the maximum is +32767. If more precision is required, the
program will have to handle longer strings of eight bits in a
multiple-precision scheme.

Let’s see how the assembler handles representation of
signed numbers. The program that follows shows a data table
of various types of signed numbers, eight bits (DEFB) and
16 bits (DEFW). Note how the assembler automatically com-
putes the proper two’s complement form. Might we even
suggest the odious task of looking at the arguments, convert-
ing a few numbers yourself, and then checking them against
the assembled value? Like chicken soup, it won’t hurt!

Note that the 16-bit values are in standard Z-80 represen-
tation, reversed so that the most significant byte is last and
the least significant byte is first.

Adding and Subtracting 8-Bit Numbers

There are several actions that occur when two 8-bit signed
numbers are added in.the Z-80. First, the instruction adds
the two operands and puts the result in the A register (initi-
ally, as you will recall, one of the operands was in A). In the
course of adding the numbers, the carry flag, half carry flag,
overflow flag, zero flag, and sign flag are all affected according
to the results of the add.

13

The zero flag is set if the result is zero. The two instructions

LD A23 ;LOAD 23 INTO A
ADD A,—23 ;ADD -—23

would result in an A register result of zero and the zero flag
set to a one. The carry flag is set if there is a carry out of bit
position 7 after the add, and the half carry is set if there is a
carry out of bit position 3. These carries are equivalent to
decimal carries during an addition of two decimal numbers.
The carry out of bit position 8 is the “half-carry” and is used
for decimal addition of binary-coded-decimal operands dis-
cussed later on in this chapter. The “carry” out of the high-
order bit position occurs whenever a carry is generated for
the add, as in the add of 23 and —23.

00010111 23
carry 11101001 —23 (try the two’s complement)
1 00000000 0 (zero result)

The carry flag can be used for adds of multiple bytes, for adds
of bed operands, or for certain types of compares.

The sign flag is really the duplication of the sign bit in
the result after the add. If the result of the add is positive, the
sign flag is reset (0), while if the result is negative, the sign
flag is set (1). The sign flag can then be used for conditional
jumps such as jump if result positive (JP P,aaaa) or jump if
result negative (JP M,aaaa).

The overflow flag is used during adds and subtracts to de-
tect overflow conditions. Overflow occurs when the result of
the add is too large to fit into an 8-bit signed representation.
Suppose that we are adding +127 and +50. We know that the
maximum positive number that can fit in 8 bits is +127. What
would the result be if we actually performed the add?

01111111 (+127)
00110010 (+ 50)

10110001 (— 79) result — wrong!

As the reader can see from the example, the result of —79 is
incorrect. If we had no way to detect the overflow, we might
go merrily on our way printing a paycheck for an employee of
$1,045,067.66, or an equally catastrophic action. Fortunately,
the Z-80 does set overflow when the result is greater than
+127 or less than —128.

When a subtract instead of an add is used, all of the above
actions apply. The Z-80 performs the subtract just as you

114

would on paper, and then sets the flags according to the re-
sults of the subtract. There are really no fundamental differ-
ences between an add and subtract, as the reader can see if
he considers adding +23 and —15 and then compares it to
subtracting +15 from +23.

To illustrate the settings of the flag bits after an add or
subtract, let’s use T-BUG to execute some examples of arith-
metic operations. Load T-BUG and key in the following pro-
gram. Run the following examples by using T-BUG to change
the operands in 4BOOH and 4B01H, breakpoint at location
4A14H and then use the M command to look at the flags and
results in locations 4B02H through 4B05H as shown in Table
7-1. In addition to the examples below the reader is urged to
try his own values. The flags will have to be “decoded” from
an 8-bit value to determine the state of the flags (it is some
work, but you’ll be a better programmer for it). The bit posi-
tions of the flag register are shown in Figure 7-5, and in
Table 7-1.

i B 5 PR OPERRTION
FEOH F5ET RESIAT FLAGS
i (ERTHLH i STORE
S8 B FRESTORE
S B s SUBTRACT
Rt A : TRRNSFER FLAGS
B FF H JBET RESIAT. FLAGS
AdA L ($RBIH). H ;STORE
BN L0 JF LODP ;LOOP HERE FIR BP

A TATHN COOODD
EEE THTHL ERRRS

st R R A S 5

HE 2" o) =
HEF shid

115

FLAG

REGISTER
7 6 4 3 2 1 0
5112 H |-
— HALF-CARRY FLAG (BCD OPERATIONS)
—— ZERO FLAG
—— SIGN FLAG

(BCD OPERATIONS)

PN N | C
L |— CARRY FLAG
ADD/SUBTRACT FLAG

PARITY/OVERFLOW FLAG

—NOT USED

Fig. 7-5. Flag register bit positions.

Table 7-1. Examples of Add and Subtract Flag Bit

SZ-H-P/JVNC
76543 2 10

Test Cases
Location Contents 1 2 3 4
4B0OH Dest Op + 33(21H} — 5(FBH) —30(E2H) 120(78H)
4B01H Source Op + &64(40H) — 30(E2H) — 5(FBH) 100(64H}
4B02H Add Flags 00100000 10001001 10001001 10001100
4BO3H Add Result +97(61H) — 35(DDH) —35(DDH) — 24(DCH)
4B04H Sub Flags 10100011 00001010 10110011 00000010
4B0O5H: Sub Result —31(ETH) + 25(19H) —25(E7H) +20(1 4H)
FLAGS

Adding and Subtracting 16-Bit Numbers

The Z-80 allows two 16-bit operands to be added, as we
found in a previous chapter. One of the operands must be in
the HL, IX, or IY registers, analogous to the A register in
16-bit arithmetic; the second operand must be in one of the
other register pairs. When an add or subtract is performed
16 bits at a time, the flags are affected in various ways, de-
pending upon which of the 16-bit arithmetic instructions is
being used. When an add is done to the IX register, for ex-
ample, the zero and sign flags are not affected, but when an
“ADC” is done with the HL register, the sign and zero flags
are affected. When in doubt about flag action, consult the

116

individual flag action listed under the instruction in question
in the Editor/Assembler manual.

The advantage of the 16-bit adds, of course, is that much
larger numbers can be handled, at the expense of addressing
versatility. Since the HL, IX, and IY registers are generally
used as memory printer registers, the 16-bit adds and sub-
tracts using these registers can be used to advantage to cal-
culate memory addresses. As an example of this memory ad-
dress computation capability, let’s use the following program.
This program uses 16-bit adds and subtracts to calculate
memory addresses for movement of a dot across the video
screen.

Baidg ;
s B RE 4hes SSTRRY
MR NT B 1o HOOEHGZ G STRET POSITION
48 4 B [f. 64 i INCREMENT
4 EE R R R 15 SRUMEFR OF LINES
E MR Bl B B2 SDELAY COET
iR IEF BB LM LD (HL}. 8BFH AL W
8 BER LR ML OB sDELRY ENT-1
$8 B mos iy WE L0 SO0 IF HOT DO
8 o AT 72 M JDELRY COUNT
Wl R Be IR NZ LPe 60 IF ¥07 A
43 3B e LD {HL 3 S8 iRl O
5 19 S0 i H.IE JHEST RiH
dfiE 3D RCRR HL A (B INES1
7 MFE O BR IR W LRt ;CONTIRE
S 1 BRI R L LR ERE
i B R
#EE T0TH OPRRRS
LR 4R

The program starts by loading HL with the first position
of the dot, the screen memory plus one-half line. DE is loaded
with 64, representing the number that must be added to move

117

the dot to the middle of the next line. A is loaded with 15, the
number of lines that the dot will move. BC is loaded with a
delay count of 0, representing a delay of 655636 counts when
BC is decremented in the loop. The action of the loop from
LOOP1 through 4A17H is this: The dot is initially set on by
outputting the graphic character 0OBFH. This character sets
every one of the six pixels in the character position. Now the
program delays about 14 second by means of a 4 instruction
delay loop. BC has zero at the end of the loop. After the delay
the pixels are turned off by outputting the graphics character
80H. Then the next address is computed by adding the 64 in
DE to HL, the address pointer. The contents of A are decre-
mented by one. If 15 lines have not been reached, the program
loops back to LOOPI1.

There are several interesting things in the above program.
Because the assembly-language code is extremely fast, we
had to delay each time a dot (actually six dots) was moved
to a new position. The delay count in BC was initialized to 0,
and decremented by decrementing B back to 0 again (256
loops) as an inner loop and by decrementing C from 0 back
to 0 as an outer loop. The reader should realize that at 4A13H,
the count in BC is 0, in preparation for the next delay loop.
Another point is that there is no way to decrement BC and
test for zero, as the flags are not affected by a DEC BC. Hence
two decrements are used, each one checking one of the two
registers for zero—a DEC B or DEC C does set the flags after
the decrement.

To illustrate the 16-bit subtract, we’ll rewrite the program
above to make a single pixel move from the bottom of the
screen to the top of the screen. This program will be identical
to the one above except that the starting position will be
3C00H+992, the 32nd character position in line 16, the incre-
ment in DE will be —64, and the graphics codes will specify
all on or all off for a single pixel (we’ll be looking at the
graphics codes in more detail in a later chapter).

