),
will be useful:

Entry: IX = vector address with D15 set (eg. 8026h for Mtask
vector)
 HL = address of routine with D15 set. (Eg. 8010h)

set.vector CALL driver_in
 PUSH HL ; Copy HL into IY
 POP IY
 LD A,(IX+0) ; Store the existing vector
 LD (IY+0),A
 LD A,(IX+1)
 LD (IY+1),A
 LD A,(IX+2)
 LD (IY+2),A
 IN A,(lmpr) ; Store the new vector
 AND 31
 LD (IX+0),A
 LD (IX+1),L
 LD (IX+2),H
 RET

And, at 0010h:

0010h JP mtask
0013h DB 0,0,0

When you want to disconnect the vector, we have to search
through the chain to find it. Then we take the vector from 0013h
(or wherever you've put it) and copy it over. Essentially, we've
taken the link out of the chain and connected the two loose ends
together.

Entry as before.

remove.vector CALL driver_in ; Driver into upper memory.
rv1 IN A,(lmpr)
 AND 31
 CP (IX+0) ; Check the vector.
 JR Z,rv.found
 LD E,(IX+1) ; Get the address of the wrong one.
 LD D,(IX+2)
 INC DE
 INC DE
 INC DE
 OUT (hmpr),A ; Page it in.
 PUSH DE
 POP IX ; Copy it into IX.
 JR rv1 ; Loop until we find it.
rv.found INC HL
 INC HL
 INC HL
 LD A,(HL) ; Take the link out of the chain.
 LD (IX+0),A
 INC HL
 LD A,(HL)
 LD (IX+1),A
 INC HL
 LD A,(HL)
 LD (IX+2),A
 RET

You might notice that in both routines, the entry conditions
include the vector address. This lets the routines also work on
ANOTHER vector (gee, I'm too good to you guys).

I mentioned that the MTask vectors are called after the Driver
Interrupt has done its graphical stuff. This "graphical stuff"
has to done at the start of the interrupt, during the frame
flyback to avoid shear. Essentially, the routine looks like
this:

 .
 .
 Remove pointer from screen
 Remove cursor from screen
 Call clock vector
 Call application graphic vector
 Add cursor
 Add pointer
 .
 .

The application graphic vector (number 17), which I omitted from
last month, is called in WIMP and sleeper modes only, with no
entry or return conditions. The clock vector is similar to the
MTask vector and can be found at 0023h.

The reasons that I seperated the two are obvious: Firstly, if
the screen display is going to be changed, the pointer and
cursor must be removed first. Secondly, we want to minimise the
time taken by the graphical vectors, or the pointer (and cursor)
will be added back on after the screen scan has passed them,
making them partly or completely invisible!

I called it the Clock vector because, originally, this was the
only use I saw for it; running a clock at the top left of the
screen. In fact, such clock application will (hopefully!) be
released in one form or another shortly after Driver comes out.

To minimise the time the vector takes, I would suggest doing as
much processing as possible in an accompanying MTask routine.
The aforementioned clock application uses the MTask vector to
"print" the time in a buffer space, which is copied to the
screen by the next clock vector. Of course, dumping one
rectangular graphic is faster than printing 5 smaller ones.

This month I'm going to describe how to get round
the only real problems application programmers will find:
Firstly, memory paging.

TOTAL RECALL

Last time round I described how Driver allocates memory in 16k
pages, a practice which is pretty obvious given the physical
specifications of the Coupe. However, since the user can switch
between applications willy nilly, and some applications won't
know how much memory they need until it runs out (for example, a
word processor), the allocation inevitably leads to memory being
broken up and incongruent.

I also mentioned the application page table (APT): How you
initialise it, how it stores page numbers, and how to reserve/
free pages. I won't bother to repeat all that; you can just look
it up.

