
 I

MILES GORDON TECHNOLOGY plc

SAM COUPE TECHNICAL MANUAL

version 3.0

(C) 1990

The purpose of this manual is to introduce hardware and software
developers to the internal and external workings of the SAM Coupe
computer. To this end it is a technical document assuming a certain
amount of technical knowledge.

It is MGT's policy that the SAM Coupe and associated MGT products should
be fully documented to help third party software and hardware developers
take full advantage of all the Coupe's advanced features. If you are
developing a product for the Coupe and require further clarification or
explanation MGT technical staff will be pleased to assist.

All production machines contain ROM 1.0. This manual details information
for ROM 1.0 and ROM 1.2. In the period April/May 1990 all Coupe owners
will be issued with an enhanced ROM, issue 2.0, free of charge. The ROM
1.2 referred to in this manual is a pre-production version of ROM 2.0.

written by
Bruce Gordon a Andy Wright

With additional information by
Gary Thomas & Adrian Parker

Supplementary information on the use of the SAA1099 sound chip

by Andy Graharn

With special Thanks to
Bob Brenchley, Simon Goodwin, W.Ettrick Thomson, and Nev Young

While every effort has been made to ensure that the contents of this
manual are correct in every particular, it must be appreciated that MGT
cannot guarantee that it is definitive since we have a policy of
continual product enhancement.

Published by Miles Gordon Technology plc
 Century Park Valley Way Swansea SA6 8QP

 Tel: 0792 791100 Fax: 0792 791175

 II

TECHNICAL SUPPORT FOR PROFESSIONAL DEVELOPERS

More and more hardware and software developers are working on SAM Coupe
products.

HGT is keen to support the efforts of developers. To this end we have
created the MGT SAM Coupe Developers Group. For a fee of £50.00 we
offer members of the Developers Group the following benefits:

Unlimited telephone support from our Software Engineers.

Unlimited telephone support from our Hardware Engineers.

Free and first-off-the-press updates to the Technical Manual.

Free copies of supplementary information provided by developers, (where
permission to distribute such information has been given).

Hardware port address allocation for hardware developers. This will
avoid the possibility of two devices Using the same port address(es).

SAM Compatible: if a product, hardware or software, works with the
Coupe we can issue 'SAM Compatible' stickers for the product case or
packaging.

Developers Group registration number to ensure priority service.

If you require further information, or wish to join the
Developers Group, please either write to, or phone, our Technical
Department whose staff will be pleased to help you.

 III

CONTENTS

THE SAM COUPE HARDWARE

GENERAL SPECIFICATIONS 1

INTERFACES 3
MIDI IN 3
MIDI OUT 3
BREAK (NMI) BUTTON 4
JOYSTICK 4
MOUSE PORT 4
RESET BUTTON 5
CASSETTE JACK 5
LIGHT PEN & AUDIO PORT 5
POWER INPUT 5
EUROCONNECTOR (EXPANSION CONNECTOR) 6
SCART SOCKET 10
UHF OUTPUT 10
SLIMLINE SLOT-TN DISK DRIVES 11
DISK DRIVE INTERFACE 12

MEMORY 13
INTRODUCTION 13

SCREEN MODES 15
INTRODUCTION 15
MODE 1 15
MODE 2 15
MODE 3 15
MODE 4 15
LOCATING THE CURRENT SCREEN 16

KEYBOARD 16

INPUT/OUTPUT PORTS 17

WRITE (OUTPUT) PORTS 17
READ (INPUT) PORTS 21

PHILIPS SAA1099 SOUND CHIP 23
INTRODUCTION 23
NOISE & SOUND 23
PITCH 24
MUSIC 24
THE CHROMATIC SCALE 24
OCTAVE REGISTERS 25
AMPLITUDE REGISTERS 25
NOISE GENERATORS 26
ENVELOPE REGISTERS 26

 IV

CONTENTS

THE SAM COUPE SOFTWARE
MEMORY 27

SAM COUPE MEMORY MAP 27
SCREEN MEMORY LOCATION 29
THE STACK 29

ROM 29
USE OF ROM SUBROUTINES 29
USING SCREEN MODES 3 & 4 30
PALETTE SWITCHING 30
THE PAGING SYSTEM 31
ROM RESOURCES (JUMP TABLE) 32
CHARACTER SET 43
VECTORS 43

FLOATING POINT CALCULATOR COMMAND CODES 49
TAPE SYSTEM 53

FILE HEADER FORMAT 53
SAM BASIC 55
BASIC/MACHINE CODE INTERFACE 56
MAJOR POINTERS TO BASICS MEMORY AREA 57

PACE ALLOCATION TABLE 58
KEYBOARD 59
STREAMS & CHANNELS 60
SOUND 62
GRAPHICS SCALING SYSTEM 64

KEYWORD CODES 65
SYSTEM VARIABLES 67
VARIABLE FORMATS 76

FORMAT OF A BASIC PROGRAM 77

 V

CONTENTS

THE SAM COUPE DISK OPERATING SYSTEM

INTRODUCTION 78

DISK DRIVES 78
DISK FORMAT 78

DISK FILE HEADER 78
FILE TYPES 79
MODULO LENGTH & NUMBER OF PAGES 79
OFFSET START & STARTING PAGE NUMBER 79
SAHDOS DIRECTORY 80
SECTOR ADDRESS MAP 81
BIT ADDRESS MAP 81

SAMDOS INTERFACING 82
USER INFORMATION FILE AREA (UIFA) 82
SAMDOS HOOK CODES 83
LOCATING SAMDOS 85
SAMDOS ERROR CODES 86

APPENDIX A: PHILIPS SAA1099 SOUND CHIP

APPENDIX B: VLSI VL-1772-02 FLOPPY DISK CONTROLLER CHIP

APPENDIX C: DIAGRAMS

INDEX

STOP PRESS

Sam Coupe Technical Manual version 3.0 1

THE SAM COUPE HARDWARE

The SAM Coupe is a modern micro-computer using a Z80B microprocessor
running at 6MHz. It has 256K RAM as standard, with an expansion socket
to allow the memory to be doubled to 512K with a small expansion board.

The machine's main controller is a VLSI VGT-200 gate array (ASIC),
customised to carry out the main tasks of processor/video contention,
paging and management of all memory, video memory mapping, colour
palette table allocation, and all input/output port control. There are
four modes of video operation with a hardware capacity to show 16
colours from a palette of 128 on each screen line.

The sound for the machine is generated by a Philips SAA1099, with a
capability in stereo of six channels over eight octaves with 256 tones
per octave, two white noise generators, six amplitude controllers and
two envelope wave shapers.

GENERAL SPECIFICATIONS
CPU Z80B microprocessor running at 6MHz
Special Customised VLSI 10,000-gate ASIC chip

ROM 32K x 8 ROM, 150nS, containing SAM BASIC, disk
 bootstrap, BIOS

RAM 256K upgradeable to 512K (256K x 4 100ns DRAM)

Sound Philips SM 1099 Synthesizer: 6 channels, 8 octaves,
 stereo with amplitude and envelope control, plus choice
 of wave form.

Graphics Motorola MC 1377P video Chip. ASIC serves as graphics

processor, offering four modes:

 Mode 1 32 x 24 character cells per screen, each cell
 capable of 2 colours; 16 colours selectable from
 12e; Spectrum-attribute compatible.
 Mode 2 As mode 1, but with 32 x 192 cells, each cell
 capable of 2 colours: 16 colours selectable from
 128.
 Mode 3 80 column text display - 512 x 192 pixel screen;
 each pixel selectable for colour; 4 colours per
 line selectable from 128.
 Mode 4 256 x 192 pixel graphics screen; each pixel
 selectable for colour; 16 colours selectable per
 line from 128.

Sam Coupe Technical Manual version 3.0 2

In all modes, colours may be redefined at line interrupt, allowing all
128 colours to be displayed on-screen.

UHF (TV channel 36), through power supply unit. Colour composite
video, digital and linear RGB, all through SCART.

Atari-standard joystick (dual capability with splitter cable).

Mouse - Coupe standard.

Light-pen, Light-gun - Coupe standard. Audio output socket.

Domestic cassette recorder.

MIDI In, MIDI Out (MIDI Through, via software switch). Network -
screened microphone cable with 7 pin DIN connectors.

RS232 and parallel printer via external }4GT interface connected
at expansion port.

64-pin Euroconnector for further peripherals.

Disk Drives 1 or 2 removable and internally mounted 3.5” ultra-
slim Citizen drives, 1 Mb unformatted, 780K formatted.

Keyboard 72 full travel keys, membrane type, including 10 function
keys (software defined).

Power Consumption 11.2 Watts.

Shock - Operating 3 G

 - Non-operating 60 0

Vibration - Operating 5 - 500Hz / 0.5 G

- Non-operating 5 - 500Hz / 2 G

Environmental: Ambient Temperature Operating 5 - 45 C

Storage -20 - 50 C

Relative Humidity Operating 20 - 80%

Wet Bulb Maximum 29,4 C, No Condensation

Reliability: MTBF: 10,000 POH; MTTR: 30 Mins;
Component Life: >5 years

Weight 2.26Kg (4.97 lb)

Power Supply Primary Input voltage 240v AC 50Hz

Secondary Output voltage 5v DC 2A Maximum Rating
 12v DC 2OOmA Maximum Rating

Sam Coupe Technical Manual version 3.0 3

INTERFACES -

All connections to the Coupe except the removable internal disk drives,
and the RAM expansion socket are made via the rear panel. please refer
to the Input/Output Port map where reference is made to bits and
registers.

- MIDI IN -

Standard 7 pin DIN type connector. This serial input, working at
31.25 Kbaud is fed via an opto-isolator to a serial/parallel converter,
which interrupts the CPU when a data byte has been assembled in the
MIDI-IN register (253 dec). This INPUT can also be read by bit 7 of the
Video Memory Page Register VMPR (252 dec). This connector is also used
by the network.

PIN SIGNAL

1 NET - LOOP
2 N.C.
3 NET + LOOP
4 MIDI + IN
5 MIDI - IN
6 NET - LOOP
7 NET + LOOP

- MIDI OUT -

Standard 7 pin DIN type connector. By writing a data byte to the MIDI-
OUT register (253 dec), the MIDI outputs a 7.5 mA current at 31.25
Kbaud. when transmitting, bit 1 of the PEN register (TXFMST of register
248 dec), is set. This OUTPUT can also be driven by bit 7 of the VMPR
(252 dec). An internal through connection is made from MIDI IN to OUT by
setting bit 6 THROM - through MIDI) of the BORDER register (254 dec).
This connector is also used by the network, An interrupt is given on
completion of the transmission of MIDI data.

PIN SIGNAL

1 NET - LOOP
2 GND
3 NET + LOOP
4 NIDI + OUT
5 MIDI - OUT
6 NET - LOOP
7 NET + LOOP

Sam Coupe Technical Manual version 3.0 4

- BREAK (NMI) BUTTON -

When pressed, this button forces the CPU to address (0066H) where it is
vectored to any assignable address in the memory map. A versatile
function for programmers to assign a vector, to enable its use as an
ESC, BREAK or CRASH key. When the Disk Operating System Spectrum
Emulator is loaded this button is used to activate the snapshot
facility.

- JOYSTICK -

Standard 9 pin 'D' type plug. The joystick interface has standard ATARI
connections except that it has an extra strobe line for a second
joystick together with a line carrying 5 volts. MGT will allow for dual
joystick control with the second joystick having a special plug-socket
connector. The joystick is read by the Key-board port (254 dec) and
overlays numeric keys 1 to 5 for second joystick and 6 to 0 for the
first joystick.

PIN SIGNAL

1 UP
2 DOWN
3 LEFT
4 RIGHT
5 0 VOLTS
6 FIRE
7 +5 VOLTS
8 STROBEL 1
9 STROBEL 2

- MOUSE PORT -

Proprietary 5 pin DIN type connector. The MGT mouse interrupts the CPU
to request a read of its X and Y signal lines. The software driver is
integral to the ROM and overlays the cursor control keys. The mouse
input can be read by Keyboard port (254 dec) with address lines A8 to
A15 set high. (RDMSEL}.

 PIN SIGNAL
 1 DOWN
 2 UP
 3 CTRL
 4 LEFT
 5 RIGHT
 6 MSE INT.
 7 RDMSEL
 8 +5 VOLTS
 SCREEN GROUND.

Sam Coupe Technical Manual version 3.0 5

- RESET BUTTON -

When pressed this button causes the CPU to clear and restart at memory
location (0000H). It also resets the following:

1. Floppy Disk Controller (Disk 1 and 2)
2. Memory page registers
3. MIDI receive and transmit registers
4. Border register

It does not reset the colour look up table, the sound chip registers or
the LINE INTerupt register (249 dec) value. The ROM normally initialises
LINE INT as part of its initialisation.

- CASSETTE JACK -

Standard 3.5mm mono jack socket. This is a bi-directional line. when
outputting it should be connected to the MIC socket of a standard
cassette tape recorder; when inputting it should be connected to the EAR
socket of the recorder. It makes no difference to the Coupe if EAR and
MIC are connected together, but only some tape recorders allow this,
because of positive feedback.

- LIGHT PEN & AUDIO PORT -

Standard 5-pin, 180 degree, DIN type connector. This connector has a
dual function of light-pen/gun input as well as stereo sound output
capable at driving a HI-FI system on the AUX input.

PIN SIGNAL

1 +5 VOLTS
2 AUDIO LEFT OUTPUT
3 0 VOLTS
4 SPEN INPUT
5 AUDIO RIGHT OUTPUT

- POWER INPUT -

Regulated DC input of 12 Volts at 200 milliamps and 5 Volts at 2 Amps. A
fully loaded machine will have a power consumption of approximately 15
watts.

 PIN SIGNAL
 1 +5 VOLTS
 2 o VOLTS (SIGNAL GROUND)
 3 o VOLTS (DIGITAL GROUND)
 4 COMPOSITE VIDEO
 5 +12 VOLTS
 6 SOUND OUTPUT (MONO)

Sam Coupe Technical Manual version 3.0 6

- EUROCONNECTOR (EXPANSION CONNECTOR) -

The Coupe's Euroconnector is a standard 64 pin type with rows A-C
fitted. It has all the typical hardware signals found on other computer
expansion ports. In addition, we include many extra hardware signals on
the connector. This allows the hardware designer a hitherto unknown
flexibility and control of a microcomputer from an external device.

SIGNALS

(NB row A is at the bottom of the Euroconnector, row C at the top).

 PIN SIGNAL PIN SIGNAL

 lA DBDIR 1C IORQL
 2A RDL 2C MREQL
 3A WRL 3C HALTL
 4A BUSAKL 4C NMIL
 5A WAITL 5C INTL
 6A BUSREOL 6C CD1
 7A RESETL 7C CD0
 8A CM1L 8C CD7
 9A REFRESHL 9C CD2
 1OA 0 VOLTS 10C +5 VOLTS
 1lA AO l1C CD6
 1ZA Al 12C CD5
 13A A2 13C CD3
 14A A3 14C CD4
 15A A4 15C CPU CLK
 16A A5 16C Al5
 17A A6 17C A14
 l8A A7 18C Al3
 19A A8 19C A12
 20A A9 20C All
 21A Al0 21C DISK 2L
 22A MSEINTL 22C ROMCSL
 23A XMEML 23C EARMIC
 24A 8 MHz 24C DISK 1L
 25A RED 1 25C PRINTL
 26A GREEN 1 26C BLUE 1
 27A C SYNC 27C ROMCSRL
 28A SPEN 28C AUDIO RIGHT OUTPUT
 29A BLUE 0 29C AUDIO LEFT OUTPUT
 30A RED 0 30C COMP VIDEO
 31A BRIGHT 31C GREEN 0
 32A +5 VOLTS 32C 0 VOLTS

when looking at the back of the Coupe's expansion connector, the pins
are numbered as follows:

Euroconnector
Pin 1C Pin 32C

Pin lA Pin 32A

Sam Coupe Technical Manual version 3.0 7

For details of Z80B timing signals refer to any standard Z80 text.
Please note that we will be releasing the SAM Coupe Multi Expansion
(SME) in the near future. (This product has been referred to as the Card
Cage in some of our literature). Some of the signals described here must
be included in any designs to ensure their correct operation when used
with the SME.

DBDIR (lA) This signal is not used by the computer but must be

driven by all external devices to allow their use with
the SME. The SME has buffers present to prevent undue
loading of the machine. However, it is the
responsibility of the hardware designer to ensure that
the data bus transceiver has its direction bit set
according to the operation (read or write) being
performed. The operation should be as follows:
 1. Processor sends out an address.
 2. External device decodes address.

3. External device drives the DBDIR line, from an
 open collector output, LOW for a processor
 READ.
 It is configured as a WIRED-OR internally to
 the computer.
4. Normal handshaking is continued with the Z80B
 for data transfer.

RDL (2A}

Read signal from the processor.

WRL (3A}

Write signal from the processor.

BUSAKL (4A)

Bus acknowledge signal from the processor.

WAITL (5A)

Wait signal to processor.

BUSREQL (6A)

Bus request signal to external device.

RESETL (7A) This is a system reset generated by a 10 Kilohm
resistor charging a 47 microfarad capacitor. This gives
a pulse of approximately 330ms duration. It is
suggested that if a sharp reset edge is required, this
signal is passed through a schmitt inverter.

CM1L (6A)

Op-code fetch signal from the processor

REFRESHL (9A)

Refresh signal from the processor.

0 V (lOA)

Zero Volt: not to be used as a supply rail.

A0 (11A) Address lines A0 to Al0 from the processor are on pins
11A to 21A.

MSEINTL (22A) Mouse interrupt signal also present on the mouse port.
The signal is pulled low by an external device to
notify the processor that the mouse co-ordinates have
changed.

Sam Coupe Technical Manual version 3.0 8

XMEML (23A) External memory signal which will be driven low when

the processor requires to switch out the internal
memory and 8ccess the external memory. Please note that
only memory above address 8000H in each block of 64K
will be switched out. It is the responsibility of the
peripheral designer to ensure that the DIEM signal is
included in the address decoding circuitry of the
design, to avoid contention between the internal RAM
and the external device.

8MHZ (24A) 8 MegaHertz clock signal.

RED1 (25A) Each colour is generated by three colour driver
signals, the intensity of which is determined by three
bits each. RED1 is the MSB (Nest significant Bit) of
the red colour signal at the current pixel position.

GREEN1 (26A) GREEN1 is the MSB of the green colour signal (see pin
25A for a full description).

CSYNC (27A) Composite Sync for video circuitry as on the SCART
connector.

SPEN (28A) Light pen signal (active high) which is normally low.
When the light pen is touched to the screen and the
raster passes the point of the pen, a positive going
edge is received on this signal from the light pen
socket. This causes the two registers LPEN and HPEN to
contain the current x and y co-ordinates of the light
pen, respectively.

BLUE0 (29A) BLUE0 is the second bit of the blue colour signal (see
pin 25A for a full description).

RED0 (30A) REDO is the second bit of the red colour signal (see
pin 25A for a full description).

BRIGHT (31A) BRIGHT is the LSB (Least significant Bit) of all colour
signals (see pin 25A for a full description).

+5V (32A) +5 volt supply rail, up to 250 mA available.

IORQL (1C) Input/output Request becomes active when the address
bus contains a current port address from the processor.

MREQL (2C) Memory Request becomes active when the address bus
contains a current memory address front the processor.

Sam Coupe Technical Manual version 3.0 9

HALTL (3C) Halt indicates from the processor that it has executed

a HALT instruction and is waiting for an interrupt.

NMIL (4C) Non Maskable Interrupt causes the processor to execute
a jump, from which it may be vectored anywhere by the
user. It is used as a BREAK button by BASIC, and a
SNAPSHOT button by the DOS. It is pulled up by a 10
Kilohm resistor internally, and should therefore be
driven low by an open collector circuit.

INTL (5C} Maskable Interrupt is used to interrupt the processor
from its current task if the interrupts are currently
enabled.

CD1 (6C) Data lines Dl,D0,D7 and D2 are on pins 6C to 9C.

+5V (l0C) +5 Volt reference only.

CD6 (l1C) Data lines D6,D5,D3 and D4 are on pins l1C to 14C.

CPUCLK (15C) The 6 MegaHertz clock signal to the processor.

A15 (16C) Address lines Al5 to All are on pins 16C to 20C.

DISK2L (21C) DISK2 is the decoded base address for the eight ports
of drive 2.