A | PR ITTR

s T T iy el TR e ST N
gy cRE TR 7O BT R DT (EREKHARDS)

aoian .
AN

3 0 1m

S

S i 3

- 5 i =
sph IE Eis ik 845

118

[el BRI SR e
RET QA PR

pREX FLLLI WL

G
i

RN]

;

I
[
1
h

i L]

]
o :
sy ;
{ O]

e e
Y
§ R

.

IR O
RS- g

s

ik
e

iy
i
&

!
e,
1]

p

ol
™
; al
1 .:-c 's-::!
X o
)
i

3
[}

]
e
i

3
.
fomd
i
it

The subtract was performed by the SBC instruction which
subtracted the increment value of 64 from the current video
memory position in HL. Note that before the subtract, an or
A was done. The only reason for performing the orR A was to
reset the carry flag. The two questions that may immediately
come to the readers mind are why use an OR A to reset the
carry, and why reset the carry? The oR A is used because it
is a short (one byte) and fast instruction. We could have
reset the carry flag by an SCF followed by a CCF (set carry,
complement carry), but the oR A does not affect the contents
of the A register (try oRing any value with itself) and it is
efficient.

Why do we want to reset the carry before the SBC? Well
the SBC is actually a Subtract with Carry type instruction
that not only subtracts a second operand from the contents of
HL, but also subtracts the current state of the carry. That
means that one more count might be subtracted from HL if
the carry is set before the subtract. Since the carry is set and
reset with many instructions, we have no way of knowing
whether the carry will be set or reset before the SBC, and
therefore must clear the carry to avoid subtracting a possible
one from the result.

119

A Precision Instrument

The reason that the carry enters into some adds and sub-
tracts on the TR3-80 is that the Z-80, like other micropro-
cessors, is able to handle multiple-precision adds and sub-
tracts. Remember that the maximum value that can be held in
8 bits is 255 and that the maximum value that can be held in
16 bits is 65535. What happens if we want more precision and
want to hold larger numbers for adds and subtracts? How
could we add 32-bit (four byte) numbers, for example, allow-
ing us to work with values up to 4 billion or so (232)?

Larger numbers are held in multiple-precision representa-
tion, which is simply a method for representing the numbers
in a8 many bytes as required. If we know, for example, that
a billion or so is the largest number we’ll be working with,
we can conveniently work with four-byte numbers in the Z-80.
Suppose that we wanted to add two four-byte operands of
+344,050 and +500,000, as shown in Figure 7-6. The numbers

SIGN BIT CARRIES

111 111111111
00000000000001010011111111110010 + 344,050
00000000000001111010000100100000 + 500,000
0000000000001100 1110000100010010 -+ 844,050

’)

FOUR-BYTE OPERAND = 32 BITS

Fig. 7-6. Multiple-precision adds by manual methods.

are signed 32-bit operands, with the most significant bit rep-
resenting the sign of plus (0) or minus (1) just as in the
case of 8- or 16-bit operands. To add them with pencil and
paper, we simply add the ones and zeros, and any carry from
the lower bit positions as shown in the figure.

To add the numbers in the Z-80, we have a bit of a problem
(32 bits of a problem, to be precise). We can add up to 16-bit
operands, but how can we add 32 bits at a time? The answer
is that the adds must be either four 8-bit adds or two 16-bit
adds. Each of the adds must add in any carry from the last
byte or two bytes, just as we do on pencil and paper opera-
tions. The following program adds two four-byte operands,
representing the above values. The operands are in memory
locations 4BO0H-4B03H and 4B10H-4B13H and the result is
stored in location 4B00H-4B03H. Key in the program using

120

T-BUG (or assemble and load), execute at 4A00H after break-
pointing, and then check the result at 4B00H-4B03H. It should
correspond with the result shown in Figure 7-7.

S FOR TR RN

o i

Xt

5
="

4
X e ;DESTINATION

3550 RRHIDID S OTORT
SHE HERIR R ST

b

]

1 1Y, 4BiaH ;SERCE
Li A {5 HFT BYIE B

i

RUWD A SRRCE

(R SSTORE RESULT

VG SADD SOIRCE
WA SSTORE REGLT

e {1Y2) A0 SHETE

in

LO0P HERE FIR BP
BESTINATION RER

LCRINRC AnEn
PEECE RRER

121

SIGN BIT
4BO0H 4BOLH 4B02H 4B03H
00000000 00000101 go1t1in 11110010 | + 344,050

\ 4B10H 4B11H 4B12H 4B13H

00000000 00000111 10100001 00100000 | + 500,000

4BOOH 4BO1H 4802H ¢ 4B03H
00000000 | | 00001100 | | 11100001 | | 00010010 | + 844,050
BYTE 3 BYTE 2 BYTE 1 BYTE 0

Fig. 7-7. Multiple-precision adds by machine.

The program uses indexed addressing with both IX and IY.
The IX register points to the destination operand in 4B00H
through 4B03H. Note that the most significant byte is at
4B00H and the last significant byte is at 4B03H. The 1Y reg-
ister points to the source operand at 4B10H. Although the four
adds could have been done in a loop, the in-line code in the
program clearly shows the steps that must be taken for the
adds. The first add adds (IX+4+3) and (IY+3), the least sig-
nificant byte, and stores the result in 4B03H. After the ADD,
the carry flag is set or reset dependent upon the carry from
bit position 7, whick is not a sign bit, but just another bit posi-
tion. The next add (ADC) adds not only the two bytes from
(IX+2) and (IY+2), but the carry from the previous add,
which is undisturbed, as loads do not affect the carry or other
flags. The next add adds in the carry from the second byte, and
the last add adds in the carry from the third byte. All adds,
except the first, added in a possible carry from the lower or-
der byte. In the first add there was no preceding carry to be
added in.

The program shows the general approach to add any num-
ber of bytes. There is no limit on the maximum number of
bytes that could be used, but working with 32-byte operands
might get somewhat tedious after a while. Floating-point
format allows a more compact representation of large num-
bers, at the sacrifice of the number of significant digits, and
is widely used in cases where very large, very small, or mixed
numbers must be used.

Subtraction of multiple-precision numbers is handled in
similar fashion. The first subtract would be an SUB without
the carry, but the remaining three would be SBCs, which use
the borrow from the preceding lower-order byte. A portion of
this code is shown below.

122

LD A(IX+2) ;SECOND BYTE
SBC A,(IY+2) ;SUBTRACT SOURCE
tD (IX+2),A ;STORE RESULT

There is no reason that 16-bit adds and subtracts couldn’t
be used, as long as the total number of bytes was a multiple
of two. In the general case, 8-bit adds and subtracts are
somewhat easier to work with, as they allow for an odd
number of bytes and permit a direct add or subtract of the
source operand (through HL, IX, or IY). The two programs
shown below are general-purpose subroutines for multiple-
precision adds and subtracts. They will handle any number
of bytes required. Upon entry, IX and IY point to the first
(most significant) bytes of the destination and source, re-
spectively. The B register contains the number of bytes in
the operands (both operands must have the same number of
bytes). The subroutines add or subtract the source operand
from the destination operand and put the result in the des-
tination operand memory locations. Upon return from the
subroutine IX and IY are unchanged and the contents of B
are zero.

& Fat Bl W b W T Y
3G SIRRNTDE 15 08 E

Pif LAE FF

S ITI ST R P YLImPEOLD
DiITE S RrSTYRITIOE

STIC iF VL3P iLH

123

124

SEiE

SURRGIFINE TO B0 MATIPLE-PRECISIOH
ENTRY: (IX)=POINTS TO BS BYTE OF DES

SETRACTS
STINATHA

CIYIFOINTS 7O B OTE OF SRCE

(Bi=# I E‘r"“:_‘: IN TPERANDS

I i LT 5 1
FREJLE LTRRT

LET RECTTEET IO
ER i Y g B ER L

- CHETESST S5 3 g
ihumixr Sidmie

Decimal Arithmetic

Up to this point we've been doing arithmetic operations
with absolute and two’s complement numbers. As we men-
tioned earlier in the chapter, there is a third type of arith-
metic that is possible in the Z-80 and many other micropro-
cessors, binary-coded-decimal (bed) arithmetic. The bed rep-
resentation is a more direct translation from decimal than
binary. To convert a decimal number into bed, change each
decimal digit into its 4-bit binary equivalent. Some exam-

/\
BCD NUMBER IN 16 BITS
0011|0010{1000|0110 4 BCD DIGITS)
15 0
9991

AN

BCD NUMBER IN 16 BITS
1001|1001 | 1001 | 0001 (4 BCD DIGITS)

15 0
1234

NN

BCD NUMBER IN 16 BITS
000100100021 | 0100 (4 BCD DIGITS)

15 0

Fig. 7-8. The bed representation.