However, the incongruence of the pages can lead to problems -
you've got to be careful not to touch memory in section D
(paging in ROM1 could help), and shuffling data about can take
ages! This was precisely the nightmare I had with Notepad - the
word processor you get in the Driver package. I designed it so
that typing automatically inserted characters and deleting
automatically pulled all the following text backwards. In
addition I wanted to use the Driver clipboard, deleting and
inserting large blocks of text. This meant that either

A. I could restrict myself to files 16k long OR

B. I had to find a fast way of copying all the text.

Ugh! The first option was attractive - I didn't have to worry
about 19-bit address representation (page/offset), and I could
use LDIR and LDDR for simplicity. But it seemed a waste of
Driver's facilities, and I wanted a SAM word processor that
could handle large files.

Unfortunately, the second option wouldn't work - even in a file
30k long, inserting characters at the start caused noticable
delays.

So what did I do? What I always seem to do - I found a
compromise that was better than either alternative. And I'm
gonna tell you about it...

PAGE BUFFERING

I mentioned that I could handle files up to about 16k long
without problems. So, I treated the file in blocks about 16k
long - just the way it is represented by the paging mechanism.
The sneaky bit is that I left about 256 bytes free at the end of
each page, so that the default length of a file block was
actually 15.75k long.

So, when the user is typing, the longest block the program has
to shuffle (normally) is 15.75k. As this happens, the block size
increases until it reaches 16k, then the top 256 bytes are
copied into the bottom of the next block, and any overspill from
that is copied into the next one... and so on. Obviously, when
the user deletes the block size is reduced.

The method means that we need a table of pointers for the top of
each block, and some wee routines to adjust any address that
points to a non-existant character. We also need routines to
insert and delete a block of bytes.

ADJUSTING THE PAGING WHILST COUNTING

This is the first routine I'm gonna give you. We can represent
each address with a page number (0-127) in A, and an address
offset (8000h-BFFFh) in HL. Put the table of length pointers at
an address which is a multiple of 512.

Use the routine after something like INC HL when the paging
might need changed - it returns the altered address in AHL, with
CY if the physical paging needs to be changed.

page.up PUSH DE
 PUSH HL
 PUSH HL
 LD L,A
 LD H,length.tab/512
 ADD HL,HL
 LD E,(HL)
 INC L
 LD D,(HL)
 POP HL
 SBC HL,DE ; NC if we need to increase
 ; the paging.
 POP HL
 POP DE
 CCF ; Toggle CY.
 RET NC
 LD HL,8000h
 INC A
 RET

Of course, this can slow things up quite considerably when
you're shuffling data about, so it can be a good idea to make a
note of the block length when you start, and only update it when
you change blocks.

Counting downwards is easier, because the bottom address is
always 8000h: Entry and exit as before.

page.down CP A
 BIT 7,H
 RET NZ
 DEC A
 PUSH DE
 LD L,A
 LD H,length.tab/512
 ADD HL,HL
 LD E,(HL)
 INC L
 LD D,(HL)
 LD L,E
 LD H,D
 POP DE
 DEC HL
 SCF
 RET

You might want to vary things a bit to compensate for empty

pages in the middle and so on, but it all depends on the
application.

INSERTING A BLOCK

This insert routine is horrendously complicated (heh, heh, heh),
considering that all it does it move some data around in the
same way that an LDDR command would. You need a buffer 256 bytes
long, at a 0-lsb address.

In addition, it can only cope with blocks up to 16383 bytes long
- for longer blocks use multiple calls. So why is it so long? (A
question I'm often asked. Ahem). Well, I don't really know. It
was by far the most difficult thing I had to do for Notepad, and
took well over a week to get working.

If the insert is going to cause a page overspill, the block
length is reset at 15.75k - of course, the routine has to cope
with the possibility that more than one overspill will result.
Extra memory is reserved from Driver if necessary, and an error
reported if there are any problems ("nomem"). The only other
routines needed are:

driver_in Page Driver into section C
data_in Page data page A into section C.
add_ix_a Adds A to IX: Result in IX, A unchanged.

Take a deep breath...