ROMCSL (22C) ROM chip select is pulled high to disable the internal
ROM (Used in conjunction with ROMCSR on pin 27C)4 It
indicates when the ROM is being accessed.

EARMIC (23C) EARMIC is connected to the logic level side of the
cassette port circuitry.

DISKiL (24C) DISK1 is the decoded base address for the eight ports
of drive 1.

PRINTL (25C) PRINT is the decoded address for either of the two
possible printer addresses (246 and 248).

BLUEl (26C) BLUE1 is the MSB of the blue colour signal (see pin 25A
for a full description).

ROMCSRL (27C) ROMCSR is connected to the ROMCS (22C) pin via a 1
Kilohm resistor. If ROMCS is pulled high by an external
circuit, then ROMCSR could be used as a chip select for
an external ROM which would then take the place on the
internal one.

Sam Coupe Technical Manual version 3.0 10

AUDIORIGHT(28C The right audio signal, as on the light pen socket, is

brought out here.(5ornV pp as per auxiliary standard
input) It must be amplified before being applied to a
speaker.

AUDIOLEFT(29C) The left audio signal is present on this pin. The same
precautions and signal levels as for AUDIORIGHT apply.

CVID (30C) Composite Video, as sent to the modulator and SCART
socket is present on this pin.

GREENO (31C} GREENO is the second bit of the green colour signal
(see pin 25A for a full description).

0 V (32C) Zero Volt supply rail.

- SCART SOCKET -

SCART socket to handle all video and sound outputs. Please note that not
all connections are standard.

 PIN SIGNAL PIN SIGNAL
 1 AUDIO OUT RH 2 SPEN
 3 AUDIO OUT LH 4 AUDIO EARTH
 5 BLUE EARTH 6 BLUE TTL OUT
 7 BLUE LIN. OUT 8 RED TTL OUT
 9 GREEN EARTH 10 GREEN TTL OUT
 11 GREEN LIN. OUT 12 +5V POWER IN
 13 RED EARTH 14 CSYNC EARTH
 15 RED LIN. OUT 16 CSYNC
 17 C.VID EARTH 18 +12V POWER IN
 19 C.VID OUT 20 BRIGHT TTL OUT
 21 GND.

- UHF OUTPUT -

UHF television standard video and mono sound are output on channel 36;
the UHF output is in the power supply box.

Sam Coupe Technical Manual version 3.0 11

- SLIMLINE SLOT-IN DISK DRIVES -

The disk drives used in the SAM Coupe are Citizen Slim Line OSDC type
3.5', 1 megabyte (formatted 780 kilobytes).

The Coupe can control up to two disk drives. Connections to the two
drives are made via two 32-pin Euroconnectors, with rows A and B
connected. Drive 1 is on the left of the machine and drive 2 on the
right. A list of signals available at these sockets are shown below.

 PIN SIGNAL PIN SIGNAL

 lA 0 VOLTS 1B WR
 2A 0 VOLTS 2B AO
 3A 0 VOLTS 3B Al
 4A 0 VOLTS 4B D0
 5A 0 VOLTS 5B Dl
 6A 0 VOLTS 6B D2
 7A 0 VOLTS 7B D3
 8A 0 VOLTS 8B D4
 9A 0 VOLTS 9B D5
 10A 0 VOLTS 10B D6
 11A 5 VOLTS l1B D7
 12A 5 VOLTS 12B 8 MHz
 13A 5 VOLTS 13B RST
 14A 5 VOLTS 14B No connection
 15A 5 VOLTS 15B A2
 166A 5 VOLTS 16B DISK 1 OR DISK 2

Sam Coupe Technical Manual version 3.0 12

- DISK DRIVE INTERFACE -

The SAM Coupe can be connected to one or two disk drives. These would
normally be internal SAM disk drives. However, we have made provision
for people to use an external disk drive, (Shugart 400 type 5.25" or
3.5"), if they add the SAM External Drive Interface (SDI). Both the
internal drives and the SDI use the VL-1772-02 disk controller chip
manufactured by VLSI.

NB All values are given in Decimal.

The SAM Coupe controls each disk drive via 8 I/O mapped ports, as listed
below for both drives:

Disk 1 224 to 231 inclusive.
Disk 2 240 to 247 inclusive.

In each case, the address can be given by:

Disk1base (224) + offset (0 to 7)
Disk2base (240) + offset (0 to 7)

Both sets of offsets perform the same functions on their respective
sides of the disk. The first four offsets (0-3) refer to the first side
of the disk, and the second four offsets, (4-7) refer to the second side
of the disk. Offsets 4-7 can be ignored for single sided disk drives.

The offset determines which register of the 1772 will be accessed as
shown below:

OFFSET READ WRITE

0 Status(disk side 1) Command (disk side 1)
1 Track 1 Track 1
2 Sector 1 Sector 1
3 Data 1 Data 1
4 status(disk side 2) Command (disk side 2)
5 Track 2 Track 2
6 Sector 2 Sector 2
7 Data 2 Data 2

For example, to read the current contents of the data register on side 2
of Disk 1:

IN A,(231)
where 231 = Disk1base (224) + offset (7)

For complete information on controlling the 1772 chip refer to the data
sheets contained in Appendix H.

Sam Coupe Technical Manual version 3.0 13

MEMORY

- INTRODUCTION -

The Coupe can take 512 Kbytes of RAM on board (with extra memory able to
be added via the expansion connector using signal XMEML). The basic
machine has 256Kb fitted, with an internal expansion connector for an
additional 256Kb. The memory used is Dynamic Random Access Memory 256K x
4 bits - 100ns access time, 20 pin dual in-line plastic package.

Because the Z80B CPU (central Processing Unit) is limited to a 64K
addressing range, one of the functions of the ASIC (Application Specific
Integrated Circuit) in the Coupe is to manage the addressing of this
memory by splitting it into 32 pages of 16K.

Sam Coupe Technical Manual version 3.0 14

The ASIC controls the paging via two 8-bit read/write registers.

LMPR (Low Memory Page Register)...I/O address 250dec
HMPR (High Memory Page Register}...I/O address 25ldec

The lower 5 bits of each register represent pages 0 to 31. (of course on
the basic machine with 256K of memory fitted, the paging is from 0 to
15).

To illustrate the paging system used by the Coupe, it's best to envisage
the 64K addressing range of the Z80 as 2 blocks 2 of sections of 16K,
represented by the letters A.B and C.D:

 64K ADDRESS RANGE

 0000 4000 8000 C000 FFFF

 SECTION SECTION SECTION SECTION
 A B C D

 BLOCK A.B BLOCK C.D

LMPR manages the block A.B, and the HMPR manages the block C.D

If we write 00H to the LMPR then page 0 of the memory is allocated to
section A of the CPU address range. Section B is always automatically
allocated one page above section A, in this case to page 1.

If we write 02H to the HMPR then page 2 of the memory is allocated to
section C of the CPU address range. Section D is always automatically
allocated one page above section C, in this case to page 3.

In our example the CPU address map would look like this:

 64K ADDRESS RANGE

 0000 4000 8000 C000 FFFF

 PAGE 0 PAGE 1 PAGE 2 PAGE 3
 A B C D

 BLOCK A.B BLOCK C.D

Sam Coupe Technical Manual version 3.0 15

SCREEN MODES

- INTRODUCTION -

There are four screen modes used in the Coupe, each using varying
amounts of memory and each having different attributes for use by the
programmer.

The hardware pointers which display the contents of the memory are
controlled by the VMPR, Video Memory Page Register (252 dec).

By using the lower 5 bits of this register we can access up to 32
pages of video screen memory. It must be noted that modes 3 and 4
use 24 kilo-bytes, which go over the page boundary of 16
kilobybtes. Where this happens, the video addressing hardware
wraps into the next page within the same block. For example:

By entering page 12 to the VMPR, video wraps to page 13

The same applies to any page and the principal of even to odd always
applies.

- MODE 1 -

32 cells x 24 lines in 2 colours from 16 out of a palette of 128
colours, giving 768 character cells (8 x 8) using 6 kilobytes of bit-
mapped memory and 0.75 kilo-bytes of attribute memory. This mode
emulates Spectrum memory mapping.

- MODE 2 -

32 cells x 192 lines in 2 colours from 16 out of a palette of 128
colours, giving 6144 character cells (8 x 1) using 6 kilobytes of bit-
mapped memory and 6 kilobytes of attribute memory. This mode has
contiguous memory addressing in two blocks.

- MODE 3 -

512 pixels x 192 lines in 4 colours out of a palette of 128 colours,
giving 98304 dots using 24 kilo-bytes of memory. This mode, when used
with a character set 6 pixels wide, will give 85 characters per line.

- MODE 4 -

256 pixels x 192 lines in 16 colours out of a palette of 128 colours,
giving 49252 dots using 24 kilo-bytes of memory. This mode is ideal for
graphic display, and when used in conjunction with LINE INTerrupt
register can display the full 128 colours on screen.

Sam Coupe Technical Manual version 3.0 16

- LOCATING THE CURRENT SCREEN -

The SAM Coupe provides a port called Video Memory Page Register (address
252). To locate the base address of the currently displayed screen use
the following BASIC program:

10 LET A=IN 252 BAND 31 REM Input the current page
20 LET BASE=(A+1) * 16384 REM BASE now equals start

REM of screen area.

KEYBOARD

The Coupe has a full-travel 72 key keyboard. It is addressed as
a 9 x 8 matrix, using two ports, KEYBOARD (254 dec) and STATUS
(249 dec).

The 8 input lines are made up by the KEYBOARD port inputting the lower 5
bits represented by K1, K2, K3, K4 and K5, while the STATUS port inputs
the upper 3 bits represented by K6, K7 and K8.

The 9 output scan lines are made up by the CPU address lines AD8, AD9,
ADl0, ADl1, AD12, AD13, AD14, AD15 and the ASIC line RDMSEL.

An example of a typical keyboard scan:

 LD HL,SCAN ;set HL with buffer start
 LD B,lllllll0bin ;set upper address lines

LOOP LD C,HIKEY ;port address K6 - K8
 IN A,(C)
 AND lll00000bin ;strip unwanted bits
 LD (HL),A ;hold it

 LD C, LOKEY ;port address K1 - K5
 IN A, (C)
 AND 000lllllbin ;strip unwanted bits
 OR (HL) ;make K1 - K8
 LD (HL),A ;save it

INC HL ;next location in buffer
SCF ;set carry flag for
RLC B ;rotate next address line
JR C,LOOP ;jump if not done

 IN A,(C) ;input RDMSEL line
 AND 00011111bin ;strip unwanted bits
 LD (HL),A ;save it
 RET ;return to analyse scan

Sam Coupe Technical Manual version 3.0 17

INPUT/OUTPUT PORTS

The SAM Coupe can address 64k of ports. Addresses 224 (EOH) to 255(FFH)
are allocated to the Coupe itself. Refer to the diagram provided for an
overview of these ports and their contents.

- WRITE (OUTPUT) PORTS -

SOUND ports (address port 511 dec) and (data port 255 dec)

The sound chip, a Philips SAA1099, is controlled through these two port
addresses. The sound chip is controlled in BASIC through using the SOUND
a,d command. See the attached Philips application notes and the SAA1099
supplements included elsewhere for further information.

VMPR - Video Memory Page Register (252 dec)

This read/ write register mainly controls the page addressing for the
screen display memory.

 Bit 0 R/W BCD 1 of video page control.
 Bit 1 R/W RCD 2 of video page control.

Bit 2 R/W BCD 4 of video page control.
 Bit 3 R/W BCD 8 of video page control.

Bit 4 R/W BCD 16 of video bank control, used to switch
between the banks of 256 kilobytes.

Bit 5 R/W MDEO first bit of screen mode control.
 Bit 6 R/W MDE1 second bit of screen mode control.

Bit 7 -/W TXMIDI output bit to directly drive the MIDI
OUT channel.

 Bit 7 R/- RXMIDI input bit from MIDI IN channel.

HMPR - High Memory Page Register (251 dec)

This read/write register is used mainly for the control of paging memory
in the CPU's addressing range.

 Bit 0 R/W BCD 1 of high memory page control.
 Bit 1 R/W BCD 2 of high memory page control.
 Bit 2 R/W BCD 3 of high memory page control.
 Bit 3 R/W BCD 4 of high memory page control.
 Bit 4 R/W BCD 16 of high memory page control.
 Bit 5 R/W MD3S0 BCD 4 of the colour look-up address

available only in mode 3.
 Bit 6 R/W MD3S1 BCD 8 of the colour look-up address

available only in mode 3.
 Bit 7 R/W MCNTRL If this bit is set when the CPU
 addresses high memory, then the
(See section entitled external signal XMEM goes low and
CLUT IN MODE 4 & MODE 3 the Coupe looks on its expansion
in the text ahead) connector for memory sections C and
 D (addresses 32768 to 65536).

Sam Coupe Technical Manual version 3.0 18

LMPR - Low Memory Page Register (250 dec)

This read/write register is used mainly for the control of paging low
memory in the CPU's addressing range.

 Bit 0 R/W BCD 1 of low memory page control.
 Bit 1 R/W BCD 2 of low memory page control.
 Bit 2 R/W BCD 4 of low memory page control.
 Bit 3 R/W BCD 8 of low memory page control.
 Bit 4 R/W BCD 16 of low memory bank control.
 Bit 5 R/W RAM0 when bit set high, RAM replaces the
 first half of the ROM (ie ROM0) in
 section A of the CPU address map.
 Bit 6 R/W ROM1 when bit set high, the second half
 of the ROM (ie ROM1) replaces the
 RAM in section D of the CPU address
 map
 Bit 7 R/W WPRAM Write Protection of the RAM in
 section A of the CPU address map is
 enabled when this bit is set high.

MIDI OUT port (253 dec)

By writing a data byte to this port, the hardware automatically
transmits through the MIDI out channel at 31.25 kbaud, the standard for
MIDI protocol. Bit 4 of the STATUS register (249 dec) is set high when
this register is full.

BORDER port (254 dec)

This output port mainly controls the border colour of the screen by
supplying a 4-bit address to the Colour Look Up Table (CLUT), to enable
a colour to be displayed during border time.

 Bit 0 BCD 1 of CLUT address for border colour.
 Bit 1 BCD 2 of CLUT address for border colour.
 Bit 2 BCD 4 of CLUT address for border colour.
 Bit 3 MIC output control bit, normally set high.
 Bit 4 BEEP output control bit, normally set low.
 Bit 5 BCD 8 of CLUT address for border colour.
 Bit 6 THROM bit set high to allow through MIDI operation
 Bit 7 SOFF bit set high to disable screen display, only
 active in screen modes 3 and 4, also re
 moves memory contention during off period.

LINE INTerrupt register (249 Dec)

This write-only register will cause an interrupt to the CPU at the end
of the scan-line before the one matching its contents, (ie at the start
of the right hand border). This works even for the first scan line. Line
numbers are from 0 to 191. This function is always enabled, so to
inhibit its operation a false line number from 192 to 255 can be
entered. A useful function of this register can be to switch video modes
or change colour lookup table values.

Sam Coupe Technical Manual version 3.0 19

CLUT - Colour Look Up Table (base port 248 dec)

There are 16 write only 7 bit registers in the CLUT:
 colour 0 addresses register 0 on port 248
 colour 1 addresses register 1 on port 504
 colour 2 addresses register 2 on port 760
 colour 3 addresses register 3 on port 1016
 colour 4 addresses register 4 on port 1272
 colour 5 addresses register 5 on port 1528
 colour 6 addresses register 6 on port 1784
 colour 7 addresses register 7 on port 2040
 colour 8 addresses register 8 on port 2296
 colour 9 addresses register 9 on port 2552
 colour 10 addresses register A on port 2808
 colour 11 addresses register B on port 3064
 colour 12 addresses register C on port 3320
 colour 13 addresses register D on port 3576
 colour 14 addresses register E on port 3832
 colour 15 addresses register F on port 4088

Each register has 7 bits to represent 1 of 128 possible colours.

 Bit 0 BLUO least significant bit of blue.
 Bit 1 REDO least significant bit of red.
 Bit 2 GRNO least significant bit of green.
 Bit 3 BRIGHT half bit intensity on all colours.
 Bit 4 BLU1 most significant bit of blue.
 Bit S RED1 most significant bit of red.
 Bit 6 GRN1 most significant bit of green.

The registers at switch on will be loaded from the ROM with a default
set of values corresponding to:

register 0 black (0) register 8 black (0)
register 1 blue (16) register 9 bright blue (17)
register 2 red (32) register A bright red (34)
register 3 magenta(48) register B bright magenta (51)
register 4 green (64) register C bright green (68)
register 5 cyan (18) register D bright cyan (85)
register 6 yellow (96) register E bright yellow (102)
register 7 white (120) register F bright white (127)

The colour numbers are found by:
FOR c=0 TO 15 : PRINT PEEK (&55D8+c) : NEXT C

A typical routine for loading the CLUT from a memory table:

LD HL,TABLE ;load HL with top of table
 LD B,16 ;load B with size of table
 LD C,248 ;load C with port address

OTDR ;execute a decrement B,
 ;output to port (C) and
 ;decrement HL until B=O

RET ;return to calling routine

Sam Coupe Technical Manual version 3.0 20

CLUT IN MODE 4 & MODE 3

MODE 4

In screen mode 4, 4 bits are used to address the CLUT for the colour of
a pixel. Within a byte, the most significant nibble refers to the first
pixel and the least significant nibble refers to the second pixel.

MODE 3

The situation is similar in screen mode 3, however this time there are
only 2 bits per pixel which address the CLUT. Out of an 8-bit data byte,
the first two most significant bits are used as the address for the
first pixel.

Normally, only 4 of the sixteen possible registers would be available.
This is overcome by using an extra two bits from the high memory page
register (HMPR-251 dec). Bit 5 of HMPR is used to access BCD 4 of the
colour look up address and bit 6 of HMPR is used to access BCD 8 of the
colour look-up address.

In this way, we can still access the 16 colours specified in the colour
look-up table whilst having high resolution graphics.

Sam Coupe Technical Manual version 3.0 21

- READ (INPUT) PORTS -

ATTRIBUTES register (255 dec)

This register enables the programmer to read the attributes of the
currently displayed character cell in modes 1 and 2, and the third byte
in every four displayed in modes 3 and 4.

KEYBOARD register (254 dec)

This read only register is mainly used for inputting the lower 5 bits
of the keyboard matrix. It is also the input for the MOUSE when
the address lines AD8 - AD15 are high.

 Bit 0 K1 keyboard matrix line 1, Mouse Control.
 Bit 1 K2 keyboard matrix line 2, Mouse Up.
 Bit 2 K3 keyboard matrix line 3, Mouse Down/Button 2.
 Bit 3 K4 keyboard matrix line 4, Mouse Left/Button 1.
 Bit 4 K5 keyboard matrix line 5, Mouse Right/Button 3.
 Bit 5 SPEN light pen strobe/serial input bit.
 Bit 6 EAR serial input from EAR of cassette recorder.
 Bit 7 SOFF status bit show if external memory is set.

MIDI IN register (253 dec)

This read-only register generates an interrupt to the CPU when a data
byte has been read from the MIDI serial input interface. The data must
be read by the CPU before the next interrupt (typically 320 µS).

STATUS register (249 dec)

This read-only register is mainly used for reading interrupt status.
Although all five interrupts go to the CPU operating under mode 1
interrupt, there is no way of knowing which one is requesting, therefore
a read of this register is necessary. Approximate interrupt times are 20
µs long.

 Bit 0 LINE int when low, signals the line interrupt
 register is requesting.
 Bit 1 MOUSE int when low, signals the mouse
 requests the interrupt.
 Bit 2 MIDIIN int when low, signals the MIDI channel
 has a data byte.
 Bit 3 FRAME int when low, signals the frame scan
 has been completed (50 per/second).
 Bit 4 MIDOUT int when low, indicates the NrDr out
 register has just completed data
 output.
 Bit 5 K6 keyboard matrix line 6.
 Bit 6 K7 keyboard matrix line 7.
 Bit 7 K8 keyboard matrix line 8.

Sam Coupe Technical Manual version 3.0 22

PEN registers (LPEN - 248 dec) (HPEN - 504 dec)

If the light pen is not connected, these read-only registers are
continuously updating with the current position of the scan. The LPEN
register is connected to the horizontal or X co-ordinate of the scan
function and HPEN is connected to the vertical or Y coordinate of the
scan function.