125

ples of this are shown in Figure 7-8. After the conversion
we’re left with a binarylike number whose length equals four
times the number of decimal digits, or to put it another way,
two bed digits in each 8-bit segment as shown in the figure.
The bed representation is used for a variety of purposes.
Much instrumentation uses bed, especially instrumentation
that displays digits in digital readout form, such as digital
voltmeters and digital frequency counters. We could, of course,
convert from bed to binary, perform arithmetic operations
in binary, and reconvert to bed, but it is convenient to be
able to directly add or subtract bed values in the Z-80.
Adding or subtracting bed is not the same as adding or sub-
tracting binary numbers. Since the binary groups of 1010
through 1111 are not permitted in bed (there is no bed equi-
valent), operations in binary produce erroneous results, as

BCD ADD BINARY ADD

1234 | 0001001000110100 | 1234 IN BCD

+6777 | 0110011101110111 | 6777 N BCD

8011 | 0111100110101011 { RESULT

[+% [+ [2Y

7 9 A B RESULT IN BCD

NOT
EQUAL!

Fig. 7-9. A bed add with erroneous result.

shown in Figure 7-9, where the bed add of 1234 and 6777
produces 8011H and the binary add of the two numbers pro-
duces 7T9ABH. It turns out that to convert a binary result of
the add of two bed operands into bed, it is only necessary to

1234 | 0001001000110100 | 1234 IN BCD

+ 6771 10110011101110111 l 6777 IN BCD

8011 0111100110101011 INTERMEDIATE
4 RESULT

0000012001100110 CORRECTIONS Fig. 7-10. Bed corrections.
1000000000010001 | FINAL RESULT

a a [
8 0 1 1 RESULT IN BCD

—EQUN.!—T

126

look at each of the groups of four bits to see whether or not
a correction is required. If a 4-bit group in the result contains
1010, 1011, 1100, 1101, 1110, or 1111, or if a carry from the
group resulted, then 0110 is added to the group to adjust the
binary result to a bed result. As every byte holds two bed
digits, two such checks are necessary for each binary byte.
The process is shown in Figure 7-10, where corrections are
made to the operands shown in Figure 7-9.

Bed subtractions require the same adjustment, but in this
case six is subtracted if necessary from a bed digit in the
result. It’s relatively easy to implement a program to look at
each bed digit and test to see if an add or subtract adjustment
is necessary, but the Z-80 does it all in one instruction, the
DAA, or Decimal Adjust Accumulator instruction. When bed
operands are being added or subtracted, the DAA is executed
directly after the add or subtract to automatically (aren’t
computers wonderful) adjust the binary result to a bed result.
To see how this works, we’ll write a program to count in bed
for 00 to 99 and compare the results with values stored from
00H through 63H in binary. The following program stores
the bed values from 00 through 99 into a buffer starting at
4BOOH and stores a corresponding count from 0 through 99
in binary into a second buffer at 4CO0H. Enter the program
by assembling and loading or by using T-BUG to enter in
machine language, breakpoint at END, and then compare the
results in the two buffers. By “dumping” the bed buffer us-
ing the M command in T-BUG (with carriage return), you
will see a sequence of bed numbers from 00, 01, 02, 03, 04, 05,
06, 07, 08, 09, 10, 11, up to 99.

127

Compare Operations

As we described in an earlier chapter, compares are essen-
tially subtracts, where the result of the subtraction is only
used to set the cpu flags and is not put into the destination
register. Unlike subtracts, compares only operate with 8-bit
operands, and one of the operands must be in the A register.
Compares and subtracts may be used to test two operands for
the same states as BASIC comparisons—tests for an operand
greater than another, greater or equal, equal, not equal, less
than or equal, or less than. Some of these fests are directly
handled by the zero and sign flags, while others must use the
carry flag.

The test for equality or non-equality is simple and uses the
zero flag. In the following code a branch is made to NOTEQ
if the contents of the A register are not equal to the contents
of the B register and to EQUAL if the two registers are the
same.

TEST CP B ;TEST BY A—B
JP ZEQUAL ;GO IF A=B
JP NOTEQ ;MUST BE A NE B HERE
When the two numbers to be compared are absolute (un-
signed) numbers, the carry flag will be set after the compare
if the contents of A are less than the second operand. If A
holds 128 and the C register holds 130, for example, the
branch to LESSTH will be taken in the code below.

128

TEST CP C ;TEST A—C

JP CLESSTH ;GO IF A LESS THAN C

JF ZEQUAL ;GO IF A=C

GTHAN ... ;A GREATER THAN C HERE
When the two numbers to be compared are signed numbers,

then the carry flag logic gets rather confusing. For this reason
we present a general-purpose subroutine that compares two
signed numbers and jumps to one of three locations based on
a comparison of the operands. By making the branch loca-
tions identical, any combination of equality conditions may
be constructed. If a branch is to be made on greater or equal,
for example, the greater than branch will be to GTEQU and
the equal branch will also be to GTEQU, with the less than
branch to some other location.

R

129

The block compare is used in string searches and will be
discussed in Chapter 9 when we look at strings and tables.

130

CHAPTER 8

Logical Operations,
Bit Operations,
and Shifts

The operations in this chapter differ from the arithmetic
operations in the last chapter in that the operations here are
all concerned with subdivisions of bytes, either fields of a
byte or down to the individual bit level. The logical instruc-
tions are used to retrieve or store information in segments
less than a byte in length, the bit instructions manipulate in-
dividual bits in memory or register bytes, and the shifts align
fields or manipulate individual bits.

AND, ORs, and Exclusive ORs

The AND instruction is used primarily to mask out un-
wanted data in bytes. Suppose, for example, that in each byte
of data in a table in memory we had an ASCII character rep-
resenting the digits of 0 through 9. Now it turns out that the
ASCII representation of those digits follows a rather logical
order as the reader can see from Table 8-1. The ASCII rep-
resentation of 0 is 30H, 1 is 31H, and so on up to 39H for 9.
To convert one ASCII digit of 30H through 39H into a binary
value equivalent to the ASCII character, it is only necessary
to get rid of the bias of 30H. This could be done by subtraction,
but an equivalent alternative would be to mask out the “3”
portion of the ASCII by an AND.

iD AASCII ;GET ASCIl VALUE
AND OFH ;GET LAST FOUR BITS

131

When the ASCII values are masked by the immediate value
OFH (00001111), only the last four bits fall through, and
since the least significant four bits are 0 through 9 in this
case, the result is the equivalent binary value.

Table 8-1. ASCII Representation of Decimal
and Hexadecimal

ASCH
Digit Code

f 30H
31H
32H
33H
34H
35H
36H
37H
38H
39H
4H
42H
43H
44H
45H
46H

Decimal <

Hexadecimal <

TMODAPI>OVCENOGMAEWLDN=O

Ve

Conversely, a binary value of 0 through 9 could be converted
into an equivalent ASCII value for output by setting the “3”
bits. Although an add could be used, the ASCII values could
also be generated by an OR instruction.

LD A,(BINARY) ;GET BINARY VALUE
OR 30H ;CONVERT TO ASCIl

In both of the preceding cases we have assumed that only
valid ASCII characters of 0 through 9 are involved, and that
the binary values will be 0 through 9. As a simple illustration
of this conversion, let’s write out the screen line number 0
through 9, for the first ten lines of the screen. The following
program does this by counting for 0 through 9 and oring in
the “3” value to make an ASCII digit out of the count.

132

iR NG L TUTTIE T i
if 58 SIRITIRIZE COET

T Ty E LT POTT
LE i SRS HELEH
HE 5 b3t gt | L1 TEN TRNTTATMAILIT
H H ol FLifE INLBLACN
r. = ST
Li B sBET DHRECHT DBET
o T "E‘ T d
LR ST ;LA n‘E.KJ HEiR - N
L chy Y ;5THRE ON SORERN

s 1 ~-re —;m TR n STP
L H. B JEiEF LI PNTR
TR . Diale SO NST
iR & T [SEHE]
BCE, TEOT D =
LF ieST FiE B

SLER MR AT O

The exclusive OR does not find as much use as the AND and
OR instructions. Recall that the exclusive OR generates a one
bit in the result if there is a single one bit but not two one
bits in the bit positions of the two operands. The most common
use of the exclusive OR in the TRS-80 is to zero the accumulator
by the efficient instruction.

XOR A ;;ZERO A REGISTER AND CARRY

Another use of the exclusive OR is to foggle a counter from
0 to 1 and back again as in

LD Al iSET TOGGLE TO ONE
LOOP XOR 1 ;TOGGLE

JP LIERQO ;GO IF ZERO

JP ONE JONE ACTION

One of the more common operations in the Z-80 and other
computers is to set or reset a bit in a memory byte or register
byte. To set a bit in memory in many computers, the following
three instructions must be executed

LD A, (HL) ;LOAD THE MEMORY BYTE
OR A4 ;SET BIT 2
LD (HL),A ;STORE BYTE WITH BIT SET

Similarly, resetting any of the eight bits of a memory byte
calls for

133

LD A(HL) ;LOAD THE MEMORY BYTE
AND A OFBH ;RESET BIT 2
ID (HL,A ;STORE BYTE WITH BIT RESET
Lastly, testing a bit of a memory location requires a load
and test, usually an AND

LD A(HL) AOCAD THE MEMORY BYTE
AND A4 ;TEST BIT 2

JP ZIERO GO IFBIT2=0

JP ONE BIT 2=1

Bit Instructions

In the Z-80 only one instruction is required to set, reset, or
test any one bit of a memory or epu register bit. The instruc-
tion SET 2,(HL) takes the place of the three instructions for
setting a bit, RES 2,(HL) causes a reset of bit 2, and BIT
2,(HL) sets the zero flag to the condition of the bit. Since
these sets, resets, and tests are continually being done in as-
sembly language programming, the bit instructions are quite
powerful.