; ENTRY: AHL = address, DE = length of block.

insert.block LD (ib.page),A ; Store for later
 LD (ib.address),HL
 ADD A,A
 LD IX,length.tab ; Page length table
 CALL add_ix_a
 LD L,(IX+0)
 LD H,(IX+1) ; Page "top" in HL
 ADD HL,DE ; Add on block length
 BIT 6,H ; Page overspill?
 LD A,(ib.page)
 LD HL,(ib.address)
 JP Z,small.insert ; If not, use a simpler
 ; routine.

ib1 CALL ib.check

; If page overspill: Returns CY, HL = 8000h, A incremented, DE =
space needed in next page.
; If no overspill: DE = new end of page, HL = old, A unchanged.

 JR C,ib1 ; Loop until we've dealt
 ; with the overspill
 LD (ib.countp1),A ; Store pointers for
 ; source/target addresses.
 LD (ib.countp2),A
 LD (ib.counta1),HL
 LD (ib.counta2),DE
 ADD A,A
 LD IX,length.tab
 CALL add_ix_a
 LD (IX+0),E
 LD (IX+1),D ; Store new page "top"
 LD A,(ib.page)

 LD C,A ; Page for start of block
ib2 LD A,(ib.countp1)
 LD HL,(ib.counta1)
 CALL data_in
 EX AF,AF'
 LD DE,buffer
ib3 EX AF,AF'
 CP C ; Reached end page
 ; (start!)?
 JR NZ,ib4 ; If not...
 PUSH BC
 PUSH HL
 LD BC,(ib.address)
 SBC HL,BC ; Compare addresses
 POP HL
 POP BC
 JR Z,ib.end ; Finish main loop if end
ib4 DEC HL
 BIT 7,H ; Page overlap?
 JR NZ,ib7 ; If not, jump
 DEC A
 PUSH AF
 PUSH IX
 ADD A,A
 LD IX,length.tab
 CALL add_ix_a
 LD L,(IX+0)
 LD H,(IX+1) ; Get top address
 LD (IX+0),0
 LD (IX+1),BFh ; Store balance size
 POP IX
 POP AF
 CALL data_in
 EX AF,AF'
 JR ib3 ; Loop back for empty page
ib7 EX AF,AF'
 LD A,(HL) ; Copy byte to buffer
 DEC E
 LD (DE),A
 JR NZ,ib3 ; Loop for 256 bytes
 EX AF,AF'
 LD (ib.countp1),A ; Store pointers
 LD (ib.counta1),HL
 LD A,(ib.countp2)
 LD DE,(ib.counta2) ; Target pointers
 LD HL,buffer
 CALL data_in
 EX AF,AF'
ib5 DEC DE
 BIT 7,D ; Page overlap?
 JR NZ,ib6 ; If not...
 EX AF,AF'
 DEC A ; Next page
 LD DE,BF00h ; Balance address
 DEC IX
 DEC IX
 LD (IX+0),E
 LD (IX+1),D ; Store balance
 CALL data_in
 EX AF,AF'
 JR ib5 ; Loop for empty page
ib6 DEC L
 LD A,(HL) ; Copy byte from buffer
 LD (DE),A
 JR NZ,ib5 ; Loop for 256 bytes
 EX AF,AF'

 LD (ib.countp2),A ; Store pointers
 LD (ib.counta2),DE
 JP ib2 ; Loop until finished
ib.end XOR A ; E = bytes left to copy
 SUB E
 JR Z,ib.e3 ; If none, jump
 LD B,A ; B = 256-E
 LD A,(ib.countp2) ; Target pointers
 LD DE,(ib.counta2)
 LD HL,buffer
 CALL data_in
 EX AF,AF'
ib.e1 DEC DE
 BIT 7,D
 JR NZ,ib.e2 ; Page overlap?
 EX AF,AF'
 LD DE,BF00h
 DEC IX
 DEC IX
 LD (IX+0),E
 LD (IX+1),D ; Store balance
 JR ib.e1
ib.e2 DEC L
 LD A,(HL)
 LD (DE),A ; Copy from buffer
 DJNZ ib.e1 ; Loop.
 EX AF,AF'
 LD (ib.countp2),A