The first two bits of the LPEN register are:

Bit 0 - Inputs BCD 1 of the current colour look up table address.
Bit 1 - TXFMST is the status bit for MIDI OUT. When this is high

it shows that a byte is being transmitted.

Sam Coupe Technical Manual version 3.0 23

(21)
Bit 0
(20)

(21) Noise
(22) Oscillator
 Bit 0

(21)
Bit 1
(20)

Left

Left

Right

Right

(20)

(20)

PHILIPS SAA1099 SOUND CHIP

- INTRODUCTION -

The sound chip has six tone registers or oscillators and two noise
generators. These can all be panned individually from left to right
across the stereo field using one of the 256 possible positions, {ie. 16
volumes per channel, thus 16 x 16 combinations gives 256 positions). The
position in the stereo field, relating to that particular oscillator, is
controlled by its amplitude register. The overall sound can be enabled
or disabled using output mixer (28). To hear sound, this register should
be '1', to kill the sound, it should be 0.

The six oscillators are split, three per noise generator. enables the
two envelope registers to be used independently.

- NOISE & SOUND -

Mixer registers 20 and 21 mix the noise with each of the oscillators.
Register 20 controls whether an oscillator's sound is passed or stopped,
whilst register 21 controls the noise.

Example:

Using this mixer allows either noise or tone or both or nothing to be
passed to a single amplitude register and so to a precise position in
the stereo field.

Output
Mixer

Output
Mixer

 Generator 0
 (8)

 Generator 0
 (8)

 Generator 1
 (9)

 Noise
 Generator
 (22)

 Noise
 Generator
 (22)

 Amplitude
 Generator 0
 (0)

 Amplitude
 Generator 0
 (0)

 Amplitude
 Generator 1
 (1)

 Amplitude
 Generator 1
 (1)

Enable
 Mixer

Enable
 Mixer

 To Enable
Mixer Bit 4

 To Enable
Mixer Bit 4

Noise and/or
 Tone

Sam Coupe Technical Manual version 3.0 24

- PITCH -

The pitch of each complete oscillator is controlled by two parameters.
These are eight possible octaves per generator and 256 possible tones
per octave. By carefully choosing octave and tone register data, a
smooth transition is possible from the lowest frequency on this sound of
31Hz to the highest frequency of 7.81KHz.

- MUSIC -

Chromatic scales are possible using the table below. Please note also,
that the tone numbers are also valid for the other octaves of the same
note although tuning may be difficult towards the lower octaves.

- THE CHROMATIC SCALE

NB: All numbers given in decimal.

Note Tone Octave Required Actual
 Number Number Frequency Frequency
 (decimal) (Hz) (Hz)

Middle C 33 03 261.626 261.506
C# 60 03 277.183 277.162
D 85 03 293,665 293.427
D# 109 03 311.127 310.945
E 132 03 329.628 329.815
F 153 03 349.228 349.162
F# 173 03 369.994 369.B22
G 192 03 391.995 391.850
G# 210 03 415.305 415.282
A 227 03 440.000 440.141
A# 243 03 466.164 466.418
B 5 04 493.883 494.071
C 33 04 523.251 523.013

Sam Coupe Technical Manual version 3.0 25

- OCTAVE REGISTERS -

Register 16 is an octave register altering the octave of tone registers
8 and 9. This is made possible by only using three bits per tone
register to select the required octave.

Thus 2x2x2 gives us eight possible octaves as previously mentioned. So,
to access the octave register for tone register 8, we must supply a
number (0-7) to the lower 3 bits of register 16. If we needed to access
the octave for tone register 9, we would then need to supply a number
between 16 and 64 making sure that the first four bits DO-D3 contain
zero, or the octave number for tone register 8 if in use.
Example:

- AMPLITUDE REGISTERS -

Any data sent to a particular amplitude register can precisely control
the position of a sound in the stereo field.

This is made possible by using the same technique as for the octave
register. The only differences being that this time 4 bits are used to
convey the volume of each channel, and the two 'halves' of the binary
number refer to two channels (left and right) instead of two separate
tone registers.

This would place the sound towards the left side of the stereo field.

Required Octave 5
For Tone Register 8
only

Required Octave 6
For Tone Register 9
only

Number output to Register 16 = 5

 B7 B6 B5 B4 B3 B2 B1 B0

Number output to Register 16 = 96

 B7 B6 B5 B4 B3 B2 B1 B0

X = Don’t Care

==== Right === ==== Left ====

B7 B6 B5 B4 B3 B2 B1 B0
Volume 11 required
on left channel.
Volume 7 required
on right channel for
amplitude register 2

Imaginary Position
Of Sound Emanating
From Speakers in
Stereo Field

5.5

0,1515,0
Left Spkr Right Spkr

-
Volume
+

*
11,7

Sam Coupe Technical Manual version 3.0 26

- NOISE GENERATORS -

We have two noise generators again controlled by one register. The
operation is very similar to that of the octave registers, but this time
only 2 bits are used per noise generator. This gives 4 possible noise
clock frequencies. Three of these options are preset - namely
0=31.25KHz, 1=15.6KHz and 2=7.8KHz. The fourth option (External) is
controlled by the frequency of Generator 0 in the case of Noise
generator 0 or Generator 3 in the case of Noise Generator 1. Using these
generators, we are able to vary the 'pitch' of the noise and/or tone. If
only continuously controllable noise is required, the relative tone
mixer bit is disabled, but the relative noise mixer bit enabled. This
technique is called using a tone generator to "Modulate" the frequency
of the noise.

- ENVELOPE REGISTERS -

The envelope controllers can be found on registers 24 and 25.

Bit 0-Controls whether the envelope that is set up is mirrored in the
left or right channel. (This can be useful to generate a sense of
movement without writing to the amplitude registers).

Bits 3,2,1-Set envelope shape. These three bits select an envelope shape
from the table found in Fig 3. in the Philips sound chip data sheet.

Bit 4-Controls resolution of envelope if repeated very quickly. 16
levels of resolution controlling envelope modulation are available for
repetition up to 977Hz and 8 levels for repetition rates above 977Hz.

Bit 5-This bit controls whether the envelope registers are controlled by
generators 1 or 4. If this bit is reset(0), then the internal clock is
used to control the shape of the envelope. If this bit is set(1), then
the external clock is used(AO) to control the envelope.

Bit 6-is not used.

Bit 7-is used to enable or disable the operation of the envelope
controller. Note that this bit should be set (1), the enable envelope
control.

Sam Coupe Technical Manual version 3.0 27

THE SAM COUPE SOFTWARE

MEMORY

Several memory arrangements are possible with the Coupe, with various
advantages and disadvantages, and each of these sections is discussed in
detail. The screen mode and the location of screen memory are perhaps
the first factor to consider.

- SAM COUPE MEMORY MAP -

0FFFFH ROM1 OR PROGRAM,
 VARIABLES OR SCREEN

0C000H PROGRAM, VARIABLES
 OR SCREEN

0B000H START OF
 CHANNELS CHANS

05CB6H SYSTEM
 VARIABLES SVARS

05A00H KEYBOARD TABLE

058E0H KTAB
 DEF KEY DKLIN
 BUFFER DKBU

05800H LINE INTERRUPT
 COLOUR TABLE

05600H LINICOLS
 PALETTE
 TABLE

055D8H PALTAB
 UDG
 PATTERNS UDGS
 CHR$ (127 - 168)

05490E CHARACTER
 PATTERNS
 CHR$(32 - 127)

05190H CHARS

Sam Coupe Technical Manual version 3.0 28

05120H PAGE ALLOCATION
 OF 33 BYTES.
 (1 per 16K PAGE+FFH)

05l00H ALLOCT

050FFH

 GENERAL-PURPOSE
 BUFFER SPACE

04F00H MACHINE
 STACK SP

 FLOATING POINT STKEND
 CALCULATOR
 STACK
04D00H STKBQT
04C00H FARLDIR BUFFER

04B50H HDL
 TAPE HEADERS
04B00H HDR
 BASIC STACK FOR STKBQT
 GOSUB/DO/PROCED BASSTK
 URES
 BSTKEND
 SPARE FOR HEAP
 OR BASIC STACK

 SYSTEM HEAP. HEAPEND
 2.7K AVAILABLE
 DOESN'T PAGE
04000H HEAPST

 ROM 0

00000H

Sam Coupe Technical Manual version 3.0 29

- SCREEN MEMORY LOCATION -

A complete screen takes 6.75K in mode 1 and 12K in mode 2 (not including
a 2K gap between pixel and attribute data). In these modes the memory
containing the screen can be switched in at any 16K boundary. The paging
system means that the other 16K RAM page in the same half of memory will
page at the same time as the page containing the screen. Modes 3 and 4
require 24K and thus two 16K pages. You can either leave the screen
memory permanently paged in or just page it in when you want to read it
or write to it, providing your screen handling code is paged in at the
same time! The ROM switches in the screen as it requires, in sections C
and D of the memory map (8000H).

- THE STACK -

The ROM normally keeps the machine stack and system variables in section
B at 4000H-5CD0H, so that they are not paged out when the screen, Basic
program or variables area are paged in in the top half of memory.

ROM

ROM0 is normally switched into section A of the memory map. ROM1 is
normally switched out until it is needed; when in use it is located in
section D. Jump table routines in ROM0 that need ROM1 will page it in
automatically, use it, and then restore its previous status.

- USE OF ROM SUBROUTINES -

The ROMs usually expect the stack to be in section B, and many routines
require the system variables in the same area to be intact. However, if
you wish to use this area for your own code, you can page out the system
variables and use the ROM routines indirectly via JSVIN (see later).
This routine will switch the system variables back in temporarily while
the ROM routine of your choice is executed. The screen will be
temporarily switched into section C and D if required, but your code can
usually be located in the same area. Naturally, ROM0 must be enabled if
you want to use the jump table, but you could page it out most of the
time.

For example, you could load your machine code, disable interrupts,
switch out ROM0, switch new RAM into section A/B, and use it for your
program. You could provide some code to handle maskable and/or non-
maskable interrupts, if desired. Before using a ROM routine, enable ROM0
from somewhere outside section A, and use JSVIN to call the routine you
want. If you switch the page your code is currently executing in,
remember that the next instruction will come from the new page!

Sam Coupe Technical Manual version 3.0 30

- USING SCREEN MODES 3 AND 4 -

The arrangement of screen memory in modes 3 and 4 makes plotting a pixel
very simple. A method similar to that used by the ROM for mode 4
(256*192, 16 colour) is shown below. On entry, L and H are the X and Y
coordinates (0,0 at top left) and D has the colour to use in both its
nibbles (e.g. D=77H for colour 7). H and L are returned unchanged
(convenient, for example, during line drawing).

PLOTLH: SCF
 RR H
 RR L
 LD A,(HL)
 JR C,PLOTODD ;jr if odd pixel

 XOR D
 AND 0FH
 XOR D ;mix left nibble of D with right nibble
 ;tread from screen
 LD (HL),A
 ADD HL,HL ;restore entry HL
 RET

PLOTODD: XOR D
 AND 0F0H
 XOR D
 LD (HL),A
 ADD HL,HL
 INC L ;restore entry HL
 RET

The address of the next scan line can always be obtained by adding 128
to the current screen address.

The screen can be easily moved left or right by 1 pixel using the RLD
and RRD instructions provided by the Z80. LDIR and LDDR can be used for
2, 4, 6 etc. pixel moves. The ROM subroutines support most
possibilities.

- PALETTE SWITCHING -

The ROM interrupt routine sets up the palette registers (CLUT) at the
start of every frame, using one of two tables of 16 bytes at PALTAB, and
switching between them to give flashing colours. It is a good idea to
keep these tables up-to-date with the current colours, even if you do
not want to use the ROM routines, because the palette registers
themselves cannot be read. Software entered via MNI would find an
accurate PALTAB useful when doing screen dumps or palette alterations.

Sam Coupe Technical Manual version 3.0 31

The ROM can also change a specified palette memory to a given value at a
specific scan line, allowing many more than 16 colours to be displayed
at once. If only a single change is made per scan line, it will occur
during the scan flyback time and no flicker will occur in the display.
In the Coupe's striped start-up screen all the stripes are actually
palette colour 0 - but palette memory 0 is being altered.

If more than one palette change is programmed to occur at a given scan
line, the later changes will occur as the picture is displayed, and this
can cause flicker if the colour being altered is on-screen at that
particular location. Up to 127 changes can be made per frame. If you
wish to provide your own routine this can be added using the line
interrupt vector address (LINIV), or by switching out the ROM.

- THE PAGING SYSTEM -

The paging system makes it possible to page in any address so that there
are at least 16K bytes above it before FFFFH is passed. This means that
when dealing with data structures less than 16K long, once the start of
the data is paged in there is no need to take special precautions to
ensure pointers do not "fall off" the end of memory. The ROM normally
uses memory sections C and D as a “rotating window" onto memory and
keeps system variables and the stack in section B. For example when the
next Basic line is pointed to by adding a number to HL (adding current
line length to current line start) code similar to that below checks to
see if HL has moved out of section C into section D. If so, the page
value is increased and HL is adjusted to point to the same actual byte,
at an address 4000H lower, in section C. The whole line can then be
dealt with fairly simply since no further checks of HL need be made
until the next line is looked at.

BIT 6,H
JR Z,LAB1

IN A,(HMPAGE)
INC A
OUT (HMPAGE)
RES 6,H

LAB1: ETC.

Here there is no danger of the lower 5 bits of HMPAGE being incremented
past 1FH to corrupt the upper bits, since the last line of program has a
terminator. This will be the case with most other data structures you
are likely to want to use.

Sam Coupe Technical Manual version 3.0 32

- ROM RESOURCES -

The ROM should be used via the documented fixed locations or the jump
table to avoid problems with new ROM issues. References are made to ROM
1.0 and ROM 1.2. All production machines contain ROM 1.0, however a free
upgrade will allow users to change this to ROM 2.0, which is the
production version of ROM 1.2. Production machines will be fitted with
ROM 2.0 by mid 1990. The ROM version installed can be determined by:
PRINT PEEK 15, and dividing the value displayed by 10.

FIXED ROUTINES NEAR THE START OF LOWER ROM

0000 MACHINE INITIALISATION
0004 POP HL Call here to return your own address in HL.
0005 JP (HL)

The two instructions above provide the ability to (effectively) use CALL
within relocatable code. For example.

 CALL 0004H ;get address of HERE in HL
HERE LD DE,THERE-HERE
 ADD HL,DE ;add displacement to get
 ;address of THERE
 CALL 0005H ;effectively, CALL THERE
 etc.

THERE RET

The method above corrupts HL and DE, but it can be adapted to use the
alternate register set or IX or lY if desired.

 0006 JP (JY)
 0008 ERROR HANDLER
 000F ROM VERSION NUMBER
 0010 Print char in 'A' register to current stream. The 'K'
 and 'S' channels respond to control codes for PEN,
 PAPER, OVER, INVERSE, FLASH, delete, left, right, up,
 down, AT, TAB and carriage return.

0013 Print BC bytes starting from DE, using current stream.
0016 JP (BC)
0018 Get current character from Basic line.
0020 Get next character front Basic line.

0028 Call floating point calculator. The example multiplies the

top two numbers on the floating point calculator stack, then divides the
result by 10 and swops top and third no.s.

RST 28H ;a,b,c,d
DB MULT ;a,b,c*d
DB STKTEN ;a,b,c*d,10
DB DIVN ;a,b,c*d/10
DB SWOPl3 ;c*d/10,b,a
DB EXIT

Sam Coupe Technical Manual version 3.0 33

The operation codes used are different from the Spectrum's, and more
numerous; see the separate section on the floating-point calculator.
Note: The vector address RST28V makes it possible to translate any
operation code into another before the operation is performed.

002B DJNZ 002B Useful for uncontended timings.
002D JP (IX)

0030 USER RST. Intended for debugging etc. JPs to the
 address in "RST3OV".
0033 JP (DE)
0035 DJNZ 0035H Useful for timing.
0037 RET
0038 MODE 1 INTERRUPTs
005C OUT (HMPR),A
 JP (HL)
005F LD A,B Useful for timing.
 OR C
 DEC BC
 JR NZ,005F
 RET

0066 NON-MASKABLE INTERRUPTS

RAM contention means that ROM routines usually run slightly faster
than identical RAM routines. If you are executing the Z80's block
instructions on large blocks, and speed is important, it might
be worthwhile to call the routines below:

008F LDIR: RET
0092 LDDR: RET (block moves run about 8% faster in ROM)
0095 CPIR: RET
0098 CPDR: RET
009B OTIR: RET
009E OTDR: RET

JUMP TABLE AT 0100H

Sometimes conditions for entry a few bytes past the start of a routine
are given, as well as the usual entry conditions to the routine; where
this is done, you can read the routine address from the jump table, add
a displacement, and enter part-way through (for example using CALL
HLJUMP). The documented entry conditions will remain constant.

When routines are described as "generating an error” this means that
error handling (using RST 08H) will clear the machine stack back to the
value held in ERRSP and then do a RET. Normally this leads to an error
message being given in the lower screen window, but this can be avoided
by PUSHing the address of your own error handler onto the stack, and
altering ERRSP (possibly temporarily) to hold the current Stack Pointer.
When you gain control, ERRNR will hold the error number (see the list in
the Basic manual).

Sam Coupe Technical Manual version 3.0 34

JSCRN
(0100H)

Select screen held in the C register (1-16). Equivalent to
Basic's SCREEN command. An error is generated if the screen
is not open. This Jump Table entry is not available in
version 1.0 of the ROM

JSVIN
(0103H)

Call parameter word with system variables page switched in.
HL', DE', BC' and F are corrupted, and interrupts are
enabled, before the parameter address is called. All other
registers are passed intact. On exit, all registers except
AF' have the values left in them by the called routine. The
original status of HMPR is restored. For example:

CALL JSVIN
DW JGETINT
LD (STORE),HL etc.

JHEAPROOM
(0106H)

Reserve BC bytes in the system heap. This is always paged
in; it is in the same page as the stack and the system
variables, paged into memory area B. On entry, BC=bytes to
reserve (if BC is positive) or bytes to release (if BC is
negative). On exit, if the carry flag is set the call was
successful, and DE points to the old HEAP END (the start of
the reserved space), HL points to the new HEAP END (one byte
past the end of the reserved memory), and BC is unchanged.
If the carry flag is reset, not enough space was available,
and HL holds the amount that the request exceeded the
available space by.

JWKROOM
(0109H)

Open BC bytes in workspace (a temporary work area, cleared
before each Basic statement is dealt with). On exit, DE
points to the reserved space, starting in section C of the
memory map, paged in. HL points one byte past the end of the
space, provided it is less than 16K long. A and BC are
unchanged.

JMKRBIG
(010CH)

Open A 16K pages and BC bytes at HL in section C of the
memory map. BC must be 0-3FFFH. This routine can be used to
open space before the Basic program, inside it, in the
variables area, or the workspace. If there is not
sufficient space, an error will be generated. On exit, HL
points to the space and DE points to the end of the space
(if the space <16K).

Sam Coupe Technical Manual version 3.0 35

JCALLBAS
(010FH)

Call BASIC subroutine at line HL. When RETURN is used, or
any error occurs (for example, STOP, variable not found,
etc. - even "OK" counts, in this case), your machine code
will be re-entered. On return, A holds an error code, or
zero if there was no error (and the zero flag will be set if
there was no error). When your machine code finally does a
RET to return to Basic, the statement that called the code
in the first place, such as CALL 54000 or PRINT USR 54000,
will be completed, but then the program will carry on at the
statement after the RETURN in the Basic subroutine, or after
the point where an error occurred, because Basic's notion of
its current line and statement have been altered during the
subroutine execution.

 To return to the statement after your CALL, or anywhere else
in the program for that matter, read the values from SUBPPC
and PPC before using any Basic subroutines, then INC the
SUBPPC value and place it in NSPPC, and place the old PPC
into NEWPPC. This will cause a GO TO of the specified line
and statement when your machine code RETs.

JSETSTRM
(0112H)

Set the stream specified by the A register (FBH-10H).
 FBH=channel 'B' (Always) Printer binary output.

 FCH=channel '$' (Always) Output to a string.
 FDH=channel 'K' (Always) Lower screen I/O.
 FEH=channel 'S' (Always) Upper screen I/O.
 FFE=channel 'R' (Always) Output to edit line.