Shiftless Computers

It is possible to perform the actions of aligning data, divid-
ing and multiplying by powers of two, and bit testing without
shift instructions, but the Z-80 shifts are much more efficient
than other shiftless instruction sets, and make these common
operations much easier to perform.

Often shifts are used to align data, that is, to move fields
within bytes to a desired location. The Z-80 shift instructions
for data alignment are the Rotate instructions. Rotates are
either B8-bit rotates or 9-bit rotates. The 8-bit rotates move
the 8 bits within a register or memory location out one end
and in the other, as shown in Figure 8-1. The 9-bit rotates
rotate the carry along with the 8 register or memory data bits.
Both types of rotates have their uses.

Rotates

As an example of use of rotate, let’s write a routine that will
output the contents of a block of memory locations in binary.
Each memory location has eight bits, of course, and we must
convert each bit to an ASCII one or zero for display. The
following code outputs locations 0 through 0FH to the screen
in binary ASCII.

134

BR180 ;ROUTINE 70 [ABP IN BINARY

Laki

488 #8178 IRG $HB
i DOMMRC 838 STRT LD IS WA GBIDMEOF LINE B
i FRZIER4E BB48 LR I¥. sp5] PSTART [F HAF LD
4 11888 aBise Lk LS Hi ??:E THERFHENT
$¥0 A1 ARicH BE E.i5 ;LINE AT
i 19 BBITR P! EXY s SHITCH BEGISTERS
4HAF RS saigh L E:d :BIT T

A 3 iASCII B

{1} iRIGRTE LEFT

W RS HEHE L

g i 4
niiEr HiE 1
ST

This is our most complicated program thus far, and it bears
some detailed study. The IX register is used to point to the
current screen line, starting at the middle of the first line. The
1Y register is used to point to the location to be dumped, in
this case starting at 4B00. DE holds the line increment to be
added to IX to point to the next display line. Since we're going
to be writing out 8 ASCII bytes on each line, the increment on

135

] 0
RIGHT . R
ROTATE ~ REGISTER OR MEMORY
7 0
lﬁEFJqTE - REGISTER OR MEMORY
7 0 CARRY
RIGHT ROTATE R . .
THROUGH CARRY REGISTER OR MEMORY -
CARRY 7 0
EROUGH CARRY 1 RecISTER OR WENORY

Fig. 8-1. Rotate operation.

this is (64-8) or 56. B is initialized with the number of loca-
tions to be dumped or 16.

The main loop in the code starts at LOOP1. The first in-
struction swaps the inactive and active set of cpu registers B
through L. This is done to enable us to use more cpu registers
since just about every one is in use. Now we can use B of the
second set to hold a bit count for the inner loop of 4A10
through 4A1F that looks at the 8 bits and outputs them in
ASCII to the screen. The inner loop rotates the location
pointed to by IY. As each rotate is done, the leftmost bit is
rotated both to the carry and around to the right-hand side
of the memory location. The carry is tested to store either
a 30H, for an ASCII zero, or 31H, for an ASCII one. Eight
rotates are done, and at the end the memory location in the
4B00H area has been rotated completely around.

For each store of an ASCII one or zero, IX is incremented
to point to the next character position on the line. When the
count in B is decremented down to zero, an EXX switches
back the cpu registers, restoring the original count in B for
number of lines. IY is incremented to point to the next memory
location in the 4BOOH area, and IX is incremented by 56 to
point to the next line for display. If 16 locations have not been
dumped, the next location is stored as eight ASCII characters.

A program that has several nested loops such as this can be
confusing to a programmer seeing it for the first time. It can
also be confusing to the programmer who wrote it when he
picks it up several months later! One convenient way to get
a clear picture of what is going on in a program such as this
is to “play computer.” On a sheet of paper, make columns rep-

136

resenting the registers that are in use in the program. Then
step through the program one instruction at a time, filling
in the proper values in the registers. It isn't necessary to loop
all the way through some of the loops (65536 loops makes for
a lot of writing), but it does make many programs very clear.
See Figure 8-2.

MULTIPLY BY TEN

A B c HL
1 5 = 4Al4
2 ?
SCRATCH PAD
4 NOTATIONS
8 REFLECT PROGRAM
FOR FIRST MULTIPLY
10
= 4Al5
3
6 6 PARTIAL
12 SECOND
MULTIPLY
24
30
M4 X 10
5 2 30
6 10
7 15
§ 30

Fig. 8-2. Playing computer.

Some Shifting Is Very Logical

Logical shifts differ from rotates in that data shifted off
the end of the register or memory location is lost. Zeros are
used to shift into the byte from the other end, as shown in
Figure 8-3. Logical shifts are used to align data as in the
rotate case, and to divide or multiply by two. If an 8-bit value
is shifted left one bit, the effect is to multiply the original
value by two while a shift right of one bit position divides the
original value by two and discards the remainder.

137

7 0 CARRY

RIGHT LOGICAL .

SHIFT 0—>{ REGISTER OR MEMORY - l

LOST
CARRY 7 0
LEFT LOGICAL _
SHIFT l - REGISTER OR MEMORY f+— 0
LOST

SAMPLE RIGHT SAMPLE LEFT

LOGICAL SHIFT LOGICAL SHIFT
ORIGINAL
NUMBER 01010000 (805) 00001011 (l1;0)
1 SHIFT 00101000 (40,9) 00010110 (2230)
2 SHIFTS 00010100 (209) 00101100 (4459)
3 SHIFTS 00001010 (10;0) 01011000 {88;p)
4 SHIFTS 00000101 (5,0) 10110000 {— 80y
5 SHIFTS 00000010 {2y} 01100000 (96,
6 SHIFTS 00000001 (1yq) 11000000 (-~ 64;)
7 SHIFTS 00000000 (o) 10000000 (- 128;q)

Fig. 8-3. Logical shift operation.

All rotates, logical shifts, and arithmetic shifts in the Z-80
operate only one bit at a time, so that a shift of four bit posi-
tions requires four separate shifts. To show how shifts may
be used to multiply, consider the following code. Multiplica-
tion by ten is a common problem in many programs. For ex-
ample, keyboard values may be input in ASCII and represent
a string of decimal digits, such as 567.89, that must be
converted to binary values for arithmetic manipulations
within the program. MULTEN takes an 8-bit value from
memory, multiplies it by ten, and stores it back into the mem-
ory location.

138

e B B 48 R F¥ALUEH

ie 087 3% 4F A i YALLESR

0 B daoe B R YALUEHA

L st Lh tHLhR :BESTRRE

i 23 B0 W H +POINT 70 NERT WALUE
#e lEl B I} T 1] o SCONTIRE

@2 HME EME LR F LoP LOMP HERE IF DOME

#a B @Rl MR 1

MER B MR 3
T DEFR 18
HIE DB 15
MIE MEFE 38
% i B

2R TOTRL ERRPRS

After the value is loaded into the A register it is shifted
left by the SLA A to multiply the value by two. This value is
then saved in the C register. Now the A register is shifted
left two more times to multiply the original value by four and
eight. Now the value in the C register, which represents the
original value times two, is added to the value times eight to
give a result of the value times ten. Execute the program with
a breakpoint at 4A12 and then look at the table locations to
see the results. Note that the multiply was an unsigned (ab-
solute) multiply, and that in one case (30), the result was
too large for the 8-bit memory location. In this case only

the lower-order eight bits of the result are in the memory
location!

Arithmetic Shifts

The TRS-80 has one shift that is an arithmetic-type shift
(even though the mnemonic for the SLA is Shift Left Arith-
metic it is really a logical shift). The SRA (Shift Right Arith-
metic) always retains the sign of the operand to be shifted as
shown in Figure 8-4. The bit in bit 7 is shifted right to bit 6,

139

SIGN RETAINED AND EXTENDED
TY O ANCININVN 0

— LOST

REGISTER OR
MEMORY

SRA (SHIFT RIGHT ARITHMETIC)

Fig. 8-4. Arithmetic shift operation.

but also goes back into bit 7 as the sign. The process is called
sign extension as the sign is extended to the right. The SRA
may be used to divide a signed 8-bit operand by two. The op-
eration for a value of —37 is shown in Figure 8-5.

Software Multiply and Divide

What! No multiply and divide instructions in the Z-80!
That’s right, and no current 8-bit microprocessor has them
either. Before you pull out that weathered four-function cal-
culator, let’s see how multiply and divide can be implemented
in software.

There are a number of approaches in writing a multiply
routine for any computer. The easiest is repetitive addition.
Mulplying 63 by 15 is really only adding 63 to itself 14 times

MEMORY OR REGISTER
ORIGINAL

AFTER 1
SHIFT 1 1. 1.0 1 1 0 1 —1959

AFTER 2

AFTER 3
SHIFTS 1 1 11 1 0 1 1] =5

AFTER 4
SHIFTS 1 1111101 ~350

AFTER 5
SHIFTS 1 1 1 1 1 1 10 =219

AFTER 6
SHIFTS
AND N > 6
SHIFTS

11 1 1 1 1 1 1] -1y

Fig. 8-5. Arithmetic shift example.