ib.e3 LD HL,(ib.address)
 LD BC,BF00h
 CP A
 SBC HL,BC
 RET C
 RET Z ; Ret if start ad<BF01h
 LD C,L
 LD B,0
 LD HL,BF00h
 LD A,(ib.page)
 CALL data_in
 LD DE,buffer
 PUSH BC
 LDIR ; Copy to buffer
 POP BC
 LD A,(ib.countp2)
 CALL data_in
 LD DE,8000h
 LD HL,buffer ; Copy from buffer
 LDIR
 RET

ib.check PUSH AF
 ADD A,A
 LD IX,length.tab
 CALL add_ix_a
 LD L,(IX+0)
 LD H,(IX+1)
 ADD HL,DE
 BIT 6,H
 JR NZ,ib.c1 ; JR if overspill.
 EX DE,HL ; DE = new top
 LD L,(IX+0)
 LD H,(IX+1) ; HL = old top
 POP AF
 CP A ; Reset CY
 RET

ib.c1 LD DE,BF00h
 CP A
 SBC HL,DE ; Subtract BF00h
 EX DE,HL ; Put in DE
 LD HL,8000h
 LD A,(pagetab) ; Top page reserved
 LD B,A
 POP AF
 INC A
 CP B
 RET C ; Return if page exists
 PUSH DE
 CALL driver_in
 CALL jreserve_page ; Reserve new page
 POP DE
 JP C,nomem ; Error
 LD A,(pagetab)
 DEC A ; New top page
 LD HL,8000h
 PUSH AF
 ADD A,A
 LD IX,length.tab
 CALL add_ix_a
 LD (IX+0),L
 LD (IX+1),H ; Reset length
 POP AF
 SCF ; Set CY
 RET

small.insert LD (ib.page),A
 LD (ib.address),HL
 ADD A,A
 LD IX,length.tab
 CALL add_ix_a
 LD L,(IX+0)
 LD H,(IX+1) ; Top of page
 ADD HL,DE ; New top
 PUSH HL
 LD BC,(ib.address)
 LD L,(IX+0)
 LD H,(IX+1) ; Old top
 CP A
 SBC HL,BC ; Subtract
 JR Z,si1 ; No bytes to copy
 LD C,L
 LD B,H
 LD L,(IX+0)
 LD H,(IX+1) ; Old top
 POP DE ; New top
 PUSH DE
 DEC HL
 DEC DE
 LD A,(ib.page)
 CALL data_in
 LDDR ; Make space
si1 POP HL
 LD (IX+0),L
 LD (IX+1),H ; Store new top
 RET

DELETING A BLOCK

I was gonna give you the routine, but I've run out of time, and
it's pretty easy anyway. Don't bother about intra-page copying
- just an LDIR to get rid of stuff inside a page, and adjust the
page lengths for other bits.

Right, on with the show. Driver's been selling really well, and
all those customers are going to be needing some more luverly
applications and utilities. Within a week or two of the official
release Darren Clarke had finished writing a game called Mosaic,
so it can't be as difficult to understand my notes as I thought!
A few other top names in the SAM programming world have
expressed serious interest in doing stuff.

We're looking to release some kind of Driver Development Kit
shortly, which should consist of a customised version of Comet,
Driver and a whole bunch of documentation. I expect you'll have
to pay for it, with discounts if you already have Comet/ Driver,
but you'd get your money back as soon as you produced something
for Revelation to publish.

In addition, there are some more applications (including Alarm
Clock, Calendar, Art Grabber, Paintbrush, Cardfile) and other
bits and pieces coming out soon(ish) on a Driver Extras disk.
Details as soon as I have them.

Okey dokey, back to business. This is the last part of the
Driver special (unless I can think of something else for next
time), and I'm just gonna cover odd bits and pieces that we've
got left over.

CLIPBOARDING

Now I made great claims about clipboarding in the Driver manual.
You know, stuff about cutting bits from one file/ application
and pasting them in elsewhere. And I stand by it all - it is and
will be a great facility, especially when more applications come
out. And it's pretty darned easy to use.