 00H=channel 'K' (Usually)
 01H=channel 'K' (Usually)
 02H=channel 'S' (Usually)
 03H=channel 'P' (Usually) Printer text output.

JPOMSG
(0115H)

Output message number A from table at DE. Zero gives the
first message. Each message should have bit 7 set on the
last character. Characters 0-31 should not be included. The
current output stream is used.

JEXPT1NUM
(0118H)

Syntax check/evaluate a numeric expression. During syntax
checking an invisible 5-byte form of any literal numbers is
inserted. During run time the result of the expression is
left on the floating point calculator stack.

JEXPTSTR
(0116H)

Syntax check/evaluate a string expression. See
JEXPT1NUM.

JEXPTEXPR
(0llEH)

Syntax check/evaluate an expression. See JEXPT1NUM. These
three routines can be useful in extending the Basic
interpreter.

JGETINT
(0121H)

Unstack number from calculator stack into HL. BC holds
a copy of HL, and A holds a copy of L. An error is
generated if the rounded number is not in the range 0-
65535.

Sam Coupe Technical Manual version 3.0 36

JSTKFETCH
(0124H)

Unstack last value from calculator stack to AEDCB. If the
value is a floating-point number, the 5 bytes are in
CPC/Spectrum format. If the value is a whole number between
0 and 65535 (which may be negative) it may be in a special
form where A=O (showing special form), E=SGN (0=positive,
FFH=negative} and D and C are less and more significant
bytes. If the value is a string, A holds the page the string
text starts in, DE holds the start address of the text start
within the page (8000-BFFF), and BC holds the string length.

JSTKSTORE
(0127H)

Stack AEDCB registers on the calculator stack. On exit, HL
holds the new STKEND, and AEDCB are unchanged. No other
registers are altered.

JSBUFFET
(012AH)

Unstack the details of a string from the calculator stack
and copy the text to a buffer in the system page in section
B of the memory map. Paging is undisturbed on exit, no
matter where the string is copied from. Generates an error
if the string is more than 255 characters long, or the null
string. On exit, DE points to the start of the buffer and BC
holds the string length. The A register holds a copy of C.

JFARLDIR
(012DH)

Copies bytes from page A, offset HL to page C, offset DE.
Copies (PAGCOUNT) 16K pages and (MODCOUNT) bytes
(MODCOUNT=0000-3FFF), paging as needed. The paging state on
entry is unimportant, and is unchanged on exit. Since the
routine copies via a buffer, it is usually possible to write
a faster, more specialised routine if the required paging
can be arranged.

JFARLDDR
(0130H)

A LDDR version of FARLDIR.

Sam Coupe Technical Manual version 3.0 37

JPUT Screen modes 3 and 4 only. Place a block of data on
(0133H) the screen at given coordinates.

On entry, C holds the x coordinate (bit 0 is not significant,
since the data can only be aligned to byte accuracy). The x-range
is 0-255, whatever the MODE.

The B register holds the y coordinate, with 0 at the top of the
screen and 191 at the bottom.

The HL register points to the data to use; the first and second
bytes of the data specify width in bytes and height in pixels,
followed by 811 bytes for the top scan of the block, all bytes of
the second scan, etc.

The A register determines the method of placing the data on the
screen. 0=overwrite with INVERSE option, 1=XOR, 2=OR, 3=AND,
4=overwrite (with no INVERSE option - faster), 5=mask. The mask
option requires a second block of data the same length as the
first (excluding the first 2 bytes of the first block) pointed to
by HL', with bits set for "unmasked" and reset for "masked".

This allows a complex shape, perhaps with holes in it, to be
placed on a background without border effects. If the shape hangs
off the bottom of the screen, it will be "trimmed'

 to fit. If the
data overlaps the right border of the screen, it will wrap round
to the left, but 1 scan lower.

Both HL and HL' (if used) must point to data that will be
available for use; since JPUT will temporarily switch in the
current screen (using CUSCRNP, or at least the contents of that
address) at 8OOOH, the data must be located at 4000-7FFFH, or
EOOO-FFFFH in the screen page. JPUT also needs to use the system
variable CURP (or a byte at that address) as a temporary store,
and it will read INVERT to determine INVERSE status, where this is
an option. JPUT should run rather faster than Basic's PUT, since
Basic has to move data from the variables area.

Unlike attribute colour systems, the colours to be used are
implicit in the block data, although methods 0-3 allow an INVERSE
option. The restriction that blocks must be put down at even pixel
boundaries is to keep the speed high. If you wish to place blocks
at 1-pixel intervals, it is possible to prepare two versions of
the same graphic, with the data displaced by 1 pixel in one of
them, in order to get the required effect.

In version 1.0 ROMs there is an error in JPUT, but you can
get the same effect by using: PUSH AF: CALL 3A7BH: POP AF:
CALL 2DACH instead of CALL 0133H. If the ROM version number
(PEEK 15) is not 10, you must use 0133H.

Sam Coupe Technical Manual version 3.0 38

JGRAB Screen modes 3 and 4 only. Store a block of screen
(0136H) data from given coordinates to a buffer.

On entry, C holds the x coordinate (bit 0 is not significant) and
the x-range is 0-255 whatever the screen MODE. B holds the y
coordinate, with 0 at the top of the screen and 191 at the bottom.
E holds the block width in bytes, and D holds the length in
pixels. On exit, DE points to the start of the block in the
current screen page (specified by CUSCRNP); the first byte is
always zero, the next byte is the width in bytes, the next byte is
the length in pixels, and the following bytes store the block,
scan line after scan line. BC holds the block length, including
the a header bytes. Since the area is stored in the "spare" 8K
following a MODE 3/4 screen, the length of the data must be a
little under 8K, at the most. JGRAB requires temporary storage at
the variable CURP (or storage at that address) and it will read
CUSCRNP in order to temporarily switch the screen in. If the
GRABed area hangs off the bottom of the screen, it will be trimmed
as needed.

JPLOT
(0139H)

Plot pixel at x coordinate in C and y coordinate in B,
except when the MODE is 3 and FATPIX 0 is in force (THFATT
will be zero); in which case use HL as the x coordinate (0-
511) and plot a "thin" pixel. The y-axis has 0 at the top
and 191 at the bottom in all cases. There is no control to
prevent you plotting beyond the bottom of the screen.

JDRAW
(013CH)

Draw a line from the current position C (or HL if "thin"
pixels are in Use, according to THFATT) pixels horizontally
and B pixels vertically. D=1 for down (or for no y movement)
and FF for up, E=1 for right (or for no x movement) and FF
for left. The colour and OVER and INVERSE state come from
the temporary graphics variables. The screen used comes from
CUSCRNP. An error is generated if the line is drawn over the
screen edge.

JDRAWTO
(013FH)

Draw a line from current position to point C,B (or point HL,
B if "thin" pixels are in use). The y axis has zero at the
top and 191 at the bottom. Colours etc. come from the
temporary graphics variables.

JCIRCLE
(0142H)

Draw circle at C,B radius A. If "thin" pixels are set, HL
should hold an offset from the left-hand screen border (in
pixels). This allows a circle to be placed anywhere on a
mode 3 screen even though the x coordinate is limited to 1
byte. The y axis has zero at the top. Colours etc. come from
the temporary graphics variables.

Sam Coupe Technical Manual version 3.0 39

JFILL
(0145H)

Modes 3 and 4 only. Uses the 16*16 pixel pattern at DE to
fill an area starting at coordinates C,B. The y axis has
zero at the top. If DE holds zero, a "solid" fill with the
current PEN (from M23INKT) is performed. Otherwise DE can
have any value (but values 000l-3FFFH will use the ROM as a
pattern!). If A=0 then a preliminary transfer of the screen
memory to a scratchpad area (6K long, immediately after the
24K screen memory) is made; you will need to make A=0 for at
least the first fill you use. Later fills on the same screen
over the same colour can make A non-zero for greater speed.

 If you are using MODE 3 with "thin" pixels, HL should hold a
byte offset from the left-hand screen edge for the point to
start filling at. This allows any part of the screen to be
filled, despite the x coordinate being limited to one byte.

 The pattern data pointed to by DE has 8 bytes for the top
row, 8 bytes for the next, etc. so 128 bytes are needed.
Each nibble controls colour for 1 pixel in mode 4 or 2
pixels in mode 3.

JBLITZ
(0148H)

Execute a string of graphic commands BC long at DE. DE can
be anything from 4000H to FFFFH, and BC anything from 0 to
FFFFH (JBLITZ will page if required). PLOT, DRAW, DRAW TO,
CIRCLE, OVER, INK, CLS and PAUSE commands can be included in
the string. They are handled at a higher level than JPLOT,
JDRAW and JCIRCLE; the floating point calculator and special
Basic variables can be used for offset and scaling. The use
of numerous system variables makes having the system
variables paged in hard to avoid. x coordinates and moves of
0-255 only are allowed; i.e. only half the screen is easily
usable in MODE 3 with FATPIX 0 selected. The coordinate
system used is the same as that used by Basic; e.g. bytes 01
00 00 would act like PLOT 0,0 in Basic and be modified if
XOS or YOS were altered. To perform a RELATIVE DRAW:

 00 or FF give the SGN of an x movement (00=positive,
FF=negative), followed by the x movement, followed by the
SON of the y movement and the y movement. If movements are
negative, they are stored as 256-move.

 PLOT: 0l followed by x,y
DRAW TO: 02 followed by x,y
CIRCLE: 03 followed by x,y,r
OVER: 04 followed by 0-3
PEN: 05 followed by 0-17
CLS: OG followed by 0-1
PAUSE: 07 followed by 0-255

 The easiest way to prepare the data for JBLITZ is to use
RECORD in Basic and then POKE the string where you need it.

Sam Coupe Technical Manual version 3.0 40

JROLL
(O14BH)

Modes 3 and 4 only. Move part of screen left, right, up or
down. The screen area must be an even number of pixels
across. A horizontal move by 1 pixel or any even number of
pixels is possible. A vertical move by any number of pixels
is possible. Wrap-round is optional; it uses the area
immediately after screen memory as a buffer. On entry, A is
00 if a SCROLL (no wrap) is wanted, or FFH for a ROLL (with
wrap). B holds the pixels to move by, C is a direction code
(l=left, 2=up, 3=right, 4=down), D holds length of block in
pixels and E holds width of block in pixels (bit 0 is non-
significant). HL holds the coordinates of the top left-hand
corner of the block to be moved, L holding the x coordinate
(range 0-255, whatever the MODE) and H holding the y
coordinate with 0 at the top of the screen. JROLL checks the
MODE system variable, copies the permanent graphics
variables onto the temporary ones, and uses M23PAPT as the
background colour for new screen generated by SCROLL. The
routine uses CURP and TEMPPB3 in the system variables, and
up to 0181H bytes at 4D00H to store "unrolled" code loops.

JCLSBL
(Ol4EH)

Clear entire screen if A=0, else clear upper screen.

JCLSLOWER
(0151H)

Clear lower screen. Also selects channel K (lower window
input/output).

JPALET
(0154H)

If A=FFH, put colours BC in PALTAB as main and flashing
colours for palette colour E. (Make B=C for no flashing).
Colours should be 0-127, palette entry 0-15. If A is non-
zero, it is a y-coordinate to alter the palette at. PALTAB
is not altered; instead an entry is made in the line
interrupt colour table.

JOPSCR
(0157H)

OPEN SCREEN number C in mode B. The pages required are
located in the Page Allocation Table and reserved, and an
entry is made in SCLIST. The screen number must be 2-16, and
it must not be already open, or an error is generated.

JMODE
(015AH)

Set screen MODE that is in the A register (0-3 gives MODEs
1-4).

JTDUMP
(Ol5DH)

Do a text screen dump (if dump utility installed).

JGDUN?
(0160H)

Do a graphic screen dump (if dump utility installed). The
system variables documented in the Basic manual control the
area dumped and its magnification.

Sam Coupe Technical Manual version 3.0 41

JRECLAIM
(0163H)

Reclaim (close up) BC bytes at HL (8000H-BFFFH). Can be used
to close up memory before a Basic program, within it, or in
the variables area or workspace. BC must be less than 16K; if
you want to reclaim a bigger space, call one byte from the
start of the routine, with A holding number of 16K pages to
reclaim, in addition to the space specified in BC.

JKBFLUSH
(0166H)

Flush keyboard buffer.

JREADKEY
(0169H)

Read keyboard, flush butter (like INKEYS). Z/NC if no key
pressed, else NZ/CY and A=key value (ASCII).

JWAITKEY
(016CR)

Read next key into A from keyboard buffer. Wait for a key to
be pressed if needed.

JBEEP
(0l6FH)

Make a beep DE-1 cycles long at period HL*8 T states.

JSAVE
(0172H)

Save a block CDE bytes long starting at HL (switched into
section C). C holds the number of 16K pages, and DE holds the
length MOD 16K. Make A register first byte saved, (FFH for
'data block', 01 for SAM 'header', 00 for spectrum header).
If SLDEVT (see system variables) holds "T", the SAVE will be
to tape-if it holds "N" the SAVE will be to the Network.
SLNUMT controls the save speed to tape (112 is standard
speed).

JLOAD
(0175H)

If the carry flag is set, LOAD CDE bytes to HL (switched into
section C of the memory map). If the carry flag is reset, do
a VERIFY. The A register holds the type of data to deal with
(FFH=data block, O1=SAM or Spectrum header, 00=spectrun
header). If SLDEVT holds "T", tape will be used; if "N", the
Network. Varying input tape speeds are handled automatically.
The routine returns with carry set if the operation was
successful; otherwise there has been an error.

JLDVD
(0178H)

If the carry flag is set, LOAD CDE bytes of data (not header)
to HL. If the carry flag is reset, do a VERIFY. Use disk,
tape or Net according to the contents of SLDEVT. An error is
generated if the operation fails.

Sam Coupe Technical Manual version 3.0 42

JEDGE2
(017BH)

Waits for 2 signal transitions on EAR, returninq in A and C
the number of 47-T state units taken. On entry, B should hold
the current EAR status in bit 6, bit 3 should be set, and the
other bits should reflect what you want sent to the BORDER
port when there is a signal transition. Bits 2-0 will be
reversed on every transition. The D' register should hold a
value that determines the length of a pause between finding
one transition and looking for another (this avoids double
counts when the tape signal has buzzy edges). For standard
speed tapes, D' should be about 46H, JLOAD sets D' according
to tape speed. Interrupts should be disabled for accurate
results.

 The routine returns Z if it had to wait too long (256 units),
NC if ESC was pressed, and CY if okay. Entry 2 bytes from the
start avoids the initial zeroing of the C register which is
used as a counter; entry 6 bytes from the start waits for
only 1 signal transition on EAR. On exit the B register holds
a new value suitable for another call to the routine, and A
and C both hold the counter value. Note: In version 1.0 ROMs
this jump table entry incorrectly has bit 15 of the address
set. You should read the address at O17CH, reset bit 15, and
CALL that address.

JSTRS
(017EH)

Create ASCII version of number on floating-point calculator
stack in buffer at 5BA0H. On exit, DE holds 5BA0H and BC
holds the number of characters in the buffer.

JSENDA
(0181H)

Send the byte in the A register to the parallel printer. The
system variable at 5A10H is read to obtain the port to use,
and the routine loops until the printer is ready before
sending the byte and then returning. If ESC is pressed, an
error will be generated. Uses A and BC only.

JUMP TABLE ENTRIES INTRODUCED AFTER ROM 1.0

JNCHAR
(0184H)

Call SCREEN$ subroutine. Try to match the character at line
D, column E on the screen with any character in the main
character set (pointed to by CHARS) or any character in the
set pointed to by UDG. On exit, the carry flag is set if the
search was successful, in which case A holds a character code
of 20H-7FH (32-127) if the character was found in the main
set, or 80H-7FH (128-168) if the character was found in UDG
set. If the carry flag was reset, A=0 and the search failed.

JGRCOMP
(0187H)

Subroutine used by graphic dump utility.

Sam Coupe Technical Manual version 3.0 43

JGTTOK
(Ol8AH)

Try to match potential spelled-out keyword pointed to by DE
in a list of keywords at HL+1. The list should be in upper
case, with bit 7 set on the last letter of each keyword. The
A register should hold the number of words in the list, plus
1. On exit no match was found if the zero flag is set. If a
the zero flag is reset, the A register holds the entry number
in the list (1 or more), HL points to the start of the
original word and DE points just past the end of it.

JCLSCR
(018DH)

Close screen number held in the C register.

- CHARACTER SET -

The character set from CHR$ 32 to CHR$ 130 is stored in compressed form
in ROM1 and loaded into RAM in the system variables page when the
machine is turned on. CHR$ 131-168 are initially defined as blanks,
although CHR$ 128-143 are displayed as block graphics unless "BLOCKS 0"
has been set. (The block graphic shapes are generated as needed - the
character set itself does not contain them). Characters apart from block
graphics occupy a 6*8 matrix, making then suitable for display at 6-
pixel or 8-pixel intervals.

Character definitions occupy 8 bytes, from top row of pixels to bottom
row. The left and right columns of pixels of this 8*8 block are not used
when printing is at 6-pixel intervals. The character set base address is
5190H, and space is available for CHR$ 32 to 168 in one continuous
block. An additional system variable, HUDG, can be set up to point to
definitions for CHR$ 169-254, but standard designs for characters 128 to
168 are supplied (file 'font') which includes a full set of foreign
characters which match the accented characters on most printers. Their
use is recommended so that software can easily be converted for use
abroad.

- VECTORS -

These allow important ROM routines to be intercepted by the user. They
contain addresses which will be called if (and only if) the most
significant byte is non-zero. This gives the option of RETurning
(perhaps you decide not to handle a particular case), or discarding the
return address and turning the vector into effectively a JUMP.

Several programmers might want to use the same vector. If your programs
simply overwrite vectors they are likely to be incompatible with future
utilities from MGT and other software suppliers. We recommend that your
programs save the old vector value. Unfortunately, an automatic linking
mechanism that made this very easy had to be omitted front the ROM, but
the solution is still fairly simple: for example, to add code to provide
some action for the STEP token:

Sam Coupe Technical Manual version 3.0 44

;Initialise CMDV but store any existing entry first.
INIT LD HL,(CMDV)
 LD (STORE),HL
 LD HL,MYPATCH
 LD (CMDV),HL
 RET
MYPATCH CP STEPTOKEN
 JR Z,MYP2 ;JR if we are interested
 LD HL,(STORE)
 INC H
 DEC H
 RET Z ;RET if no address was in CMDV at INIT

 JP (HL) ;let another routine have a go

MYP2 (Code to provide some action for STEP)
 RET

NB All examples are program fragments, not complete programs, and do
not, for example, include the above code, which should be included in
actual applications.

LIST OF VECTORS

DMPV
(5ADAH)

Called if the DUMP keyword is used in run-time. CHAD points
to 0DH or 3AH if just DUMP was used; otherwise DUMP CHR$ was
used.

SETIYV
(5ADCH)

SETTY is called when DRAW, PLOT and CIRCLE "decide" what
pixel setting routine to use, and itself calls SETIYV if its
most significant byte is non-zero. SETIY points the IY
register to a suitable routine, and the provision of a vector
is intended to allow extra plotting modes, such as dotted
lines, to be implemented without all the graphics commands
being rewritten. On entry to SETIYV, A holds the current
screen mode-1.

 On return to PLOT, DRAW and CIRCLE the IY register should
point to a pixel setting routine, and only A and HL should be
altered otherwise. In mode 4, and mode 3 when "fat" pixels
are selected, the value of A on exit is passed to D' by the
graphics commands, and can be used to hold the PEN colour if
desired.

 If you alter SETIYV, as with all the vectors, your routine
making just RET will cause the normal ROM routine to be
executed. Thus your code might start with a check of the mode
to see if it is one you want the ROM to deal with, and RET if
so. Otherwise, POP the return address so that the ROM routine
is never used, and set IY yourself. The next RET will be to
DRAW, PLOT or CIRCLE.

Sam Coupe Technical Manual version 3.0 45

 The pixel setting routine that you supply the address of in

IY should plot the pixel at L,H and return with only AF
changed. The coordinate system used has 0,0 at the top left-
hand comer of the screen. You may want to take note of the
current OVER, INVERSE and PEN settings. (In which case you
may find it speeds things up if, like the ROM, you set IY to
a different routine for some options). The routine should end
in JP (IX), not RET.

PRTOKV
(5ADEH)

Print a token. A=token code to expand and print as ASCII.