140

(or adding 15 63 times), and that’s very easy to implement in
the Z-80. The following routine uses this approach to multiply
the 16-bit absolute value in DE by an 8-bit multiplier in B,
which is also unsigned or absolute. The product is in HL at
completion (use the R command to see the product).

LRy r - TTTT YOI SRD Tl aar TIL BT
SN CREFETITIVE ADDITIOE HATIRY

TIRLICRE

e md B

ISR MR TIOG I
LRI IEAFiFLECR

T I T
B Suidyi]
. § R

ERE OCTTNI TASRIN pIEDT
14, FiFE ILIEES MERT

CEENT OBHE TTON TR 1mm
TR FRATITLIEE TEED

As short and sweet as this routine is, it does have a serious
disadvantage. It is horrendously slow, compared to other ways
in which the multiply could be implemented. Use this approach
only when the multiplier is small. It is efficient when multi-
pliers of ten or less will be used.

The usual way of implementing a software multiply is to
use the same approach as the pencil and paper method for
decimal numbers. In this approach a shifted multiplicand
multiplied by the digit in the multiplier is added to other
partial products to get the final product as shown in Figure
8-6. Binary multiplication using this technique is fairly simple
as the value to be added can only be the multiplicand or zero,
depending upon the value of the multiplier bit. The following

141

PROBLEM: MULTIPLY 23,9 BY 175 IN BINARY.

0 ¢ 0 1 0 1 1 1 = 23(MULTIPLICAND)
0 ¢ 0 1 0 0 0 1 = 17(MULTIPLIER)
0 00 1 0 1 1 1
0 0o 00 0 O0 00
0 00 00 0 0 O
0 0 00 0 0 0O
0 00 10 1 1 1 \SHIFT
6 0 0 0 00 0O
6 00 06 0 0 0 O
00 0 0 0 0 00
o000 0 O0T11T1O0CO0O OO0 1 1 1 =391 (PRODUCT)

Fig. 8-6. Multiplication methods.

routine is one of the “standard” routines that might be help-
ful in the user’s programs. It multiplies an unsigned 16-bit
value in DE by an unsigned 8-bit value in the B register and
returns the product in HL. The B register contents is zero
upon return.

BRiE SBRNTINE TORATIALY 16 BY 8
BB ; ENTRY:(DERATIPLICAND. UNSIGHED

B (RRATIPLIER [BGIGED

B fRL MG

B8 EZIT: (HLISFRODCT

e {PEI=DESTRIVED

HicH (B8

&7
45 @i R 4fEH ; CHANGE (A RERSSDMELY
dE0 MEEE Mim RS D H..B ;ELEAR PARTIA PRODIET
$EIOEE BmELF SRR (SHIFT R WIER BIT
e 2 e JE N CONT ;60 IF WD CRRRY {1 BIT
s 13 BE A H.E JFDD MLTIFLICRD
#8008 N BT 2 ;b6 IF WIER
S B 48 E¥ % A SHETIPLICRND TOH
L L] #58 A HLH PSHIFT BLTIRLICRE

142

Py

Ui ERFLHC

Note that in the above routine the ADD HL,DE does not
affect the zero flag, allowing it to be used for a check on the
shifted result in B after the add.

Divide routines implemented in software are not nearly so
neat, Experienced programmers have been known to wail
and gnash their teeth while trying to implement an efficient
divide routine on certain computers. Successive subtraction
may be used, but it is as slow as a multiply routine using this
approach, and should be used only with operations resulting
in small quotients. The following code divides the contents of
the HL register, an unsigned 16-bit number by the contents
of DE, an unsigned 16-bit divisor. Both numbers must be less
than 32,768. The quotient is in B at the end, and any remainder

143

In the routine the divisor is repeatedly subtracted from the
dividend until the dividend goes negative. When this occurs,
the residue is changed to a true remainder by adding back the
divisor. Each time the subtraction can be successfully made
the contents of B are incremented by one to show the quotient.
This method exactly emulates what can be done with pencil
and paper.

A more general-purpose divide for an unsigned 16-bit div-
idend and unsigned 8-bit divisor is shown in the following
“standard” subroutine. Here the division is a restoring type
similar to a paper and pencil approach. Instead of asking it-
self “Does the divisor go into the next group of digits,” how-
ever, the computer in this case blindly goes ahead and at-
tempts the divide. If the divisor doesn’t go, then the previous
residue is restored by adding back the shifted dividend, sim-
ilar to what was done in the successive subtraction case.

+TRY SLETRALY

ST -1- 3 IT

. T”ﬂr’
SFESTHEE

The reglster setup before and after the divide is shown in
Figure 8-7. The divisor in D is repetitively subtracted from
the residue of the dividend in HL. The residue is shifted over
one bit position for every iteration just the way it is done by
the paper and pencil method. If the subtract for any iteration
is successful, a one bit is left in the quotient; if the subtract is
not successful a zero bit is put in the quotient. The quotient
is shifted left one bit for every iteration as less and less sig-
nificant subtracts are made. After 16 bits the IX register
holds the possible 16-bit quotient, the H register holds an 8-bit
remainder, D holds the original divisor, and E is zeroed. One
interesting point is that both the HL and IX registers are
effectively shifted left one bit position in a logical shift by
adding HL or IX to themselves. It may benefit the reader to
actually play computer on this routine and step through the
16 iterations of the divide while using actual numeric values.

145

BEFORE CALLING DIV 16

H _ L

DIVIDEND (UNSIGNED)

BEFORE DIVIDE OPERATION

DIVISOR {UNSIGNED)

H L A
y THESE REGISTERS
00 00 00 00, _ SHIFTED LEFT 16
v TIMES
DIVIDEND
D , E
+ SUBTRACT OF DE
00 00 00 0o FROM HL 16 TIMES
r——— e——
DIVISOR
X
L SHIFTED LEFT 16 TIMES
Q WITH QUOTIENT BIT
FOR EACH SUBTRACT
FORCED INTO BIT 0
AFTER DIVIDE
H _ L _ A
XX XX XK XX XX XX XX Xx| 8BIT REMAINDER IN H
—_—
REMAINDER
D _ E
00 00 00 00 UNCHANGED
e —
DNISOR
168IT QUOTIENT
QUOTIENT

Fig. 8-7. Divide register setup.

At the end you may vow never to do it again, but it will give
some insight into this type of operation.

The preceding multiply and

divide routines are wunsigned

multiplies and divides. It is possible to implement signed mul-
tiplies and divides, but they are not as neatly packaged as the
unsigned. The unsigned routines may be used to implement a
signed multiply or divide if the operands are changed to their
absolute values and the results changed again to their proper
signs. However, watch for overflow conditions when this ap-
proach is used, such as multiplying —128 by —128!

146

Input and Output Conversions

The techniques of shifting, multiplications, and divides that
we covered in this chapter are very useful in conversion be-
tween internal data representation and ASCII. Most programs
require some type of input of ASCII data from keyboard, us-
ually in decimal, and that string of decimal digits must be
converted into an eight, sixteen, or larger number of bits so
that the program can process the data. Sometimes, as in the
case of T-BUG, there must be a way of converting from a
hexadecimal ASCII input to eight or sixteen bits, and infre-
quently, a way of converting ASCII binary into internal data
values. Similarly, once the data has been processed, it must
be displayed in a more convenient form, which usually means
ASCII decimal, but which may also be hexadecimal (in the
T-BUG case) or binary.

We have already covered one conversion in an earlier pro-
gram in this chapter, the conversion of eight bits into equiva-
lent ASCII ones or zeros for display. The conversion of

EEGE ; SERETINE TO DEVERT FROM HEE 10 RSN
@0 ENTRY((Ry=R-EIT VALUE Th BE CONERTED
SR FEIT: (Ho-THD RRDTT VRLES, RIGH RB IR
EHAR {AI=DESTRINED
BBTR =BESTRIVED
45 SDHRNGE [N BERRSERLY

i

; DORVERT T ASCT

147

hexadecimal values to ASCII digits of 0 through 9 and A
through F is a similar problem. Let’s write a program to
convert any number in the A register into two hexadecimal
ASCII digits. We will also write a simple driver to use the
program and display some data.

Program HEXCYV is the general-purpose routine to perform
the conversion. The first four bits, representing the first hexa-
decimal digit are shifted 4 bit positions right in the A register.
They are now aligned in the A register, and the register holds
a value of from 0000 through 1111 (the upper four bits are
zero), representing hexadecimal 0 through F. The ASCII equi-
valents for 0 through F are shown in Table 8-1. Unfortu-
nately, there is a “gap” between the digits 0 through 9 and
the characters A through F. If there were no gap, 30H could
be added to the four bits to compute the ASCII value for the
character. Since there is a gap, however, there must be a
test for the hexadecimal letter digits, and this is done in the
compare. If the conversion resulted in a result greater than
39H, then the ASCII character must be a letter, and 7 is
added to obtain the letter value. For the second (least signifi-
cant) hexadecimal digit, the A register is restored, the upper
four bits are masked out (the lower four are already aligned)
and the same conversion is made. Upon completion, HL
holds the two ASCII characters representing the hexadecimal
digits.