Essentially, the clipboard is just some memory, reserved like
application data when it is needed and looked after by some
Driver routines. There are two ways applications use it: Cutting
(putting data on) and pasting (taking data off).

To this end, there are four jump table entries, as I mentioned a
few months back:

" 120. JCUT: Cut BC bytes from HL onto the clipboard. BC must
range from 1-256 and HL must be in the application page. CY is
returned if the clipboard is full. (It can grow as long as
memory allows)

123. JPASTE: Paste BC bytes from the clipboard to HL in the
application page. BC must be from 1-256. CY is returned if there
is no data left, with BC holding the number of bytes left
unpasted.

126. JEMPTYCLIP: Empty clipboard, releasing all its pages, and
reset the JCUT pointer to the start.

129. JRESETPASTE: Reset JPASTE pointer to the start of the
clipboard. "

These simply allow the application to wipe the clipboard clean,
add some raw data onto the end and read the raw data back again.
To structure things a bit better, we need rules to describe what
the raw data represents.

Let's call the things on the clipboard "objects": an object
could be a piece of text, a picture or whatever. You can fill up
the clipboard with as many objects as there are room for.

Each object is given a four byte header:

0 Object type
1-3 Object length (excluding header) in page/ offset form.

Since the clipboard is a serial store, to read an object later
on, you have to read through all the ones before it. It might be
the case that your application can only deal with certain data
types, in which case you read the headers and skip over any
unwanted ones, using the length in the header to guide you.

At the moment, there are only two object types:

0 ASCII text, with Epson control codes. This is the type used
by Notepad: the control code sequences begin with CHR$ 1 and end
with CHR$ 3, with CHR$ 2 in between the numbers. This lets
applications ignore control code strings should they wish.

1 Unmasked graphic block. A rectangular block, with some
addition parameters after the header (these bytes are, of
course, included in the length in the header):

 0 Mode (0-3)
 1 block width, in bytes. (0-255: the block need not
 necessarily fit on the screen)
 2 block height, in lines. (0-255)
 3.. graphic data, in raster lines one after the other.

Of course, there can be more than 2 types! It's up to
application writers to create new types and document them fully.
Subsequent applications might want to be able to deal with these
types, and thus the applications could share data. And before
you ask, Notepad, alas, cannot cope with graphics. Yet.

Using the four jump table entries is really easy, but the
routines vary so much from application to application that it's
pretty pointless giving you anything other than hints for your
cut/ paste routines. Firstly, you have to do things in blocks of
256 bytes (or less) which means having a buffer space inside the
application code. Before pasting, reset the internal paste
pointer, and don't forget to empty the clipboard when necessary.
Apart from that, it's really just a case of copying data from
your appliction data pages to the clipboard and vice versa.

I would suggest using at least three editing options:

Cut (Copies the selection and removes it from the file)
Copy (Copies the selection and does nowt else)
Paste (Paste from the clipboard and then empty it)

Notepad also has a "Multiple paste" option, which doesn't empty
the clipboard.

WRITING APPLICATIONS

Finally, after five or so months, we finally get to the bit
about actually putting the theory into practice. I used
SC_Assembler 256k on a 512k machine to create the source for my
Driver applications: this leaves half of the memory untouched
and available for Driver code and graphics, and application
data. (NB. When I was writing the Driver code itself, I needed
all 9 banks in SC_512, so I used an external meg for the File
Manager data.)

Anyway, using SC_256 meant installing Driver to page 16, and the
Driver data to page 18, without the keyword (the system heap is
filled by the assembler). My application object code was
assembled to pages 1/2, so I poked EDITOR.FLAG with 1 (the first
page number) before initialising Driver. Stuff about running
Driver without the keyword is detailed in the manual.

EDITOR.FLAG is at an offset of 1Eh into the Driver code, and on
initialisation is copied into the second slot of the Driver
application table, after File Manager. (Normally, its value is
FFh, meaning "empty").