MNIV
(5AE0H)

Non-maskable interrupt. Normally holds the address of a
routine that returns to Basic when the BREAK button is
pressed. NMIV switches in the system page temporarily, and
provides its own stack there, whatever the paging state when
the interrupt was generated. On entry, the LMPR status when
the NNI occurred is stored in NMILRP, the Stack Pointer when
NMI occurred is stored in NMISP, and the AF and HL registers
have already been PUSHed onto the stack in use when NMI
occurred (which may be paged out).

FRAMIV
(5AE2H)

Called by the frame interrupt 50 times a second. All main
registers can be used.

LINIV
(5AE4H)

Called by the line interrupt, which is generated when the
value in the line interrupt register matches the scan about
to occur. This vector can be used to alter the palette,
change screen or screen mode, etc. in mid-screen. To
synchronise such changes with the scan flyback, it is
possible to wait for a change at the HPEN port to show that
the scan number has just changed. (This will fail if a light-
pen is connected, however). All main registers can be used.

COMSV
(5AE6H)

Called by COMMS interrupt.

MIPV
(5AE8H)

Called by MIDI input interrupt. On entry, the A register has
just been read from the MIDI IN port.

MOPV
(5AEAH)

Called by MIDI output interrupt.

EDITV
(5AECH)

Called before the editor is used for editing a line or INPUT.

RSTOBV
(5AEEH}

Called early in error handling, with A=error code. The
alternate registers have been selected, CHAD and CHADP have
been copied to XPTR and XPTRP, DE points to the error code
that follows RST 08H, and an address 1 byte past that code is
on the stack, underneath the return address to the error
handling routine. No clearing of stacks has been done at this
stage.

Sam Coupe Technical Manual version 3.0 46

RST28V
(5AF0H)

Called by floating point calculator with A=next code in the
list that follows a RST 28H instruction. DE points to the end
of the floating point calculator stack. On exit, the IX
register should be unchanged, and DE should point to the end
of the floating point calculator stack. (This may be
different from the entry value, if items have been added,
discarded or combined). See example below.

RST30V
(5AF2H)

User RST. Jumped to (Not called like the other vectors) by
RST 30H. (ROM0 uses RST 30H to provide a "CALL ROM1"
facility, but this only applies to RST instructions used
inside ROM0). All registers are passed intact.

CMDV
(5AF4H)

Called with the A register holding the code of the character
about to be syntax checked or executed (normally a command
code). Can be used to add commands, or modify the action of
the existing ones.

EVALUW
(5AF6H)

Expression evaluator. Called with A=current character in
expression; can be used to add new functions.

LPRTV
(5AF8H)

Called as each character code above 127 is handled by the
printer driver, when channel "P" is being used.(More complete
control can be obtained by altering the "P" or "B" channel
output address - see below).

 On entry to the routine the character code is in the
register. For example to transform CHR $ 130 to "A":
INIT: LD HL,PATCH
 LD (5AF8H),HL
 RET

PATCH: CP 130
 RET NZ

 POP BC ;JUNK RETURN ADDRESS

 LD A,65
 RST 1OH ;PRINT CHARACTER
 LD HL,5A70H ;PRINTER COLUMN VARIABLE
 ;(SVAR &70)
 INC (HL) ;1 COLUMN RIGHT
 RET

 Instead of using RST l0H to print the new character(s), you

might prefer to use either CALL 0181H (send A to parallel
printer) or probably better, call the following code to send
the A register to channel "B":

Sam Coupe Technical Manual version 3.0 47

CHBOP: LD HL,(5C4FH) ;CHANNELS BASE ADDRESS
 LD DE,25 ;(use 15 to point to "p"
 ; channel)
 ADD HL,DE
 LD E,(HL)
 INC HL
 LD D,(HL) ;DE=channel B output address
 EX DE,HL
 JP (HL)
 Channel "B" handles all output without fiddling with it;

channel "p'. responds to control codes, adds auto-LF etc. and
then sends its output to channel "B". something like ESC
;"R"; CHR$ 0 should be sent via the "B" channel. Channel "B"
normally outputs using 0181H, but if you use CHBOP rather
than O181H directly, it will be easier for others to divert
printer output to another device, such as a serial interface.
(By altering the output address in the channel).

MTOKV
(5AFAH)

Called if a potential spelled-out keyword is not recognised
by the ROM. On entry, DE points to the potential keyword. On
exit, conditions should match those of jump table entry
JGTTOK.

MOUSV
(5AFCH)

Called every frame. when this vector is used, the ROM's own
scan of the mouse is bypassed.

KURV
(5AFEH)

Called before the editing cursor is printed (by calling the
address in MNOP). ROM1 is on. Could be used to supply a
"transparent" or other cursor.

Additional example: Suppose you have a lot of machine code graphics
subroutines which require the screen to be switched in at 4000H. It
would be nice to modify USR so that any use of the subroutines switched
in the required page temporarily; the routine below does this, for
machine code located in the top half of memory. INIT is called to alter
the floating point calculator ~ vector to point to USRPTCH; whenever the
calculator handles a USR, we intercept it, juggle the pages to put the
screen at 4000H (taking care with the stack) and call the USR address,
stacking BC back on the floating point calculator stack as the result of
USR, and returning DE pointing to STKEND and IX unchanged. (All as
expected by the calculator).

USRPTCH must be in the system page to guarantee it is resident when the
vector is called; the best place is in the system Heap. PART2 must be in
the top half of memory, but in any case it is a goad idea to use a short
routine in the Heap to call a large routine in another page, since this
keeps the Heap train being filled up.

Sam Coupe Technical Manual version 3.0 48

INIT LD HL,USRPTCH
 LD (RST28V),HL
 RET

USRPTCH CP 45H ;USR code

RET NZ ;keep things simple and ignore
 ;anyone else who might want to use
 ;this vector

POP BC ;junk RET address
IN A,(HMPR)
PUSH AF ;save current HMPR status
LD A,1 ;OK if PART2 in page 1 or 2
OUT (HMPR),A ;page in PART2

IN A,(LMPR)
AND 0BFH
OUT (LMPR),A ;ROM1 off
CALL PART2
IN A,(LMPR}
OR 40H
OUT (LMPR),A ;ROM1 on again for RET to calculator
POP AF
OUT (HMPR),A ;original HMPR status restored
RET

PART2 LD (STORE),SP ;we will be switching out the stack,

 ;so save current SP
LD SP,TSTACK ;put a new stack elsewhere (>=8000H)
PUSH AF ;LMPR status
PUSH IX ;calculator needs IX unchanged
CALL JGETINT ;get USR address in BC
IN A,(VPAGE)
AND 1FH ;A=screen page
DEC A
OUT (LMPR),A ;page it in at 4000H
CALL BCJUMP ;CALL USR address
POP IX
POP AF
OUT (LMPR),A ;original LNPR status
LD SP,(STORE) ;original SP
XOR A
LD E,A
LD D,C
LD C,B
CALL JSTKSTORE
EX DE,HL
RET

STORE DW 0

Sam Coupe Technical Manual version 3.0 49

FLOATING POINT CALCULATOR COMMAND CODES

The floating-point calculator performs all the mathematical operations
of the Coupe, and many of the string operations. Since it provides a
simple way of programming quite complex tasks in a sort of sub-language,
it can be very convenient. The calculator is called using RST 28H,
followed by a series of command codes (which may have parameters). A
special code terminates the list. The data that the calculator
manipulates is placed on a special stack that we will refer to as the
FPCS. All items are five bytes long. The jump table allows registers to
be passed to and from this stack, and the B register is passed into and
out of the calculator (see below).

Numbers are held in two forms; the integer form stores whole numbers
between -65535 and +65535 as zero, SGN (0 for positive, FFH for
negative), less significant and more significant bytes, and a final zero
byte. E.g. 80H is stored as 00 00 80 00 00, 4001H as 00 00 01 40 00, -1
as 00 EFF FF FF 00 and -80H as 00 FF 80 FF 00. (Negative values are
stored in negated form (65536 minus the number).)

If numbers are in integer form the calculator is often able to use
specialised, faster forms of operations such as multiply, subtraction
and addition. Numbers outside the -65535 to +65535 have to be held in a
different form, as 2 to the power of a number called the exponent,
multiplied by another number called a mantissa. The first byte is the
exponent +80H, and the other four bytes are the mantissa. This is always
between 0.5 and just less than 1, which means that the first bit is
always 1, allowing it to be actually used as a SGN bit (0 for positive,
1 for negative).

This scheme allows values between about 1E38 and 1.7E-39 to be stored to
an accuracy of 9 or 10 digits. It is important to note that some
fractional numbers (such as 1/10) cannot be stored exactly in this
binary form (just as, for example 1/3 cannot be represented exactly in
decimal form). This means that if you subtract 0.1 from 1 ten times, the
result is not exactly zero. This is not a fault - just a limitation of
number systems in general, which you should be aware of.

Strings are held as 16K page of string text start, offset of string text
start (8000H-BFFFH, LSB/MSB) and string length (LSB/MSB).

In the list below, the action of many of the calculator codes is shown
symbolically. Where a command code deals with two numbers (e.g.
multiply) the last number on the FPCS is referred to as N2 and the
number below that is referred to as N1. If the values dealt with are
strings, $2 and $1 are used.

Sam Coupe Technical Manual version 3.0 50

00H MULT N1*N2
01H ADDN Ni+N2
02H CONCAT $1+$2 Prepare the concatenated text of $1+$2 in the

Workspace, and stack the details of this temporary
string.

03H SUBN N1-N2
04H POWER N1^N2
05H DIVN Nl/N2
06H SWOP Swap V1,V2
07H DROP Discard last value
08H MOD N1 MOD N2
09H IDIV N1 DIV N2
0AH BOR N1 BOR N2
0BH Reserved
0CH BAND N1 BAND N2
0DH NUOR N1 OR N2
0EH NUAND N1 AND N2
0FH NOTE N1<>N2 Comparisons like <> delete the two compared

values from the FPCS and replace them with 1 or 0
(true or false).

10H NLESE N1<=N2
11h NGRTE N1>=x2
12H NLESS N1<N2
13H NEQUAL N1=N2
14H NGRTR N1>N2
15H SAND $1 AND N2
16H SNOTE $1<>$2
17H SLESE $1<=$2
18H SGRTE $1>=$2
19H SLESS $1<$2
1AH SEQUAL $1=$2
1BH SGRTR $1>$2
1CH SWOp13 Swop last value and value 2 below.
1DH SWOp23 Swop second-to-last value and value below it.

The three command codes below, along with DECB, use a displacement byte
to skip backwards or forwards in the list of commands (like GO TO in
Basic, or JP in assembly language). The displacement is the distance
between the displacement byte and where you want to jump to; if it is
greater than 7FH it treated as a backwards jump, for example, FFH is
backwards by 1.

1EH JPTRUE Jump by displacement given in next byte, if the last

value is one. (The last value is discarded).
1FH JFFALSE Jump by displacement given in next byte, if the last

value is zero. (The last value is discarded).
20H JUMP Jump by displacement given in next byte.

The calculator has a special store called BREG that initially holds
whatever the Z80's B register did when the calculator was called. The
four command codes below use BREG.

21H LDBREG Load BREG with next byte.
22H DECB Decrement BREG and jump by the displacement given in the

next byte if BREG is non-zero.
23H STKBREG Put BREG on FPCS as a number between 0 and 255.
24H USEB Take the next calculator code from BREG.

Sam Coupe Technical Manual version 3.0 51

25H DUP Duplicate top FPCS entry.
26H ONELIT Stack next byte on FPCS (as a number between 0 and

255).
27H FIVELIT Stack next 5 bytes on FPCS (as any number).
28H SOMELIT Stack number of bytes specified by next byte, using

(next byte+1} as the first byte. (This allows many 5-
byte values to be stacked at once).

29H LKADDRB Use the next 2 bytes as an address; stack the byte
found at that address on the FPCS.

2AH LKADDRW Use the next 2 bytes as an address; stack the word (2
bytes) found at that address on the FPCS.

2BH REDARG Fiddle with the argument of SIN.
2CH LESS0 Stack 1 (TRUE) or 0 (FALSE) according to whether the

last value is <0. The last value is discarded.
2DH LESE0 Stack 1 or 0 according to whether the last value is

<=0. The last value is discarded.
2EH GRTR0 stack 1 or 0 according to whether the last value is >0.

The last value is discarded.
2FH GRTE0 Stack 1 or 0 according to whether the last value is

>=0. The last value is discarded.
30H TRUNC Chop off the digits after the decimal point in the

last value.
31H RESTACK Transform the last value to full 5-byte form if it

isn't already in that form.
32H POWR2 Calculate 2 to the power of the last value.
33H EXIT Finish using floating point calculator.
34H EXIT2 Finish using floating point calculator, and do a RET.
35H Reserved
36H Reserved
37H Reserved
38H Reserved

The command codes below are used to provide most of Basic's
functions:

39H SIN 4CH EOF
3AH COS 4DH PTR
3BH TAN 4EH Reserved
3CH ASN 4FH UDG
3DH ACS 50H NUMBER
3EH ATN 51H LEN
3FH LOGN 52H CODE
40H EXP 53H VAL$
41H ABS 54H VAL
42H SQN 55H TRUNC$
43H SOR 56H CHR$
44H INT 57H STR$
45H USR 58H BIN$
46H IN 59H HEX$
47H PEEK 5AH USR$
48H DPEEK 5BH INKEY$ #
49H DVAR 5CH NOT
4AH SVAR 5DH NEGATE
4BH BUTTON

SAM Coupe Technical Manual version 5.0 51

Sam Coupe Technical Manual version 3.0 52

The calculator has six 5-byte memories for holding temporary results.
The following codes store and recall the memories:

C8H STOD0 Copy the last value to calculator memory 0-5,
C9H STOD1 then delete it from the FPCS.
CAH STOD2
CBH STOD3
CCH STOD4
CDH STOD5

D0H STO0 As above, but do not delete the last value
D1H STOl after copying it.
D2H STO2
D3H STO3
D4H STO4
D5H STO5

DBH RCL0 Stack the value in calculator memory 0-5 on.
D9H RCLl the FPCS
DAH RCL2
DBH RCL3
DCH RCL4
DDH RCL5

The codes below provide a compact method of stacking comanonly used
constants on the FPCS:

E0H STKHALF Stack 0.5
ElH STKZERO Stack zero
E2H STX1SK Stack 16384
EGH STKFONE Stack 5-byte form of 1.
E9H STKONE Stack integer form of 1.
ECH STKTEN Stack 10.
FOE STKRALFPI Stack PI/2

Sam Coupe Technical Manual version 3.0 53

TAPE SYSTEM

There are five types of tape files; Basic program, Machine Code, Numeric
array, String array and SCREEN$. File saving occurs at a selectable
speed which can be set to match Spectrum tape speeds. The header format
is different from the Spectrum's and will not be recognised by a
Spectrum as a header. The data block format is the same as on the
Spectrum, but it may contain up to 512K. SCREEN$ files normally contain
the palette settings (40 bytes) and line interrupt table, (1 to 509
bytes), so even a screen that switches the palette part-way down a
screen can be reloaded. The screen mode is set appropriately before
loading of the data block begins.

Files are loaded at the correct speed automatically. Spectrum CODE file
headers are converted into the SAM equivalent and then used to load the
data block. Spectrum CODE files can be loaded into the Coupe as either
CODE or SCREEN$ files by specifying this after the LOAD command. (The
Coupe distinguishes SCREEN$ files from CODE files because they have to
be loaded to screen memory, which can be anywhere in the memory map).
Coupe CODE files can be forced to load as SCREEN$ files, and vice versa,
simply by using LOAD "name" CODE or SCREEN$. CODE files can have an
execution address.

Altering the system variable TPROMPTS (SVAR 50) can turn off the prompt
before SAVE, and/or the printing of file as names they are read from
tape.

- FILE HEADER FORMAT -

Tape, disk and Net use a common header format as far as the Basic
interpreter is concerned. (The DOS holds information in a slightly
different format for its own use, but uses information from, and passes
information to, the standard header buffers). SAVE uses a single buffer,
HDR (Header-requested) at 4B00H where the details of the file to be
saved are built up before the header and then the data are saved. LOAD
also uses this buffer, plus an extra one, HDL (Header-loaded) at 4850H
which is used to load file headers for comparison with HDR (On the Coupe
a "tape header reader" program just consists of a program to PEEK the
HDL buffer). (NB There is an extra file type in SAMDOS - .SNP).

HEADER BUFFER FORMAT (HDR and HDL):

0 - (1) Type. 5 is a Spectrum 48K snapshot, 16 is a Basic

program, 17 is a Numeric array, 18 is a String or
string array, 19 is a CODE file, and 20 is a SCREEN$
file.

1-10 - (10) File name, padded with spaces.
11-14 - (4) Allows longer file name if DEVICE is not T, for

example 'D2:filenamexx'. SAMDOS will strip off any
device identifier, so the maximum length of a filename
is still ten characters.

Sam Coupe Technical Manual version 3.0 54

15 - (1) Flags. Bit 0 is set if the name is not to be printed

on LOADing, bit 1 is set if the CODE is protected. The
flags can be conveniently set during SAVE by:

SAVE CHR$ 1+"name" - sets bit 0
SAVE CHR$ 2+"name" - sets bit 1
SAVE CHR$ 3+"name" - sets both bits

 (Characters <=3 as the first character in a file name just set

the flags - they are not saved as part of the name). Flag bit
0 works in addition to the TPROMPTS system variable. Bit 1
protects CODE files; when this bit is set, an auto-running
CODE file cannot be stopped by MERGE, or re-directed to
another address by supplying one in, for example:
LOAD start,length,newaddress.

16-26 - (11) If type is 17 or 18, holds type/length byte and

array name
16 - (1) If type is 20, holds screen MODE.
16-18 - (3) If type is 16, holds program length excluding

variables.
19-21 - (3) If type is 16, holds program length plus numeric

variables.
22-24 - (3) If type is 16, holds program length plus numeric

variables and gap length before string/array
variables.

(The extra data for Basic programs allows NVARS, NUMEND and SAVARS
to be set up on LOADing).

27-30 - (5) Reserved
31 - (1) 16K page that file starts in (ignored on LOADing,

except for CODE files). bits 4-0 hold the page, bits
7-5 are undefined. If type is 17 or 18 and the array
being LOADed does not exist in memory, this byte in
HDR will be FFH.

32-33 - (2) Offset within page of file start (ignored on LOADIng,
except for CODE files). The offset is 8000H-BFFFH, in
LSB/MSB form.

34 - (1) File length in 16K pages (in HDL, or HDR during SAVE)
or requested start for CODE files in HDR during LOAD
(FFH if there was no requested start). During LOAD of
an array, "file length" in HDR is the length of the
existing array in memory, or FFFFFF if there isn't
one.

35-36 - (2) File length MOD 16K, plus 8000H (reset bit 15 of the
length word to get the true length).

Sam Coupe Technical Manual version 3.0 55

37 (1) If CODE file, page of execute address, or FF if there

isn't one. If Basic program, 00 if there is an auto-
run line number in the next two bytes, or FF if there
isn't one.

38-39 - (2) If CODE file, offset within page of execute address
(8000-BFFFH, LSB/MSB) if there is one. If Basic
program, auto-run line number if there is one.

40-79 - (40) Comment field. Not initialised to anything, but
SAVEd and LOADed with the program. Could be POKEd or
PEEKed to carry extra information about the file.
(DOS only SAVEs the first 8 bytes in this area).

SAM BASIC

Numeric variable names must start with a letter. Numbers, letters,
underlines and spaces may follow the first character, to a total of up
to 32 characters (spaces do not count). (FOR-NEXT variables are treated
like normal numeric variables).

String and array variable names are similar but limited to 10 characters
(spaces do not count). String and string array names are followed by
'$'. strings can be up to 65520 characters long. Arrays can fill all
available memory, although no subscript can be over 64K. Program lines
can have up to 127 statements, and can be up to 16127 bytes long.

Keywords are normally typed in full, although keys can be programmed to
generate complete words. When a keyword is recognised, it is converted
to capital letters in the listing A keyword which is followed by a
letter will not be recognised, so printx is assumed to be a procedure
name, but print x and print1 become PRINT x and PRINT 1.

If you press the EDIT key on its own, the line with '>' will appear in
the editing area. If you type a line number and then press EDIT, the
desired line will appear for editing. The cursor can be moved left,
right, up or down in the edited line, using the cursor keys. The delete
key deletes to the left; shift-delete deletes right.