A simple driver to test this routine could be constructed
from something similar to the following code.

148

LD B8 ;8 LINES
1D IX,3CO0H FIRST LINE
LD DE,xxxx LOCATIONS TO DISPLAY

LOOP LD A,(DE) ;GET LOCATION
CALL HEXCY ;CONVERT
LD (1X),H ;STORE 15T CHARACTER
LD (IX+1)L STORE 2ND CHARACTER
INC IX ;BUMP POINTER
INC IX
INC DE ;BUMP LOCATION POINTER
DIJNZ LOOP ;CONTINUE IF NOT 8

A driver in this case means a routine to test and exercise
the HEXCYV routine. This driver displays 8 locations on line 1
of the video display in a string of 16 hexadecimal digits. The
reader can undoubtedly see how different formats could be
constructed to display hexadecimal data in a more convenient
format by using HEXCV and other types of drivers.

Converting input data from ASCII to binary or hexadecimal
is about as easy as the output conversion. For binary, the
ASCII character representing a binary one or zero is con-
verted to a true binary one or zero by subtracting 30H. This
bit is then aligned and merged with other bits representing
the 8- or 16-bit input value. Hexadecimal ASCII characters
are adjusted by subtraction of 30H. If the result is greater
than 9, a second subtract of 7 is performed to convert the
letter digit to A through F in hexadecimal. The 4-bit result
is merged with a second result or three other results to pro-
duce an 8-bit or 16-bit value.

Conversion of decimal data is the most difficult of the three
types of cenversions. It is not simply a case of shifting bits
as is the case in binary and hexadecimal.

For a conversion of decimal input data, each ASCII char-
acter represents a decimal digit from 0 through 9 (30H
through 39H). The ASCII character is changed to four bits
of bed by subtracting 30H. Now this result must be multiplied
by the power of ten it represents. For example, if the ASCII
string was 123, the one would be converted to a bed 1 and
multiplied by 100, the 2 would be converted and multiplied
by 10, and the 3 would only be converted. In practice decimal
input conversion routines work with five digits as 65,535 can
be held in 16 bits, and use a combination of conversion of each
of the digits and multiplication of the result by ten for five
iterations to convert the data.

For output conversions, an 8- or 16-bit value is con-
verted by division by ten, the resuiting remainders adjusted
to an ASCII character by addition of 30H, and the result

149

stored in an intermediate buffer before output. Another ap-
proach is to use successive subtractions of the powers of ten,
starting with 10000 (for a 16-bit value) to convert the number
into decimal values which can then be converted by addition
of 30H to ASCII outputs.

150

CHAPTER 9

Strings and Tables

This chapter discusses two important aspects of assembly-
language programs, strings and tables. Strings are generally
strings of text characters, just as in BASIC programs. Many
assembly-language programs are concerned with separating
segments of the string into various fields representing sub-
divisions of the string data such as names, addresses, mne-
monics, and so forth. The Z-80 has a powerful block search
capability to help in handling strings. Tables are generally
one-dimensional arrays that represent such diverse things as
addresses for jumps, sine values, and withholding tax per-
centages. The Z-80 has many features that permit the as-
sembly-language programmer to work with tables, such as
indexing.

Assembler-Generated Strings

We have seen in an earlier chapter how the assembler auto-
matically generates a text string when the DEFM pseudo-op
is used. Generally, this pseudo-op is used to produce messages
which are output to the display or printer. The code below,
for example, outputs a message to the middle of the screen,
after the message has been converted from a symbolic source
line into ASCII by the assembler.

151

The program uses the block move LDIR after setting up
the register pairs for the parameters of the move. Note that
the length of the message has been generated by the assembler
by equating an assembly variable MESSL to the next assem-
bler location minus the start of the message. When the BC
register pair is loaded with MESSL, the assembler loads the
immediate field of the load instruction with the length of 11H.

Generalized String Output

In the case above, the message could be moved to the out-
put device in a block, as the output device was really a memory
area. If your system has a printer that operates through a
parallel or serial port on the TRS-80, the way that an output
string is sent to the printer is somewhat different. Let’s sup-
pose that subroutine OUTPUT actually communicates with
the printer (we’ll talk about that communication in the next
chapter). The subroutine below CALLs OUTPUT with the
next ASCII character to be transmitted to the printer. The
problem here is to determine when to stop. Imitially, the
MESSGE subroutine is called with HL holding the start of
the message area. However, we need not only the start of the
message area, but the end of the message area, the number of

152

bytes in the message, or some other means to signal the
MESSGE subroutine that the message has come to an end.
MESSGE here uses a terminator approach to detect the end
of the message. The next character is sent to the QUTPUT
subroutine as long as a null (all zeros) character is not de-
tected. If a null is detected, MESSGE knows that the message
area has come to an end and returns to the calling subroutine.
A length could have been specified to MESSGE, but the ter-
minator approach is used quite frequently.

[ty Mg S TR T =
= Boise b oo

et W FEOLFE

In many cases, the message to be output to the screen or
1/0 device must first be assembled during program execution.
In these cases, a message buffer area is allocated, and the com-
ponent parts of the message are moved into the area, and the
message is then printed. The approach is valuable for printing
variable data that cannot be defined beforehand, and for sav-
ing memory when a large number of messages must be printed.
In the code below, a message buffer for a mailing list has been
defined. The fields of the buffer are defined by symbolic names
and the execution time assembly can be done by transferring
ASCII data to the proper fields.

LMSTI THYY ! OTOT O
P iESiF JIET 1P R

TeiT § TRID
iMi LiRE

153

LETEDT N 1 OTED O -
JETHRT OF | FE! HERER

ki

Ay

4
¥}

[ty

W |j:g Wi P

[
DRy |

g

(L

Ay

[t e]

String Input

When strings are input from either the TRS-80 keyboard or
from another type of I/0 device, an input buffer is allocated
to hold the string of characters in much the same way as the
output message buffer is defined at assembly time. The prob-
lem with input of strings is not how to detect the end of the
string, but to limit the number of input characters so that
the space allocated for the input buffer is not exceeded. In the
code below, the subroutine INPUT is called to input one char-
acter from an external keyboard. INPUT handles all of the
communication between the TRS-80 in regard to status and
transmission of the character. The input text string in ASCII
1s stored into INMESS, starting at 4BOOH. The INPTMS rou-
tine is exited when either a carriage return (0DH) or 64
characters has been input. Terminating the routine at 64
characters guarantees that the message buffer will not over-
flow, possibly overwriting program code adjacent to it.

154

BRLGR ; MESSHGE InPUT ROUTIE

f1e ;

4488 1648 BBISR INPTHS LD W IRESS (STRRT OF INFUT BIFFER
45 Bode fida LD B 54 SHAKTHIH & [F CHARACTERS
o (DAdE @IS LODP [RL N $GET HE CHARRCTER
0 FER) micR r 80H :TEST FOR CARRIAGE RTN
hen (8 m7e BT 2 SRETURN IF (R

i7 fatsa L (H.3.A ;STORE IN BUFFER
S MY 49 M H ;BUMF POINTER
eh 18 Bons D LIP ;CONTINE IF ROT &4
Ban gAs INESS DEFS o
4638 s INAT BB $EA8H i TERAINAL IWRITT
LI B
SE8 TOTRL ERRORS
T 66
21
I¥TH 490

Once the string has been stored in the input buffer, of
course, it must be separated into fields representing different
types of data, as in the case of the mailing list line defined
earlier. Conversion from ASCII data into decimal, hexadecimal,
and other number representations must be performed. We've
covered some of the conversion techniques for numbers earlier,
but Iet us look at processing of the text strings that will be in
the input message and may be carried through the entire
processing of the program without being reformatted. The
block move instructions allow shuffling of the strings from
one place in memory to another, but the block search instruc-
tions perform an equally important task, comparison of one
text string to another.

Block Compares

The block compare instructions, CPD, CPI, CPIR, and
CPDR, search a block of memory (string) for a given char-

155

acter. If the character is found, the location of the character
is returned. Since the search can be done in one instruction
for the CPIR and CPDR, the search process is much faster
on the Z-80 than on equivalent microprocessors. Let us see
how the block compares operate. Suppose that we have just
input a line of mailing list information using the INPTMS
routine. The information input was in the format

JOHN J. PROGRAMMER/327568 OVERFLOW ST./COMPUTERTON/CA/92677

Here the fields of the mailing list information were separ-
ated by special characters called delimiters, which could have
been any character normally not used in the text. To use the
CPIR to search the input line for the next delimiter, the HL
register pair is set up with the start of the message area, the
BC register pair is set up with the number of bytes to be
searched, and the A register is loaded with the character for
which the search is to be done. The code below shows the
initialization and the CPIR.