You can do this for any page you like, but page 1 seems obvious
to me. Of course, until you put the application name at 80F0h
and icon at 8100h, the Driver Desktop will show garbage, and
before assembly any attempt to run the application would result
in a bit of a crash! You can design the icon using Iconmaster.

Finally, before even loading Driver, I reserved all the memory I
was going to use with OPEN TO 16: CLEAR 25000 or something like
that. This customised version of the assembler Basic let me
assemble the source, and return directly to Driver to test it.
Easy.

So, there's nothing to stop you buying a copy and programming
away right now. I expect that LERM and COMET can be altered
similarly to have Driver in memory, so you have no excuses!

DRIVER DATA

Right, finally for this month, here are details of the Driver
Data page. Some budding artists out there might want to re-draw
so of the graphics, or the character set and create alternative
driv??.dat files. It can also be useful (if a bit naughty!) for
applications to fiddle with data directly. Sprites are in the
form described for the pointer routines, and the icons are in
the usual raster-line format.

NB. REMEMBER THAT THE DATA PAGE NUMBER IS STORED IN SVAR 5C98h.

Offset Description

0000
-07FF Sprites (2k)

0800
-0FFF Character set (2k)

1000

-27FF Window data tables (6k)

2800
-37FF Blocks, icons & other graphics (4k)

3800
-3FFF Workspaces (2k)

SPRITES

0000 Arrow
00C6 Hourglass
01CC Arrowed cross
03F2 Caret

CHARACTER SET

The chars (ASCII 32-127) are stored as 16 byte blocks, using 4x8
fat pixels. Driver uses these as 3x7 fat pixels, so the two
least significant bits, and the last 2 bytes, should be left
blank. The data is NOT the same as with the ROM character set,
in that the graphics are stored absolutely, in pen 3 on paper 0.
(ROM sets are bit-mapped)

WINDOW DATA TABLES

The LSB of an address in a tables corresponds to the window
number 0-255, except in the window order table and the names.

1000 Order table.
1100 Types: D0 Reset to clear the window when drawn.
 D1 Set for name.
 D2 Set for close gadget.
 D3 Set for move gadget.
 D4 Set for size gadget.
 D5 Set for x-scroll bar.
 D6 Set for y-scroll bar.
 D7 Set to make window selectively active.
1200 X coords (fat pixels).
1300 Y coords.
1400 X sizes (fat pixels).
1500 Y sizes.
1600 X-scroll bar positions. (0-255)
1700 Y-scroll bar positions.
1800
-27FF Names. (4k. 16 bytes per name)
OTHER GRAPHICS

2800
-29FF 8x8 blocks. Each 32 bytes long.

 Numbered 0 - Move gadget
 1 - Close gadget
 2 - Size gadget
 3 - Up gadget
 4 - Down gadget
 5 - Left gadget
 6 - Right gadget
 7 - Y scroll bar
 8 - X scroll bar
 9 - Scroll bar indicator
 10 - Switch gadget (off)
 11 - Switch gadget (on)

 12 - Small file icon
 13 - Small folder (closed)
 14 - Small folder (open)
 15 - Small folder (highlighted)

2A00
-2BFF Button icons. 32x16. 256 bytes each.

 2A00 - Off
 2B00 - On

2C00
-2FFF 16X16 icons. 128 bytes each.

 2C00 - Attention (! in a triangle)
 2C80 - Disk on blue background
 2D00 - Disk on blue (highlighted)
 2D80 - Printer
 2E00 - Printer (highlighted)
 2E80 - Disk on white
 2F00 - Info. (i in an octagon)
 2F80 - Question (? in octagon)

3000
-35FF 16x24 icons. 192 bytes each.

 3000 - File Manager
 30C0 - File
 3180 - Folder
 3240 - Folder (highlighted)
 3300 - Bin (empty)
 33C0 - Bin (full)
 3480 - Bin (empty, highlighted)
 3540 - Bin (full, highlighted)

WORKSPACES

Numbered 0-7. Each 256 bytes long at 256 byte intervals from
3800.