Sam Coupe Technical Manual version 3.0 56

BASIC MACHINE CODE INTERFACE

NB angle brackets enclose optional items.

SAVE "name" CODE start,length<,execute address>

Produces auto-running file if an execute address is used.

LOAD "name" CODE <start><,length><,execute address>

Executes file from execute address if used. Otherwise any execute
address saved with the file is used. MERGE will stop CODE a file
executing unless it is protected by setting a bit in the file header.

Start, length and execute values, and the addresses used by USR, USR$,
CALL, POKE, PEEK etc. can be up to 528K minus 1.

USR n

Calls address n. Enters with BC=n. All registers can be used. USR
returns the final value of BC.

USR$ n

As USR, but returns a string BC bytes long starting at DE in page A.
(Page is irrelevant if DE<8000H).

CALL n

Calls address n with a list of numeric or string parameters if desired.
The values of numbers and the lengths and starts of strings are placed
on the floating point calculator stack, with information on type. The A
register contains the number of parameters when address n is entered.
Using the FPC stack allows numbers to be removed and rounded to 2 bytes
with range checking by calling JGETINT in the jump table; floating-point
numbers, or strings, can be unstacked using JSTKFETCH. strings shorter
than 256 bytes can be copied to a buffer in the system variables area by
calling JSBUFFET. (strings can be copied from anywhere in memory, even
if they are paged out). JSTKSTORE can be used to place any result on the
calculator stack.

CLEAR n Set upper limit of Basic's RAM use.

OPEN n Reserve n more 16K pages for Basic to use.

OPEN TO n Allocate a total of n pages to Basic.

CLOSE n Free n 16K pages.

Sam Coupe Technical Manual version 3.0 57

LENGTH

This function returns the address and dimensions of arrays and strings,
and the address of numbers. Useful for passing data via Basic's CALL.

POKE n,x POKE 1 byte
POKE n,1,2,3 POKE multiple bytes (up to 32)
DPOKE n,x POKE 2 bytes (LSB/MSB)
POKE n,a$ POKE entire string

PEEK n PEEK 1 byte
DPEEK n PEEK 2 bytes

XEM$(n TO m) PEEK a string, for example:

LET a$=MEN$(70000 TO 71000) assigns 1000 bytes to a$ POKE 72000,a$
puts those bytes to 72000.

MEM$S can read any RAM page (16K-528K-l) but will not read the ROM's.
Use PEEK or DPEEK if you need to read R0)

Examples of base conversion:
BIN 1010=10 HEXS 74="4A" &FF=255
BINs 128="10000000" HEX$ 16384="4000" &10003=65539
 HEX$ 65539="010003"
VAL("&"+a$)=255 if a$="ff"

MAJOR POINTERS TO BASIC'S MEMORY AREA

(ALL TAKE 3 BYTES, IN THE FORM: PAGE/OFFSET)

PROC START OF PROGRAM
NVARS START OF NUMERIC VARIABLES
NUMEND END OF NUMERIC VARIABLES GAP (<=512 BYTES)
SAVARS START OF STRING/ARRAY VARIABLES
ELINE START OF EDIT LINE
WORKSP START OF WORKSPACE
WKEND END of WORKSPACE
 SPARE SPACF
RAMTOP LAST BYTE ALLOCATED TO BASIC PROGRAM,

See the section on system variables for full information.

Sam Coupe Technical Manual version 3.0 58

- PAGE ALLOCATION TABLE -

The table at 5100H-5120H is very important; it holds a byte for every
possible l6K RAM page in the Coupe, plus an FFH terminator byte. The
first byte corresponds to the first 16K RAM page, the second to the
second page, etc. Non-existent pages are also marked by FFH. Unused
pages are marked as 00H. Pages used by the first Basic program in the
machine are marked 40H; screen pages are marked C0H, and pages used by
DOS (usually just one) are marked 60H.
On a 256K Coupe, the table (ALLOCT) will look like this after DOS has
loaded:

40 40 40 40 00 00 00 00 00 00 00 00 00 60 C0 C0 FF FF FF etc.

A "Utilities" page is marked 20H. It is divided into 16 1K sections
which can be used by assorted short utility programs. The final 16 bytes
in a utilities page (SLOTT) show which 'slots" are reserved - a 0 shows
the corresponding slot is free, and FFH that it is reserved. (The last
slot is 16 bytes short of 1K). The proper method of allocating space for
a short program is to look backwards through ALLOCT for 20H. If you find
it switch in the indicated page and look backwards through SLOTT for a
spare slot. Mark it and use that slot. (Or slots - you could reserve
several slots). If you do not find a 20H entry in ALLOCT, look for 00H;
report an error if none is found, else mark it 20H, clear the last 16
bytes of that page with zeros, and then reserve yourself some space in
the new SLOTT you have just created.

Free pages can be used as temporary workspaces, provided you are sure
that nothing is going to overwrite the page while you are using it.
(Interrupts do not do this, but the DOS might).

Sam Coupe Technical Manual version 3.0 59

- KEYBOARD -

Any keyboard key in NORMAL, CAPS SHIFTED, SYM SHIFTED or CONTROL states
can return any code (0-255). The 69 keys and 4 shift states give 276 key
in a keyboard 'map'. This map has a seemingly haphazard arrangement that
corresponds to the keyboard matrix see Appendix C for diagrams of the
keyboard and the map positions, plus initial codes returned by each
position. E.g. map position 0 has 98 in it - so CHR$ 98 ('b') is
produced when the actual key corresponding to that map position is
pressed, without any shifts. The entire map can be altered if desired.

KEY Posn,x

KEY 23,134 makes key position 23 in the key map produce CHR$ 134 hen
pressed.
KEY 0,65 would make the normal 'b' into CHR$ 65 ('A').
Posn must be 0-275, x must be 0-255.

When certain codes come from the keyboard, a search is made to see if an
expanded definition has been made for them. Codes 192-254 can be defined
in this way. If a definition does not exist, CHR$ 192-254 will be used,
otherwise the expanded definition is used. This allows, for example,
function keys to be defined as RUN (enter) or LIST (enter). See below.

DEF KEYCODE

DEF KEYCODE 195: PRINT 123: PRINT "z" will cause any subsequent code of
195 corning from the keyboard to be expanded to: PRINT 123: PRINT
"z"(ENTER). This makes: 123 z appear on the upper screen area. The
entire line after DEF KEYCODE 195: is used. If a final colon is added to
the line, the automatic (ENTER) is suppressed, for example:

DEF KEYCODE 193: PRINT "asd":
would produce:
PRINT "asd" in the editing area.

DEF KEYCODE can also be used with a string, rather than the rest of a
line, for example:

DEF KEYCODE 192,"TESTING" will cause any subsequent code of 192
coming from the keyboard to be expanded to 'tTESTING" (ENTER).
(This would cause an error report).
DEF KEYCODE 192,"TESTING:" would suppress the (ENTER) because the
last character is a colon.

A particular definition can be cleared by:

DEF KEYCODE 195: (followed by nothing)
 or DEF KEYCODE 195,""

DEF KEYCODE ERASE removes all definitions.

'Too many definitions' is reported if space runs out in the memory area
used by DEF KEYCODE.

Sam Coupe Technical Manual version 3.0 60

- STREAMS & CHANNELS -

CLOSE
OPEN

Like the Spectrum, streams 0 and 1 are normally OPEN to channel 'K';
PRINT #0;"test": PAUSE will print at the bottom of the screen. PRINT #2
will print on the upper part of the screen, as usual (using channel
'S'), and PRINT #3 acts like LPRINT (using channel 'P'). You can also do
something like OPEN *#;"P": PRINT #6;"testing" to send data to the
printer via stream 6, or OPEN #2;"P" so that the normal screen output
goes to the printer instead. INPUT normally uses channel "K" (the lower
screen), but INPUT#2 is allowed and uses the upper screen, (channel
"S").

For example: INPUT #2;"Value:";v will allow you to type in the value of
V on the upper screen, next to the 'Value:' prompt. The line is NOT
cleared after you press enter, unlike the lower screen.

The RECORD command works via stream 16 (which did not exist on the
Spectrum). Stream 16 prints to the string variable specified by RECORD,
and it will still do so after RECORD STOP. This night be useful to some
users: ~or example, RECORD TO a$: DIR #16;1 :RECORD STOP, will place a
disk catalogue in a$. Other streams apart from 16 can be opened to the
string variable using, for example, OPEN #5;"$".

OPEN #s;"b" (or "B") will allow stream S to send anything to the printer
- this is useful for sending control codes. (The problem with the 'p'
stream is that control codes are acted on, and may not be sent to the
printer - the TAB control code for example, will send a number of spaces
to the printer). Channel 'p' actually uses channel 'b' for output, after
it has modified the data it receives. Therefore all an advanced user
need do to divert output to, say, a serial printer driver, is to alter
the channel 'b' output address.

SAVE, LOAD, MERGE, VERIFY

Allow programs, strings, arrays, machine code and screens images to be
handled.

SAVE "name" CODE start,length,execute-address is allowed, so that
LOAD "name" CODE will start running from the address given.
MERGE "name" CODE will suppress auto-running of code files.

LOAD "name" DATA b$() works, but also, DATA addr$() or DATA abc$ are
allowed. Note that SAVE "name" DATA blitS is okay even if blit$ is a
simple string, such as a BLITZ string.

LOAD "name" LINE n loads the program and goes to line number n. This
overrides any auto-run line number saved with the program.

Sam Coupe Technical Manual version 3.0 61

SAVE "name" SCREEN$ saves the screen image and the current mode and
palette information for later reloading. (LOAD automatically switches
modes if required).

DEVICE

This new command makes SAVE, LOAD, MERGE and VERIFY work with the disk
or Network.

DEVICE d means use disk drive 1.
DEVICE dl ditto
DEVICE Dl ditto
DEVICE N5 use Network station 5.
DEVICE T use tape, SAVE speed similar to the spectrum's.
DEVICE t35 use tape, SAVE speed 35.

(Speed 112 is spectrum speed, 35 is much faster. Faster
speeds are less reliable - but 3*spectrum speed should be feasible
with many recorders. LOAD automatically adjusts to the tape speed
that was used when the file was saved).

Sam Coupe Technical Manual version 3.0 62

- SOUND -

SOUND r,d
SOUND r,d;r,d;r,d...

sends data byte D to sound chip register R. Up to 127 pairs of numbers
can be used.

This explanation is based on the program in the SAM Coupe User's Guide.
The program is reproduced here for ease of reference

10 REM sound effects 1030 LET L=0 : LET R=16 :
20 GO SUB 3000 GO SUB 1500
30 REM steam locomotive 1040 LET L=-1 : LET R=0 :
40 LET L=7 : GO SUB 2000 GO SUB 1500
50 LET p=20 : GO SUB 1000 1050 LET L=0 : LET R=-16 :
100 REM flying saucer GO SUB 1500
110 LET L=3: GO SUB 2000 1060 RETURN
120 LET p=20 : GO SUB 1000 1500 REM output subroutine
200 REM sonic scooter 1510 SOUND 2,(a+b) : PAUSE p
210 SOUND 17,4 : SOUND 16,64 1520 FOR n=1 TO 15
220 LET p=5 : GO SUB 1000 : 1530 LET a=a+L : LET b=b+R
PAUSE 200 1540 SOUND 2,(a+b)
300 REM telephone 1550 PAUSE p : NEXT n
310 GO SUB 3000 1560 RETURN
320 FOR n=0 TO 3 2000 REM output sound data
340 SOUND 2,255 : PAUSE 18 2010 DATA 9,64,16,16,17,0,24,
350 SOUND 2,0 : PAUSE 8 138,28,1,21,4,20,0
360 SOUND 2,255 : PAUSE 18 2020 DATA 9,255,17,1,20,4
370 SOUND 2,0 : PAUSE 80 2030 DATA 24,142,20,4,10,111,
380 NEXT n 17,6,9,128,16,32,28,1
400 REM cuckoo 2040 FOR n=1 TO L
410 BEEP 0.2,19 BEEP 0,4,15 2050 READ a,d : SOUND a,d :
420 STOP NEXT n
1000 REM stereo Left to Right 2060 RETURN
1010 LET a=0 : LET b=0 3000 REM clear the sound
1020 LET L=1 : LET R=0 : 3010 FOR n=0 TO 31 : SOUND n,0 :
GO SUB 1500 NEXT n
 3020 RETURN

Line 20 clears the sound chip's registers by setting them all to zero.

Line 40. L refers to the pairs of data on line 2010. The data pairs
refer to setting up the various registers.

Line 50. p refers to the speed at which the sound is moved across the
stereo field. If you play the sound demo program, you will find that the
sonic scooter moves from left to right faster than either the steam
locomotive or the flying saucer. The subroutine at line 1000 tells the
computer where to place the sound across the stereo field. The
subroutine at line 1500, outputs the sound on both left and right
channels.

Both the flying saucer and sonic scooter are similar to the steam
locomotive except that the steam locomotive uses white noise.

Sam Coupe Technical Manual version 3.0 63

The sonic scooter changes the current octave, so that register 17's
octave is 4 and register 16's octaves are set to 0 for generator 8, and
4 for generator 9. Notice also that the speed of movement of the scooter
is faster than either the locomotive or the flying saucer.
The telephone is placed in the centre of the stereo field after clearing
the sound chip again. This sound uses envelope register 24 and places a
sound from tone register 10 through it using enable mixer 20 with bit 4
set. It also uses tone register 9 to control the speed of the envelope.
Finally, register 28 enables the sound. The 'bleep' sound is controlled
by switching the volume of amplitude register 2 between 0 and 255. This
is repeated 4 times with pauses between each of the rings.

The cuckoo uses the BEEP command. This command, as on the Spectrum, does
not use the sound chip at all, but the ASIC to generate the sound.

The subroutine at line 1000 sets up control data for the output
subroutine at line 1500. Variables L and R set up which direction to go
when 'ramping' the volume up or down on either channel, whist the
subroutine at line 1500 does the ramping itself. Register 2 is the
amplitude register which controls the sound. It is also here, on line
1550 that P is used to control the speed of the movement across the
stereo field.

The subroutine at line 2000 holds the register data, and actually acts
upon the data presented to the chip. Its function is to output any
information to the various registers as it receives the data.

The subroutine at line 3000 clears the sound chip by setting all
registers to zero.

Sam Coupe Technical Manual version 3.0 64

- GRAPHICS SCALING SYSTEM -

XOS, XRG,
YOS, YRG

Control graphics scale and origin. XOS and YOS are offsets added to x
and y coordinates when graphics commands are used. They allow the origin
to be moved from the normal position just above the editing area, on the
left. RUN or CLEAR resets XOS and YOS to zero; LET alters them. XRG and
YRG alter the scale of the graphics system. XRG is normally 256, or 512
if 'thin' pixels are in use. YRG is normally 192. Altering XRG to, say,
1024 would make PLOT 950,100 a legal command by doing 256/1024*950
before plotting the pixel on the screen. (Altering the ranges by powers
of 2 gives faster plotting).

Normally, modes 2 and 4, and mode 3 if 'fat' pixels are used, have a
graphics coordinate system with 0,0 just above the bottom editing
section, at the left, and 255, 173 at the top right.

If thin' pixels are in use, the normal X is expanded so that top right
is 511,173. In mode 1, the default character height is 8 pixels, rather
than 9, and 2 less scans are used by the editing area, so that the top
of the screen is at a Y coordinate of 175.

The bottom 2 lines of the display can be plotted on using:
 PLOT 0,-10.
If the position of the origin is moved by LET XOS=-18 then 0,0 is at the
very bottom left of the screen and 0,191 is the top left.

Sam Coupe Technical Manual version 3.0 65

KEYWORD CODES

The Coupe's functions are stored in the program as FFH (255) followed by
3BH-83H.

Function Dec Hex Function Dec Hex Function Dec Hex
PI 59 3B COS 84 54 VAL$ 109 6D
RND 60 3C TAN 85 55 VAL 110 6E
POINT 61 3D ASN 86 56 TRUNC$ 111 6F
FREE 62 3E ACS 87 57 CHR$ 112 70
LENGTH 63 3F ATN 88 58 STRS 113 71
ITEM 64 40 LN 89 59 BIN$ 114 72
ATTR 65 41 EXP 90 5A HEX$ 115 73
FN 66 42 ABS 91 5B USR$ 116 74
BIN 67 43 SGN 92 5C Reserved 117 75
XMOUSE 68 44 SQR 93 5D NOT 118 76
YHOUSE 69 45 INT 94 5E Reserved 119 77
XPEN 70 46 USR 95 5F Reserved 120 78
YPEN 71 47 IN 96 60 Reserved 121 79
RAMTOP 72 48 PEEK 97 61 MOD 122 7A
Reserved 73 49 LPEEK 98 62 DIV 123 7B
INSTR 74 4A DVAR 99 63 BOR 124 7C
INKEY$ 75 4B SVAR 100 64 Reserved 125 7D
SCREEN$ 76 4C BUTTON 101 65 BAND 126 7E
MEM$ 77 4D EOF 102 66 OR 127 7F
Reserved 78 4E PTR 103 67 AND 128 80
PATH$ 79 4F Reserved 104 68 <> 129 81
STRING$ 80 50 UDG 105 69 <= 130 82
Reserved 81 51 Reserved 106 6A >= 131 83
Reserved 82 52 LEN 107 6B Reserved 132 84
SIN 83 53 CODE 108 6C

Codes from 85H to FEH do not need a preceding FFH; they are single-byte
compressed forms of keywords. Context allows then to appear as keywords
or as UDGs, as appropriate. For example, they will appear as keywords in
a listing, unless inside quotes, but will appear as UDGs when PRINTed.

The tokens from 85H to 8FH are qualifiers - they have no result or
action on their own, but simply modify the action at other commands.
(This does not prevent an action routine being assigned to them. The
DOS, for example, provides an action routine for WRITE).

Token Dec Hex Token Dec Hex Token Dec Hex

USING 133 85 OFF 137 89 THEN 141 8D
WRITE 134 86 WHILE 138 8A TO 142 8E
AT 135 87 UNTIL 139 8B STEP 143 8
TAB 136 88 LINE 140 8C

Sam Coupe Technical Manual version 3.0 66

The tokens from 90H-FFH are commands. The command address table (see
System variables - CMDADDRT) contains a 2-byte address for each of them,
starting with DIR. This is the address that handles the syntax checking
and run-time action for the command.

Command Dec Hex Command Dec Hex Command Dec Hex

DIR 144 90 REM 183 B7 ON 222 DE
FORMAT 145 91 READ 184 B8 GET 223 DF
ERASE 146 92 DATA 185 B9 OUT 224 EO
MOVE 147 93 RESTORE 186 BA POKE 225 El
SAVE 148 94 PRINT 187 BB DPOKE 226 E2
LOAD 149 95 LPRINT l88 BC RENAME 227 E3
MERGE 150 96 LIST 189 BD CALL 228 E4
VERIFY 151 97 LLIST 190 BE ROLL 229 E5
OPEN 152 98 DUMP 191 BF SCROLL 230 E6
CLOSE 153 99 FOR 192 C0 SCREEN 231 E7
CIRCLE 154 9A NEXT 193 C1 DISPLAY 232 E8
PLOT 155 9B PAUSE 194 C2 BOOT 233 E9
LET 156 9C DRAW 195 C3 LABEL 234 EA
BLITZ 157 9D DEFAULT 196 C4 FILL 235 EB
BORDER 158 9E DIM 197 C5 WINDOW 236 EC
CLS 159 9F INPUT 198 C6 AUTO 237 ED
PALETTE 160 AO RANDOMIZE 199 C7 POP 238 EE
PEN 161 Al DEF FN 200 C8 RECORD 239 EF
PAPER 162 A2 DEF KEYCODE 201 C9 DEVICE 240 F0
FLASH 163 A3 DEF PROC 202 CA PROTECT 241 F1
BRIGHT 164 A4 END PROC 203 CB HIDE 242 F2
INVERSE 165 A5 RENUM 204 CC ZAP 243 F3
OVER 166 A6 DELETE 205 CD POW 244 F4
FATPIX 167 A7 REF 206 CE BOOM 245 F5
CSIZE 168 A8 COPY 207 CF ZOOM 246 F6
BLOCKS 169 A9 Reserved 208 D0 Reserved 247 F7
MODE 170 AA KEYIN 209 Dl Reserved 248 F8
GRAB 171 AH LOCAL 210 D2 Reserved 249 F9
PUT 172 AC LOOP IF 211 D3 Reserved 250 FA
BEEP 173 AD DO 212 D4 Reserved 251 FB
SOUND 174 AE LOOP 213 D5 Reserved 252 FC
NEW 175 AF EXIT IF 214 D6 Reserved 253 FD
RUN 176 B0 long IF 215 D7 Reserved 254 FE
STOP 177 B1 short IF 216 D8 Not usable 255 FF
CONTINUE 178 B2 long ELSE 217 D9 (function prefix)
CLEAR 179 B3 short ELSE 218 DA
GO TO 180 B4 END IF 219 DB
GO SUB 181 B5 KEY 220 DC
RETURN 182 B6 ON ERROR 221 DD

Certain new keywords will be implemented in a disk-based extended Basic,
and these words should not be used in Basic programs as procedure or
variable names, or subsequent editing of the program will be
inconvenient (although ALTER is a search-and-replace, so you could
change every use of, for example, procedure SORT to SORTER, which would
be okay). A provisional list of new keywords follows:

SORT, ALTER, USING$, SHIFT$, INARRAY, NUMBER, CHAR$, JOIN.