LD HLINMESS ANPUT MESSAGE START

LD BC,64 ;64 CHARACTERS TO BE SCANNED
LD ALl ;SEARCH FOR SLASH
CPIR ;PERFORM SEARCH

At the end of the search, the Z flag will be set if the char-
acter has been found, or reset if the character was not found
in the entire block of memory. If the character was found,
the HL register points to the location of the character plus one,
and the HL register must, therefore, be decremented to point
to the actual character. An actual example of this search would
be the code below. Assemble and load using T-BUG, or key
in using T-BUG, execute the program, and then display the
registers using the R command. The Z flag should be set, and
the HL register pair should contain 4A11H, the location of
the slash plus one.

fafeddfn .
SEIGH

8 MR if A IHESS ;STRRT F SR A
Baids LD B 6 A FOEERRS T A
i LB B + SERCH GHRLTER
iy F LHF ;LIEF HERE O DO
4 51 g8 IESS EFR TIEVES PSR

156

s B
e TOTH. CRRORS
RLEE
INESE 4
SHT

The CPID works similarly to the CPIR, except that the
CPID searches the string from end to beginning. In this case
the HL register pair points to the character found minus one
byte for the location. The HL register pair must be set up
to the end of the string area in the CPID case.

LD HLINMESS + 63 ;INPUT MESSAGE END

LD BC,64 ;64 CHARACTERS TO BE SCANNED
LD ALl ;SEARCH FOR SLASH

CPDR ;SEARCH FOR SDRAWKCAB

JP Z,FOUND ;GO IF FOUND

:NOT FOUND HERE

The CPI and CPD instructions require the same setup as
the CPIR and CPID, respectively. They operate in similar
fashion to the block move instructions in that only one itera-
tion is done at a time. The instruction then pauses so that
additional operations can be performed. Suppose, for example,
we wished to search for two characters in the search. The
following code would do that by a CPI-type search. After each
iteration the Z flag would be set if the search character was
found, and the P/V flag would be set if the byte count in BC
was counted down to zero and the search was over. In this
case, if the Z flag is set the first character was found and a
check is made for the second character, as the HL regisfer
pair now points to a location one past the found character.
If the second character does not match, then the search is
continued until the end. Upon completion the HL register pair
should point to 4A1EH in this case.

157

R W R LM 60 IF FIRST FOUMD
0 EPRRR 79198 FooOPELOF 60 TF NOT LiRE
WF DO RIBLOPL P LOG LOOP HERE M FORBO
#IER MEME LB R ; SECOND CHR
WO B D ; COFPARE

5 LB BB FoOELER N ETH

W LUME EDELNP P LONZ SLOP HERE. IF FOOBD
BB R INESS DEPR BAOT HESE

sl THTAL ERRIRS

MEE 4R

T

LR 4

Searches for greater than one character may be done in this
manner by searching for the first character using the search
character in A for the CPI or CPD, and then searching the
remainder of the string one byte at a time if there is a match
on the first byte.

Table Searches

Tables are used extensively in all types of assembly-lan-
guage programs, One of the simplest table types is a table of
unordered or random data. The table is searched for a specific
piece of data and the position in the table, or its indez, is then
used to access other information or simply as data itself.

Suppose, for example, that we have a table consisting of
one-letter commands for T-BUG as shown in Figure 9-1. (In
fact, this table is a kind of text string, as it is made up of
ASCII characters.) We would like to see if we can find a given
one letter command that has been input from the TRS-80 key-
board, match it up with a table entry, find the index, and then
use that index to get the address of the routine to process
that command in T-BUG.

158

The first thing that we must do is a table search, which in

this case is exactly the same as the string search we performed
under the string operations.

START LD HL TABLE ;TABLE START

LD BC.? :# OF BYTES
LD A(INPUT) ;GET INPUT CHARACTER
CPIR ;SEARCH

In the above code A was loaded with the input character from
the keyboard, a one-letter ASCII command. At the end of the
LDIR search Z will be set if the character was found and HL
will then point to the character in the table plus one location.
If the table is set up as in Figure 9-1, then HL will contain

TABLE L 0

4A10H ‘B’ BREAKPOINT
4A11 I3 RESTORE
412 3 CONTINUE
413 L JUMP
4A14 T LOAD CASSETTE
4AL5 N MEMORY DISPLAY
4A16 P WRITE CASSETTE
417 R’ DISPLAY REGISTERS
aA18 X EXIT

Fig. 9-1. Sample table of T-BUG commands.

location 4A11H through 4A19H if the character was found
and location 4A19H (with zero reset) if the character was not
found. We can find the index of the command in the table by
subtracting the value of table from the value in HL if the
character was found.

JP NZINEND ;GO IF CHARACTER NOT FOUND
LD BCLTABLE ;START OF TABLE
OR A ;CLEAR CARRY FOR SUBTRACT
SBC HL,BC ;FIND INDEX
At the end of the code above, L, will contain the index of 1
through 9. If “INPUT” was a G, for example, L. will contain
a 3, indicating that G was the third entry in the table, count-
ing from the zeroth entry. Now that we have the index, what
do we do with it? Well, we can now use that index to index
into another table of jumps corresponding to the routines that
process each of the T-BUG commands. The relationships of
the two tables are shown in Figure 9-2.
In the case of the first command table, the entries of the
table were one byte long, each byte being an ASCII character
representing the command. In the address table, however, each

159

TABLE +0 B | INDEX O snpRT 40 IR
+1 F BRKPNT
+2 T IR
+3 T RESTRE
+4 1 R
+5 " CONTNU
+56 P IR
+7 R JUMP
+8 ¢y JR

LOAD
IR
MEMRY
IR
WRITEG
IR
REGSTR
+16 IR
w17 syesYE

Fig. 9-2. Indexing into tables.

entry is two bytes long, since a relative jump must be repre-
sented. We now need to change that index from the first table
into a displacement value that will pick up the right address
table entry, the displacement being the number of physical
bytes from the beginning of the address table. (The displace-
ment for the first table was one times the index, but the dis-
placement in the second table is two times the index.) The
following code accomplishes this after first decrementing the
index to adjust for the way the CPIR leaves the HL register.

DEC HL ;FIND TRUE INDEX

SLA L ;/INDEX TIMES TWO

EX DE,HL SSWAP DE AND HL

LD HLADDRT ;JUMP TABLE LOCATION

ADD HL,DE ;HL NOW HAS LOCATION OF JUMP
Jp (HL) JUMP OUT TO JUMP

In the short tables here this code is not the most efficient
(it took about 14 instructions to get to the routine), but the
reader can see that this is a good approach for very long
tables that are used in this fashion.

To recap the table structure, once again, a general table
(see Figure 9-3) has a number of entries, each a certain entry
length, and each having a displacement from the start of the
table of entry length times # of entry.

160

TABLE ENTRY 0
ENTRY 1
ENTRY 2
DISPLACEMENT = ENTRY LENGTH=M
JU JI—-
- ENTRY M
T T
ENTRY N
L < TYPICAL ENTRY
F 3 ENTRY LENGTH

TABLE PARAMETERS: |

1. NUMBER OF ENTRIES IN TABLE
2. ENTRY LENGTH
3. DISPLAGEMENT OF EACH ENTRY FROM BEGINNING =
ENTRY LENGTH * # OF ENTRY
4. LENGTH OF TABLE = # OF ENTRIES IN TABLE * ENTRY -LENGTH

Fig. 9-3. General table structure.

Another method of using tables is to include the data asso-
ciated with the search key in the entry itself, rather than in
a separate table. Figure 9-4 shows this type of table. Each
entry consists of a disc file name of 1 to 8 characters, a track
number, and a sector number. The track and sector number
always occupy the ninth and tenth bytes of each entry.

This table could be used to locate a specific file on disc by
first searching the entire table for the correct file name, and
then picking up the location of the file by the associated track
and sector number when the file is found.

Unordered Tables

Tables in which the key entries are in random fashion are
said to be unordered. When tables of this type are searched

161

DIRECT W
OA!
l'l
!Lr
IL!
g FENTRY # 0
ISI
lTl
TRACK = 25
SECTOR = §
rFl
IE!
IMI
lA.l
rll
L ENTRY # 1
ISI
le
TRACK = 26
SECTOR = 0

Fig. 9-4. Sample table of disc files.

for a specific entry, the minimum search occurs when the first
entry is the desired entry and the maximum search occurs
when the last entry is the one sought. The average number of
entries that must be searched in this type of table is one-half
the number of entries in the table. This type of table is fine
for a small number of entries, but when the table must be
continually searched and it holds a large number of entries,
then a table with ordered entries could be used to a greater
advantage.

The following program is another “standard” subroutine
that the reader might find useful. It searches an unordered
table from beginning to end for an 8-bit search key. Before
the subroutine is called, A must be loaded with the search key,
HL must be loaded with the start of the table, DE must be
loaded with the length of each entry, and C must be loaded
with the number of entries. If the entry is found, HL points
to the entry upon return and the Z flag is set. If the entry is
not found, the Z flag is not set upon return. The key in each
entry is assumed to be the first byte.