Sam Coupe Technical Manual version 3.0 67

SYSTEM VARIABLES

Note: The function SVAR N gives the result 5AOOH+N.

LNCUR 5A00H Cursor character for current line (usually '>').
LCCUR 5A01H Cursor character when caps lock is off (usually CHR$

128).
UCCUR 5A02H Cursor character when caps lock is on (usually CHR$

129).
BIN1DIG 5A03H Character used by BIN$ as "1" (usually "1").
BIN0DIG 5A04H Character used by BIN$ as "0" (usually "0").
INSTHASH 5A05H Character used by INSTR as "match anything"

character (usually CHR$ 35 "#"
SLDEV 5A06H Current device letter (usually "T" on a tape system,

but can be "D", or "N").
SELNUM 5A07H Current tape save speed, or default drive number

when a a disk drive is in use.
SPEEDINK 5A08H Time between swaps of alternate PENs, in 50ths.of a

second.
LINIPTR 5A09H (2) Current position in line interupt palette change

table.
XCMDP 5A0BH (3) Page/offset of first external command list, or

FFxxxxH.
PRRHS 5A0EH Printer right-hand column limit. (Usually 79, to

give 80 columns; use 255 to give no limit)
AFTERCR 5A0FH Character code sent to the printer after CHR$ 13 if

channel "p" is in use. (Normally 10, to give
automatic line teed. Use a value of 0 if no
character is to be sent).

LPTPRT1 5A10H (2) Printer control port/0lH strobe value. The port
is usually 233, with port 232 (one less) used for
data. The second byte should always be 1.

The following system variables are only used when the screen dump
utility has been loaded:

DMPLEN 5A12H Graphic dump length (in 8-pixel units; normally

22)
DMPWID 5A13H Graphic dump width (in 8-fat pixel units; normally

32)
DMPWM 5A14H Graphic dump width multiplier (1 for normal width,

2 or 3 for double or triple width).
DMPHM 5A15H graphic dump height multiplier (1 for normal

height, not 1 for double height).
GCM1 5A17H Initial message sent to printers before a dump.

The first byte is the number of characters to
send. The normal values are 6,27,108,8,27,51,
24,0,0 (2 bytes are spare).

GCM2 5A1FH Message sent to printers before each row is
dumped. The first byte is the number of characters
to send. The normal values are 5,13,10,27,42,4,0,0
(2 bytes are spare).

Sam Coupe Technical Manual version 3.0 68

GCM3 5A27H Final message sent to printers after a dump. The

first byte is the number of characters to send.
The normal values are 4,13,10,27,64,0 (1 byte is
spare).

DMPTL 5A2DH (2) Address in screen of top left corner for
graphic dumps. (Usually 8000H).

(End of system variables used by dump utility).

TABVAR 5A2FH Zero for the print comma to tab by 16 columns

(normal) or anything else for an 8-column tab.
M23LSC 5A30H (2) Mode 3/4 lower screen colours. The first byte

is PAPER*16+PAPER, the second is PEN*16+PEN, i.e.
both nibbles in each byte match.

SOFE 5A32H Flag for screen off enable/disable. If it is zero
(normal) the screen will go blank in modes 3 and 4
when the keyboard has not been used for 22
minutes. Use a 1 to disable.

TPROMPTS 5A33H Bit 0=1 to suppress printing of file names during
tape loading; bit 1=1 to suppress prompts during
tape saving.

This is the start of a block of variables saved with a screen when it
is no longer the current screen.

BGFLG 5A34H Block graphics flag. Zero if BLOCKS 1, 1 if

BLOCKS0.
FL6OR8 5A35H Zero if MODE 3 is using 6-pixel wide characters,

otherwise non-zero.
CSIZEH 5A36H Character height set by CSIZE command.
CSIZEW 5A37H Character width set by CSIZE command.
UWRHS 5A38H Upper window right-hand column. starts at 31.
UWLHS 5A39E Upper window left-hand column. Starts at 0.
UWTOP 5A3AH Upper window top row. starts at 0.
UWBOT 5A3BH Upper window bottom row. starts at 18.
LWRHS 5A3CH Lower window right-hand column. Starts at 31.
LWLHS 5A3DH Lower window left-hand column. Starts at 0.
LWTOP 5A3EH Lower window top row. Starts at 19.
LWBOT 5A3FH Lower window bottom row. Starts at 20.
MODE 5A40H MODE of current screen. 0-3 for modes 1-4.
YCOORD 5A41H Current graphics position y coordinate, with 0 at

the top of the screen and 191 at the bottom.
XCOORD 5A42H (2) current graphics position x coordinate, with 0

at the left. The range is 0-255 unless "thin"
pixels are in use (in which case the second byte
is used and the range is 0-511).

The following are the "permanent" graphics/print variables, set by, for
example, PEN 2, PAPER 4, OVER 1.

THFATP 5A44H Zero if "thin" pixels in use, non-zero for "fat"

pixels.
ATTRP 5A45H Attributes used by modes 1 and 2.

Sam Coupe Technical Manual version 3.0 69

MASKP 5A46H Mask used by modes 1 and 2. Bits which are 1 make

the corresponding attribute bit be taken from the
screen, not ATTRP.

PFLAGP 5A47H Bit 4 is set for paper 9, bit 6 for pen 9
M23PAPP 5A48H Mode 3/4 PAPER. Nibbles (mode 4) or double bits

(mode 3) match unless striped paper is desired.
M23INKP 5A49H Mode 3/4 PEN. Nibbles (mode 4) or double bits

(mode 3) match unless a striped pen is desired.
OVERP 5A4AH OVER status for printing. 0 for OVER 0, 1 for OVER

1 (XOR).
INVERP 5A4BH 0 for INVERSE 0, 255 for INVERSE 1.
GOVERP 5A4CH OVER status for graphics. 0-3 for normal, XOR, OR,

AND.

Temporary graphics/print variables, set by, for example:
 PRINT PEN 3; PAPER 5;
They are temporary versions of the variables listed above.

THFATT 5A4DH copied from thfatp when Mode=2, else set to not

zero (fat)
ATTRT 5A4EH
MASKT 5A4FH
PFLAGT 5A50H
M23PAPT 5A51H
M23INKT 5A52H
OVERT 5353H
INVERT 5A54H
GOVERT 5A55H

Current window variables, copied from UWRHS etc. or LWRHS etc.
according to which window is in use.

WINDRHS 5A56H
WINDLRS 5A57H
WXNDTOP 5A58H
WINDBOT 5A59H

The next three variables are at 5AB1H, 5B70H and 5B71H in version 1.0
ROMs.

WINDMAX 5A5AH (2) Upper window lowest bottom row/maximum right

column. Used to limit the WINDOW command. Reset by
the MODE command.

ORGOFF 5A5CH Graphics origin offset from the screen bottom, in
pixels.

LSOFF 5A5DH Size of gap between upper and lower windows, in
scan lines MOD CSIZEH.

Reserved 5A5EH (14)
SPOSNU 5A6CH (2) Upper window position as column/row.
SPOSNL 5A6EH (2) Lower window position as column/row.

(End of block saved with a deselected screen).

PRPOSN 5A70H Current printer column.
Reserved 5371H
OPCHAR 5A72H Used by LPRINT - character being printed.

Sam Coupe Technical Manual version 3.0 70

DEVICE 5A73H 0=upper window, 1=lower window, 2=printer, 3=other
CLET 5A74H Current channel letter K/S/P/B/T/$ etc.
IFTYPE 5A75H Long/short IF status.
REFFLG 5A76H Zero if a REF variable is being worked on.
CURDISP 5A77H Current display, set by the DISPLAY command.
CUSCRNP 5A78H Current screen page. Bit 7=0, bits 6 and 5=MODE

(0-3) and bits 4-0=page number. Set by SCREEN
command.

CURP 5A79H Current upper RAM port. (Temporary store during
paging).

CLRP 5A7AH Current lower RAM port. (Temporary store during
paging).

CSA 5A7BH (2) Current statement address. Used by DOS.
FIRST 5A7DH (2)
LAST 5A7FH (2) Line numbers in, for example, LIST 20 TO 100.

The following variables point to the main sections of Basic's memory
area. They are adjusted when space is made or reclaimed, as needed. In
each set of three bytes, the first byte is the RAM page number (0-31)
and the other two bytes are the offset in the page, plus 8000H. (In
some circumstances the offset is allowed to be greater than 16K, but it
is always less than 32K).

SAVARSP 5A81H
SAVARS 5A82H (2) String and array variables start

NUMENDP 5A84H
NUMEND 5A85H (2) Numeric variables end

NVARSP 5A87H
NVARS 5A88H (2) Numeric variables start

DATADDP 5A8AH
DATADD 5A8BH (2) Data address used by READ command.

WKENDP 5A8DH
WKEND 5A8EH (2) End of workspace. (Last used byte before

RAMTOP).

WORKSPP 5A90H
WORKSP 5A9lH (2) workspace start.

ELINEP 5A93H
ELINE 5A94H (2) Edit line start.

CHADP 5A95H
CHAD 5A97H (2) Current character address.

KCURP 5A99H
KCUR 5A9AH (2) Address of cursor in the edit line.

NXTLINEP 5A9CH
NXTLINE 5A9DH (2) Address of next line in Basic program.

PROGP 5A9FH

Sam Coupe Technical Manual version 3.0 71

PROG 5AA0H (2) Program start (address of line number of first

line).
XPTRP 5AA2H
XPTR 5AA3H (2) Address in the edit line of a syntax error.

DESTP 5AA5H
DEST 5AA6H (2) Used in variable assignments.

PRPTRP 5AA8H
PRPTR 5AA9H (2) Address of current procedure call.

DPPTRP 5AABH
DPPTR 5AACH (2) Address of current DEF PROC statement.

CLAPG 5AAEH
CIA 5AAFH (2) Address of start of current line.

Reserved 5AB1H
STRNO 5AB2H Current stream number. used by DOS.
LDCO 5AB3H Offset when loading spectrum machine code (16K

pages).
Reserved 5AB4H
OPSTORE 5AB5H (2) Temporary store for print output address.
DMPFLG 5AB7H If non-zero, printed characters are "thrown away".

LISTFLG 5AB8H 0/1/2 for LIST FORMAT 0/1/2.
LSTFT 5AB9H Temporary version of LISTFLG used by channel 'R'.
INQUFG 5ABAH "In quotes" flag. Bit 0=1 if character being

printed is inside quotes. LIST zeros this bit so
initial state is "outside" and tokens are printed,
except inside quotes. PRINT sets it to 1 so UDGs
are printed instead of tokens.

SPROMPT 5ABBH If non-Zero no "scroll?" prompts are given.

The next six variables are used by the indented listing routine.

OLDSPCS 5ABCH Indent status of previous line.
INDOPFG 5ABDE Flag.
NXTSPCS 5ABEH
CURSPCS 5ABFH
NXTHSPCS 5AC0H
CURTHSPCS 5AC1H

KPOS 5AC2H (2) Screen position of editing cursor.
SOFFCT 5AC4H Counter used by auto-screen off. Changes every 256

frames if the keyboard is not in use.
SOFLG 5AC5H Flag for screen has been turned off" (if non-

zero).
SPEEDIC 5AC6H Counter for flashing inks.
PALFLAG 5AC7H Bit 0 shows which palette table in use, main or

alternate.

Sam Coupe Technical Manual version 3.0 72

Temporary stores:

TEMPW1 53C8H (2)
TEMPW2 5ACAH (2)
TEMPW3 5ACCH (2)
TEMPB1 5ACEH
TEMPB2 5ACFH
TEMPB3 5AD0H

LASTSTAT 5AD1H Status port value on last interrupt.
SPSTORE 5AD2H (2) stack pointer store used by maskable

interrupts.
JVSP 5AD5H (2) JSVIN stack pointer store.
NMISP 5AD7H (2) Non-maskable interrupt stack pointer store.
NMILRP 5AD9H (1) LMPR value when NMI occurred.

Vectors (see detailed description elsewhere).

DMPV 5ADAH (2) Screen dump.
SETIYV 5ADCH (2) Set IY register to pixel output routine.
PRTOKV 5ADEH (2) Print a token.
NMIV 5AE0H (2) Non-maskable interrupt.
FRAMIV 5AE2H (2) Frame interrupt.
LINIV 5AE4H (2) Line interrupt.
COMSV 5AE6H (2) Comms interrupt.
MIPV 5AE8H (2) MIDI input interrupt.
MOPV 5AEAH (2) MIDI output interrupt.
EDITV 5AECH (2) Editor.
RST8V 5AEEH (2) RST 08H (error handler).
RST28V 5AF0H (2) RST 28H (floating point calculator).
RST30V 5AF2H (2) RST 30H (user RST).
CMDV 5AF4H (2) Command.
EVALUV 5AF6H (2) Expression evaluator.
LPRTV 5AF8H (2) Printer.
MTOFCV 5AFAH (2) Match token.
MOUSV 5AFCH (2) Mouse.
KURV 5AFEH (2) Edit cursor.

Tables used by MODE 3 and 4 to expand character pattern data (as stored
in UDGs, for example), to a form suitable for placing on the screen. In
MODE 3 each table holds 16 bytes (expanded versions of each possible
nibble) while in MODE 4 each table holds 16 words (expanded versions of
each nibble).
CEXTAB 5B00H (32) Coloured expansion table - current PEN, PAPER

and INVERSE state are used to modify this data.

EXTAB 5B20H (32) Uncoloured expansion table. E.g. in MODE 3 or
4, the nibble 1010b is expanded to 11001100b or
1111000011110000b.

COMPFLG 5B40H Flag bits used by LABEL/FN/PROC compiler.
BREARDI 5B41H Non-zero if ESC between statements is to be

disabled.
ERRSTAT 5B42H Statement to go to ON ERROR.

Sam Coupe Technical Manual version 3.0 73

ERRLN 5B43H (2) line to go to ON ERROR.
ONERRFLG 5B45H Bit 7=temporary ON ERROR active flag, bit 0 is

permanent.
ONSTORE 5B46H ON command's statement number.
BCSTORE 5B47H (2) Used by RST 30H to hold BC register.
M3PAPP 5B49H (2) used to bold MODE 4 PAPER and PEN when MODE 3

is used
M3LSC 5B4BH (2) used to hold MODE 4 lower window colours when

MODE 3 is in use.
TEMPW4 5B4DH (2) Used by ADJUST POINTERS routine.
TEMPW5 5B4FH (2) used by ADJUST POINTERS routine.
Reserved 5B51H

Table used by the editor showing which screen lines have line numbers.

LPT 5B52H (30)

Reserved 5B70H (2)
RNSTKE 5B72H (2) Rename stack pointer used by procedures with

REF.
CURCHD 5B74H Current Basic command.
LTDFF 5B75H LET/DEFAULT flag.
STRMX6NN 5B76H (11) Encoded type/length and name of the variable

that stream 16 prints to. Set by RECORD TO
command.

GRARF 5B81H Graphics record flag (O=off).
DHADJ 5B82H Double height adjust. Zero unless bottom of

double-height character is being printed.
PACCOUNT 5B83H Page counter used by FARLDIR and FARLDDR.
MODCOUNT 5B84H (2) MOD 16K counter used by FARLDIR and FARLDDR.
ECREG 5B86H (2) calculator's BC register.
AUTOFLO 5B88H Zero if AUTO is off, else 1.
AUTOSTEP 5B89H (2) AUTO command's step value.

LSPTR 5B8EH (2) Line scan pointer used by the editor.
LNPTR 5B8DH (1) Used by the editor.
MSEDP 5B8EH (8) Used by the mouse as a data store.
BUTSTAT 5B8FH Mouse button status.
MXCRD 5B96H (2) Mouse x coordinate.
MYORD 5B98H (2) Mouse y coordinate.

Used by the PRINT A NUMBER routine:

FRACLIM 5B9AH
NPRPOS 5B9BH (2)
DIGITS 5B9DR
EPOWER 5B9EH
DECPNTED 5B9FH
PRNBUFF 5BA0H (16) ASCII form of number.
BCDBUFF 5BBOH (5)

OTHER 5BB5H Net destination station number.
Reserved 5BB6H
SLDEVT 5BB7H Temporary device letter (usually copied from

SLDEV).

Sam Coupe Technical Manual version 3.0 74

SLNUMT 5BB8H Temporary device number (usually copied from

SLNUM).
OVERF 5BB9H "SAVE OVER" flag used by DOS. Zero if SAVE OVER,

else non-zero.
INSLV BBBAH (2) Block move vector.
STRLOCN 5BBCH (2) Used by LOOK FOR A STRING/ARRAY VARIABLE

routine.
TVDATA 5BBEH (2) Used in handling control codes and their

parameters.
DOSER 5BC0H (2) If address is non-zero, DOS jumps there on

exit.
DOSFLG 5BC2H Zero if no DOS loaded, else page number containing

DOS.
DOSCNT 5BC3H Bit 0 is set if DOS is in control of the system.

BSTKEND 5BC4H (2) End of Basic's stack (used by DO, GOSUB,

procedures).
BASSTK 5BC4H (2) Start of Basic's stack.
HEAPEND 5BC6H (2) End of system heap.
HPST 5BC7H (2) Start of system heap.
FPSBOT 5BCAH (2) Start of floating point calculator stack.
DKDEF 5BDCH (2) Start of KEYCODE definitions.
DKLIM 5BD0H (2) Limit address of KEYCODE buffer.
PATOUT 5BD2H (2) Address of 'printable characters' output

routine.
ERRMSGS 5BD4H (2) Start of error message table.
UMSGS 5BD6H (2) Start of utility message table.
KBTAB 5BD8H (2) start of keyboard table.
CMDADDRT 5BDAH (2) Start of command address table.
MNOP 5BDCH (2) Address of main output routine.
MNIP 5BDEH (2) Address of main input routine.

PAGER 5BE0H (14) Reserved for paging subroutine.

KBUFF 5BEEH (18) Keyboard scan table - 2 tables of 72 bits

each.

LEM1 5C00H Used by keyscan
LASTH 5C01H Last key hit. Zero if no key. Stops changing if

keys are not being read, when buffer fills. RES
5,(FLAGS} is seen as a read. Used by keyscan.

KDATA 5C02H Used by keyscan.
LKPB 5C03H (2)
REPCT 5C05H Used by keyscan.
LASTKV 5C06H (2) shift and key codes from last key press.
KBHEAD 5C08H Key from buffer queue head. Keeps last key value.

Needs periodic resets of bit 5,(FLAGS) or buffer
fills.

REPDEL 5C09H Delay before keys auto-repeat (in 50ths. of a
second); normally 33.

REPSPD 5C0AH Delay between key repeats (in 50ths. of a second);
normally 3.

Reserved 5C0BH

Sam Coupe Technical Manual version 3.0 75

STREAMS 5C0CH (42) For streams -5 to 15, a word gives the

displacement from the start of the channels area
to the assigned channel. If the word is zero, the
stream is closed. Stream 16 is dealt with as
stream -4.

CHARS 5C36H (2) Address 256 bytes below start of main
character set.

ERRSOUND 5C38H Length of error sound in 50ths. of a second;
normally 60.

CLICK 5C39H Length of keyboard click (normally zero).
ERRNR 5C3AH Error number.
FLAGS 503BH Main flags byte.
DFLAG 503CH Display flags.
ERRSP 5C3DH (2) SP value to use when an error occurs.
LISTSP 5C3FH (2) SP value to use when an automatic list fills

the screen.
Reserved 5C41H
NEWPPC 5C42H (2) New line to jump to.
NSPPC 5C44H New statement to jump to, or FFH.
PPC 5C45H (2) Current line number during program execution.
SUBPPC 5C47H Current statement number.
BORDCR 5C48H Attributes for lower screen in MODEs 1 and 2.
EPPC 5C49H (2) Number of line with > cursor.
BORDCOL 5C4BH Value to send to border port.
CHANS 5C4FH (2) start of channels area.
CURCHL 5C51H (2) start of current channel.
DEFADDP 5C53H DEF FN address (page).
DEFADD 5C54H (2) DEF FN address (offset)
Reserved 5C56H (15)
STKEND SC65H (2) End of floating point calculator stack.
KPFLG 5C67H Function keys if even, number pad if odd.
MEN 5C68H (2) Start of calculator's memory area.
KLFLAG SC6AH 8 if caps lock is on, else zero.
SDTOP 5C6CH Line number of top line in an automatic listing.
COPPC SC6EH Line number that CONTINTUE goes to.
COSPPC SC70H statement number that CONTINUE goes to.
FLAGE SC71H Flags used by INPUT command and the editor.
STRIL 5C72H Used when variables are assigned to.
SEED 5C76H Random number seed. Set by RANDOMIZE.
FRAMES 5C78H (3) Frames since machine was switched on (LSB

first).
UDG SC7BH (2) Address of CHR$ 144.
HUDG SC7DH (2) Address of CHR$ 169 (initially undefined).
FRAMES34 5C7FH (2) 2 more bytes of FRAMES counter.
OLDPOS 5C82H Used by editor in clearing lower window.
SCRCT 5C8CH Counter used to give "scroll?" prompt.
KBQB 5C8DH (8) Keyboard queue. At 5A5AH in vl.0 ROM.
KBQP 5C95H (2) Keyboard queue end/head pointers. At 5A6AH in

vl.O ROM.
Reserved 5C97H (6)
SCPTR 5C9DH (2) Address in SCLIST at current screen's entry.
FISCRNP 5C9FH Page of screen 1.

Sam Coupe Technical Manual version 3.0 76

SCLIST 5CA0H (16) Screens list. MODE/page of screens 1-16, or

FFH if screen is closed. Bits 6 and 5=MOflE, 4-
O=page.

LASTPAGE 5CB0H last page reserved by Basic. set by OPEN, OPEN TO
or CLOSE.

RAMTOPP 5CB1H Page of RAMTOP.
RAMTOP 5CB2H (2) Offset of RAMTOP.
PRAMTP 5CB4H Last 16K page physically present in machine.

VARIABLE FORMATS

The Coupe has five main variable types:

Numeric variables
FOR-NEXT variables
Strings
String arrays
Numeric arrays

Numeric variables and FOR-NEXT variables are kept in the area pointed to
by NVARS and NVARSP. This area begins with 26 2-byte entries, which hold
the offset to the first variable starting with a given letter (from A-Z
- hence 26 entries). If the offset is FFFFH, there are no variables
starting with this letter. For each numeric variable, the start of the
variable has this form:

Type/name length byte, offset LSB, MSB, character1, character2...

The type/length byte stores the name length-1 in bits 4-0 (so names can
be up to 32 characters long}. Bit 5 is set if the variable is no longer
in use, bit 6 is set for a FOR-NEXT variable and bit 7 is set if the
variable is "hidden" (this is used by procedures to implement LOCAL
variables). The offset is the distance to move from the MSB of the
current offset to the type/length byte of the next variable starting
with the same letter, or FFFFH if there are no more such variables.
There may be from zero to 31 characters after the offset, forced to
lower case if they are letters, and excluding spaces.

After this come five bytes to hold the value of the variable. (See the
section on the floating point calculator for information on the makeup
of these 5 bytes). If it is an ordinary numeric variable, there is just
a value, but a FOR-NEXT variable has an additional 14 bytes; the
complete format is:

VALUE (5): LIMIT (5): STEP (5): LOOP ADDRESS (3): STATEMENT (1)

The loop address is the page and offset (8000-BFFFH) of the start of the
line to loop back to, and the statement is the number of the statement
within that line to loop back to (loops to the first statement are thus
the fastest).

Sam Coupe Technical Manual version 3.0 77

Strings and arrays are kept in the area pointed to by SAVARS and
SAVARSP. There is a buffer zone between the numeric and string/array
variables, so that creation of a new numeric variable does not usually
require the strings and arrays to be moved.

Variables in this area are in the order of their creation (by DIM or
LET; LET a$=aS will move aS to the end of the area, unless a$ is an
array). For each variable, the format is as follows:

Type/length byte, character1....character10, length (3)

The type/length byte holds the name length (1-10) in bits 4-0. Bit 6 is
set for string arrays, bit 5 is set for numeric arrays, and both bits
are reset for ordinary strings. Bit 7 is set if the variable is
"hidden". Ten bytes of space follow to hold the variable name; unused
bytes are undefined. The length is given as number of 16K pages, then
length MOD 16K (LSB/MSB), for the rest of the array plus the 3 length
bytes. For strings, the text of the string follows; for arrays, the next
byte is the number of dimensions, followed by the length of dimension 1,
dimension 2, etc. (2 bytes for each dimension). The array data then
follows, all data with a first subscript of 1 being first, then the data
with a first subscript of 2, etc. FFH terminates the list of string and
array variables.

- FORMAT OF A BASIC PROGRAM -

The first line of a program is pointed to by PROG and PROGP (offset
8000-BFFFH and page). Each line has the format:

LINE NUMBER (MSB/LSB): LINE LENGTH (LSB/MSB): TEXT: ODH

Note that the line number is unusual in being stored most significant
byte first. The line length is the length of the text and 0DH
terminator. The line text contains compressed keywords (see keyword code
table) and invisible forms of all literal numbers (decimal, binary and
hexadecimal). The invisible forms are OEH followed by 5 bytes to store
the value. The line may also contain control codes and their parameters.

The final line in the program is followed by FFH (so the maximum line
number allowed is FEFFH).

Sam Coupe Technical Manual version 3.0 78

SAM DISIC OPERATING SYSTEM

INTRODUCTION

SAMDOS has been designed specifically for the SAM Coupe computer. It is
similar to G+DOS as used with the MGT Plus D spectrum disk interface.

- DISK DRIVE -

The internal SAM disk drive is a Citizen 3.5" slimline drive. Each drive
is cased and fitted with the MGT disk controller interface, which
utilises a VL-1772-02 floppy disk controller. By default the disks are
formatted as double sided, 80 track per side, 10 sectors per track, to
the IBM 3740 standard.

- DISK FORMAT -

We use 80 tracks per side, giving 160 tracks per disk. A track is made
up of 10 data sectors, each giving 512 bytes of storage. The first 4
tracks of the disk are given up to the SAMDOS directory, leaving 156
tracks available for storage. This leaves available 1560 data sectors of
512 bytes (798720 bytes)

Although each data sector can hold 512 bytes, only 510 bytes of them are
available for storage. The last two bytes of the data sector are used by
the DOS to locate the next part of the file stored. Byte 511 holds the
next track used by the file, while byte 512 holds the next sector.

DISK FILE HEADER

At the beginning of each disk file there is a file header. The file
header is 9 bytes long:

 SAMDOS type Plus D type

0 File type File type
1-2 Modulo length Length of file
3-4 Offset Start start Address
5-6 Unused
7 Number of pages
8 starting page number

Details of the Plus D header can be found in the technical information
for the Plus D.

Sam Coupe Technical Manual version 3.0 79

- FILE TYPE -

Each file type in the SAMOOS is allocated a numeric identifier:

5 - ZX Snapshot file SNP 48k
16 - SAM BASIC program BAS
17 - Numeric array D ARRAY
18 - String array $ ARRAY
19 - Code file C
20 - Screen file SCREEN$

- MODULO LENGTH & NUMBER OF PAGES -

In the SAMDOS header the length of the file is calculated by multiplying
the number of pages (byte 7) by 16384 and adding the modulo length (word
1-2), LSB/MSE, i.e. the length MOD 16K.

- OFFSET START & STARTING PAGE NUMBER -

Read starting page number (byte 8): AND this with 1FH to get the page
number in the range 0 to 31. To find the start multiply the page number
by 16384, add the offset, and subtract 4000H (since the ROM occupies 0-
3FFFH).

When SAMDOS is paged in it resides at 4000H, and ROM0 is placed at 0-
3FFFH.

Sam Coupe Technical Manual version 3.0 80

- SAMDOS DIRECTORY -

The first 4 tracks of the disk are allocated to the disk directory,
starting at track 0, sector 1. These 4 tracks give us 40 sectors each
split into two 256 bytes entries. Each of these entries will identify
one file, thus allowing up to 80 entries in the directory.

The format of each directory entry is as follows:

(The User Information File Area CUIFA) will be described later).

Byte UIFA Description

0 0 STATUS/FILE TYPE.
This byte is allocated one of the file types listed
previously, but is also used as a file status. If
the byte is 0 then the file has been erased. If the
file is HIDDEN then bit 7 is set. If the file is
PROTECTED then bit 6 is set.

1-10 1-10 FILENAME.
This filename can be up to 10 characters

11 MSB OF THE NUMBER OF SECTORS USED IN THE FILE.
12 LSB OF THE NUMBER OF SECTORS USED IN THE FILE.
13 TRACK NUMBER FOR START OF FILE
14 SECTOR NUMBER FOR START OF FILE

15-209 SECTOR ADDRESS MAP (195 BYTES)
(detailed further on).

210-219 MGT FUTURE AND PAST (10 BYTES) These were used in
the PLUS D directory but are not used by the SAMDOS.
They are allocated to MGT for future use.

220 15 FLAGS (MGT USE ONLY)
221-231 FILE TYPE INFORMATION

 16-26 If the file type is 17 or 18 then these bytes
contain the file type/length and name.

 16 If the file type is 20 then these bytes contain the
screen mode.

 16-18 If the file type is 16 then these bytes contain the
program length excluding variables.

 19-21 If the file type is 16 then these bytes contain the
program length plus numeric variables.

 22-24 If the file type is 16 then these bytes contain the
program length plus numeric variables and the gap
length before string and array variables.

232-235 27-30 SPARE 4 BYTES (reserved).

Sam Coupe Technical Manual version 3.0 81

236 31 START PAGE NUMBER, in bits 4-0, bits 7-5 are

undefined.
237-238 32-33 PAGE OFFSET (8000-BFFFH). This is as per file header,

although when the ROM passes a file to be saved it
starts it in section C of the addressing map.

239 34 NUMBER OF PAGES IN LENGTH. (as per file header)
240-241 35-36 MODULO 0 TO 16383 LENGTH, i.e. length of file MOD

16384. (as per file header)
242-244 37-39 EXECUTION ADDRESS

Execution Address, if CODE file, or line number if an
auto-running BASIC program.

245-253 40-47 SPARE 8 BYTES
254-255 FOR FUTURE USE BY MGT ONLY.

- SECTOR ADDRESS MAP -

SAMDOS allocates 195 bytes to the sector address map, giving 1560 bits,
which is the exact number of sectors available for storage on the drive.

A sector address map is calculated for each directory entry. when a file
is created a directory entry is made for that file. A sector address map
is created by setting the specific bit(s) corresponding to the sector(s)
allocated to the file. (Bit 0 of the first byte is allocated to track 4
sector 1). For example, if the file uses 5 sectors then five
corresponding bits in the sector address map are set and saved as part
of the directory entry.

- BIT ADDRESS MAP (BAM) -

The bit address map is not stored on the disk by SAMDOS. It is generated
by performing a bitwise OR of each file's sector address map. This then
gives SAMDOS a usage map of the disk. When a file is created the first
thing SAMDOS does is calculate the BAM, and then by looking at the
available sectors (i.e. bits not set), it can work out if there is room
for the file. If there is room for the file, then the directory entry is
created, including the sector address map specific to the new file, and
the file is stored in the sectors which have been specified in the
file's sector address map.

Sam Coupe Technical Manual version 3.0 82

SAMDOS INTERFACING

SAMDOS's machine code interface provides pointers to specific parts of
the DOS, called hook codes. These pointers perform the DOS functions,
e.g., SAVE, LOAD, VERIFY, etc.

To use these hook codes various registers in the Z80B must be set up for
the subroutine called to perform the required tasks. Each hook code is
described later in this manual together with the necessary register
information.

When a hook code is used the ROM will page SAMDOS temporarily into
section B of the 64K addressing space (ie at 400011):

RST 08H ; call ROM RST 8
DEFB x ; Where x equals the specific
 ; Hook code required.

If an error occurs it will normally be handled by the ROM, producing an
error message in the lower part of the screen. However, if the system
variable DOSER (5BC0H) is loaded with the address of your own 'return
from DOS' routine then this routine will be entered after SAMDOS has
executed any hook codes, or examined any of BASIC's error codes, with
the Accumulator holding zero for no error, or an error number. This will
be either one of BASIC's error codes or a SAMDOS error code of 128 and
above.

- USER INFORMATION FILE AREA (UIFA) -

When using SAMDOS hook codes the calling program must set up an area in
memory, pointed to by the IX register, which details the information
required for file handling, e.g., SAVE and LOAD. This file is called the
UIFA.

Byte Description
0 STATUS/FILE TYPE.
1-14 FILENAME. 14 characters are allocated to allow for device

identification, for example: D1:filenamexx. SAMDOS will strip
off the device identifier, so the maximum length of a filename
is still ten characters.

15 FLAGS
16-26 If the file type is 17 or 18 then these bytes contain the

type/length byte and the name.
16 If the file type is 20 then this byte contains the screen

mode.
16-18 If the file type is 16 then these bytes contain the program

length excluding variables.
19-21 If the file type is 16 then these bytes contain the program

length plus the numeric variables.
22-24 If the file type is 16 then these bytes contain the program

length plus the numeric variables and the gap length before
the character variables.

27-30 SPARE 4 BYTES (Reserved)
31 16K PACE NUMBER START
32-33 PAGE OFFSET (8000-BFFFH) LSB/MSB
34 NUMBER OF PAGES IN LENGTH

Sam Coupe Technical Manual version 3.0 83

35-36 MODULO 0 TO 16383 LENGTH ie file length MOD 16384.
37 EXECUTE PAGE NUMBER if applicable
38-39 EXECUTE OFFSET (8000-BFFFH) LSB/MSB if applicable
40-47 SPARE 8 BYTES (Comment Field)

When the DOS has used the UIFA and it wants to pass a UIFA back, eq, for
confirmation of load by the calling program the DOS creates a Disk
Information File Area (DIFA). Both the UIFA and DIFA are 48 bytes long.
This confirmation DIFA is written to an area of memory 80 bytes above
the user's specified UIFA.

- SAMDOS HOOK CODES -

SAMDOS provides the user with hook (command) codes which enable the
machine code programmer to use SAMDOS's facilities without having to
return to or call SAM BASIC.

If an error occurs, SAMDOS set the Carry flag and put an error number
into the Accumulator. If no error occurs the Accumulator will equal
zero.

The Hook Codes currently available are:

INIT 128 dec Initialise and look for AUTO file
HGTHD 129 dec Get file header
HLOAD 130 dec Load file
HVERY 131 dec Verify file
HSAVE 132 dec Save file

HVAR 139 dec Get address of DVAR
HOFLE 147 dec Open a File
SBYT 148 dec Save a byte
HWSAD 149 dec Write a sector to the disk
HSVBK 150 dec Save a block of data
CFSM 152 dec Close file sector map
HGFLE 158 dec Get a file from disk
LBYT 159 dec Load a byte
HRSAD 160 dec Read a sector from the disk
HLDBK 161 dec Load a block of data from disk
REST 164 dec Restore disk drive to track 0
PCAT 165 dec Perform a directory listing
HERAZ 166 dec Erase a file from disk

Provision has been made for further hook codes to be added to SAMDOS.

Sam Coupe Technical Manual version 3.0 84

HOOK CODE EXPLANATIONS

When the hook code explanation refers to 'RPT', it refers to the pointer
used internally by SAMDOS.

INIT This routine looks for an AUTO file on the current disk, and

initialises the DVARS.

HGTHD Get file header. This routine should be called with IX pointing
to the UIFA, which should contain the file type and filename
required. When completed the complete file header will be
transferred in DIFA form to IX+80 bytes.

HLOAD Load file in UIFA pointed to by IX register. The C register
contains the number of 16K pages used by the file, while DE
must contain the length modulo 16K. The HL register pair must
point to a destination between 8OOOH to BFFFH, while the
destination page must be paged in using the HMPR register.
These values can be obtained from the header loaded by HGTHD.

HVERY Verify the memory to the file stored on the disk. Again the IX
register must be a pointer to the file UIFA. Use as HLOAD, but
verifies rather than loads.

HSAVE Save the file whose UIFA is pointed to by the IX register. The
UIFA must be a complete UIFA, including file length, etc.

HVAR This routine calls the jump table thus unstacking the number
following the DVAR into BC. The routine supplies the address of
the DVAR by putting it onto the BASIC floating point calculator
stack.

HOFLE Open a file on the disk. ix roust point to the UIFA. The
routine will create a sector address map, and save the header
to the disk and reset pointer RPT.

SBYT Save the byte in the Accumulator to the RAM pointed to by the
pointer RPT. If the sector is full the data will be stored in
the next sector pointed to by the sector address map.

HWSAD D contains the track number, and E contains the sector number.
The Accumulator holds the drive number (1 or 2). Writes the
sector pointed to by the DE register pair. The Accumulator
contains the drive number, while the HL register pair is the
pointer to the source data which must be resident in the 64K
address map.

HSVBK Save a block of data to the disk where the DE register pair
points to the start of the data, and the BC register pair holds
the byte count.

Sam Coupe Technical Manual version 3.0 85

CFSM Close file sector map. This routine empties the RAM and copies

the header area on to the directory, closes the file, then
updates the directory.

HGFLE Get a file from the disk. The IX register must point to the
UIFA. The return is made with the first sector of the file
loaded into RAM and RPT pointing to the first byte.

LBYT Load the byte pointed to by RPT from RAM, place it in the
Accumulator, and increment the RPT. When the sector has all
been read then the next sector is loaded from the disk and the
pointer adjusted.

HRSAD D contains the track number, and E contains the sector number.
The Accumulator holds the drive number (1 or 2}. Reads the
sector pointed to by the DE register pair. The Accumulator
contains the drive number, while the HL register pair is the
pointer to the destination.

HLDBK Load a block of data from the disk to the memory pointed to by
DE with the block count in BC.

REST Restore disk drive to track 0. The Accumulator holds the drive
number , ie, 1 or 2.

PCAT Perform a directory listing to current stream.

HERAZ Erase a file from the disk. Register IX must point to the UIFA
of the file to be erased.

- LOCATING SAMDOS -

When SAMDOS is loaded the ROM looks at its available memory and loads
SAMDOS into the last free 16K page. The ROM uses the last two 16K pages
for SCREEN 1, so SAMDOS usually loads into the third from last 16K page,
but the page will be different if extra screens have been opened before
SAMDOS is loaded. Address 5BC2H (SVAR 450) holds the page number used by
SAMDOS, or zero if SAMDOS has not been loaded.
PEEK SVAR 450*16384+16384 will give the start address of SAMDOS, When a
DOS command is issued the DOS is loaded into section B (4000H) of the
64k addressing space, the command is performed, and the DOS is then
paged out.

Sam Coupe Technical Manual version 3.0 86

- SAMDOS ERROR CODES -

81 Nonsense in SAMDOS
82 Nonsense in SNOS (SAM Network operating system)
83 statement end error
84 Escape requested
85 TRK nnn SCT nnn error
86 Format TRK nnn lost
87 Check disk in drive
88 No BOOT file
89 Invalid file name
90 Invalid Station
91 Invalid device
92 variable not found
93 verify failed
94 Wrong file type
95 Merge error
96 Code error
97 Pupil set
98 Invalid code
99 Reading a write file
100 writing a read file
101 No AUTO file
102 Network off
103 No such drive
104 Disk is write protected
105 Not enough space
106 Directory full
107 File not found
108 End of file
109 file name used
110 No SAMDOS loaded
111 Stream used
112 Channel used