162

o Ton COTTnn

BE FIE TRAL SHRA

STl BETE ORI
LHE FSUNE NNRE T

EHL LAY LT

Ordered Tables

Tables may be ordered in many different ways. The order
may be ascending as in the sequence 1,3,5,6,7,10, . . . or de-
scending as in the sequence 101,99,97,5,1,0. The keys used
for ordering may be one byte or larger straight numeric
values, or ASCII text strings. Tables that are ordered invari-
ably require that new data must be merged into the existing
order, existing entries deleted or modified, or that the entries

163

should be resorted. There have been literally thousands of
books and articles written about the problems and approaches
of sorting (ordering data), searching (finding data), and
merging (merging in new data), and we may not cover all
of it in this chapter. We will present one of the approaches to
ordering data in a list of items, the bubble sort. Becoming
familiar with the 16,387 other methods will be left up to the
reader as an exercise.

The bubble sort orders data by comparing each entry in a
list with the next entry of the list. If the next entry is a lower
value, then the two entries are swapped. The next entry is
then compared, and so on, until the end of the list is reached.
If there has been at least one set of items swapped during the
search of the list, then another pass is made, starting from the
beginning. Passes continue until there have been no swaps
made during the last pass, signifying that the list has been
ordered. The code for the sort takes advantage of the indexing
capability to swap the items, and is shown below.

SRR CRERT SRT

o
G
i

=
[)

3] L= TR OF
B LEEE HEl iF i

Rt

JHEET

) Ty] LR 1T
R JiHEE HEE

St FIPT g7 TTRET I
£ M R N ot
Hid PETE 50 bigiis dEAL

164

Assemble and load the program using T-BUG, or key in the
program using T-BUG. TABLE can be filled with any number
of data items that the reader desires, in any order. When a
breakpoint at LOOP2 is reached, the table will have been
reordered so that it is in ascending order, and the bubbles
will have done an effective job in cleaning some of that RAM
memory area. The reader may wish to breakpoint at the JP
NZ,LLOOP before LOOP2 to investigate the intermediate sort-
ing after each pass. Use an “F” command and a “G” after
looking at the table data, if breakpointing.

For another display of the bubble sort, use the program
below. First use the M command in T-BUG to fill screen mem-
ory locations 3C20, 3C60, 3CA0, 3CE0, 3D20, 3D60 .. . 3FE0
with alphabetic or other characters in random order. A sug-
gested sequence is shown in Table 9-1. You will see the char-
acters appear in the middle of the screen as you fill them in.
Now run the program, and you will see a literal graphic dis-
play of the bubble sort implementation.

165

;Sr- r TS

“2

21 P MR ISTORE HRREN
BIT A VTEST FIR BATOG
P OLLEFD 0 7R 1A
T T *@%*%;E A
mp DN POINT 10 BT N
DI LOPL DECREVENT LK O
a1 3
He

Table 9-1. Bubble Sort Sample Data

Display
Memory
Location Contents

3C20H 46H
3C60 45
3CAOQ 44
3CEO 43
3D20 42
3D60 41
3DAOD 39
3DEC 38
3E20 37
3E60 36
3EAQ 35
3EEQ 34
3F20 33
3F60 32
3FAQ 31
3FEQ 30

CHAPTER 10

1/O Operations

In this chapter we will rush in where many programmers
fear to tread and describe some simple 1/0 operations in the
TRS-80. 1/0 programming is intimately tied to the hardware
configuration of a system, and for that reason some people
are somewhat afraid of it, but we hope that the reader will
find at the end of the chapter that it is really not that difficult.
To lay the groundwork to discuss I/0 programming we will
review the memory and I/0 mapping of the TRS-80. Then we
will discuss the keyboard, display, cassette, and real-world
applications, such as controlling the lawn sprinklers or your
electric toothbrush.

Memory Versus I/0

In the first part of the book we talked somewhat about the
architecture of the TRS-80. We mentioned that the TRS-80
has 64K or 65,536 bytes of memory available to it and ex-
plained how the memory was broken down into ROM, dedi-
cated I/0 addresses, and RAM as shown in Figure 10-1. The
area that we will be considering in this chapter will be the
central area of the figure, the dedicated I/0Q addresses, to-
gether with 256 I/0 ports.

Let us expand that dedicated I/0 address area and see what
I/0 devices are involved. Figure 10-2 shows that most of the
area is devoted to display memory. Anytime that locations
3CO00H through 3FFFH are addressed we are communicating
with display memory, and that memory looks very similar to

167

IBASIC =
' LEVEL I BAS 4K

wooR [__Z. LEVELT-—— - —
BASIC ROM
iggg: DEDICATED /0 ADDRS 1
16K RAM L inmum rav = ax
8000H
16K RAM
COOOH
16K RAM
FFFFH

Fig. 10-1. Memory mapping with I/0 addresses.

other RAM. We have been using display memory for many of
the programs in previous chapters, and the reader should be
very familiar with display memory at this point.

The section of dedicated memory from 3800H through
3BFFH is devoted to keyboard addressing. In this area mem-
ory does not exist, as it does for the display. When a location
in this area is addressed, the keys of the TRS-80 keyboard
are actually addressed. Addressing location 3801H addresses

- T

END OF ROM (H)

//////

—

DiSK DRIVE SELECT LATCH = 37EQH

3800H KEYBOARD TS~_CASSETTE SELECT LATCH = 37E4H
ADDRESSING LINE PRINTER = 37E8H
DISK CONTROLLER = 37ECH ,

3BFFH OTHERS
3C00H

VIDEO

MEMORY
3FFFH
4000H

START OF RAM

- ~—

Fig. 10-2. Dedicated memory addresses.

168

the first row of keys, from “@” to “G”, addressing location
3802H addresses the second row of keys from “H” to “0O,” and
so forth, as shown in Figure 10-3. It turns out that there are
eight addresses that address the keyboard, and they are 3801H,
3802H, 3804H, 3808H, 3810H, 3820H, 3840H, and 3880H.
Every time a load is performed with one of these addresses
8 bits from the columns are loaded into the cpu register, as
shown in Figure 10-3. These bits represent keys being pressed
(1 bit) or not pressed (0 bit). We will discuss keyboard 1/0
a little later.

8 COLUMNS
MEMORY "

ADDRESS

w-@OOOOO0 O
ojoJoJoJeyo¥ofo
e oJoJoYorfoYoYoXo
swen — (1) (1) (@O L 7 Rows
rpojolofoYoJeYo¥e
eololoYeYeJeJofo
“w-Q0O00006
®

3880H —

INPUT BIT

EXAMPLE: iF “S" IS PRESSED INPUT BYTE WILL BE 08H FOR
ADDRESSING LOCATION 3804H. ALL QTHER INPUTS
WILL YIELD 0OH FOR INPUT BYTE.

Fig. 10-3. Keyboard addressing.

169

The remaining area of the dedicated memory addresses are
used for such things as the line printer, floppy disc controller,
and cassette select. Most of this area is reserved for future
use (3000H through 37DDH). Addressing locations in the
addresses above 37DDH enable communications with appro-
priate I/0 devices. Loading a register from “memory’ loca-
tion 37TE8H, for example, actually loads the register with eight
bits of stafus for the system line printer, if one is attached.
The status is a byte that is transmitted by the line printer
that indicates whether the line printer is ready for the next
character, whether it is on-line, and whether it has enough
paper. Storing a register to location 37E&H actually transmits
a byte of data, assumed to be an ASCII character, to the line
printer for printing, in exactly the way a character is sent to
a normal memory location to be stored.

For all intents and purposes, then, there is no practical
difference in addressing a memory location in RAM or display
memory and addressing an I/0 device, as long as the I/0 de-
vice is connected in such a manner as to look for that address
and respond in the same manner that a memory location
would respond.

Along with the memory addressing area devoted to system
I/0 devices, the TRS-80 has 256 other addresses that are de-
voted to I/0. These are the addresses used when an I/0 in-
struction is executed. They differ from a memory address in
that a signal goes out to all parts of the system that essentially
says “here is an I/0 address of 00000000 through 11111111.”
That signal is not present when a memory address is used
(instead another signal goes out that says ‘“here is a memory
address of 16 bits”).

IN A, (PORT ADDRESS)

11 o0 1 1 ¢ 1 1 BYTE 0 {DBH)

PORT ADDRESS BYTE 1 (0-255)

OUT (PORT ADDRESS).A

1 I o 1 ¢ 0 1 1 BYTE 0 (D3H)

PORT ADDRESS BYTE 1 (0-255)

Fig. 10-4. I /0 instruction format.

170

The general form of the 1/0 instruction is shown in Figure
10-4. There are several other formats, but we will be using
these two in the rest of this chapter. The second byte of the
instruction is the port address of 0 through 255. When an
OUT instruction is executed, 8 bits of data from the A register
are sent out to the system along with a signal that says “here
is an I/0 address” and the actual 8 bits of the port address
itself. In a large system there could be many devices attached
to the system bus (collection of data, address, and control sig-
nals), and they would ail be continually looking for the I/0
signal, their unique address (one of the 256), and the data
to be received (or sent). See Figure 10-5.

In most configurations of the TRS-80, the only device that
is attached in this port fashion is the cassette recorder. Logic
on the cpu board is continually looking for port address FFH
and the I/0 signal indicating that an I/0 instruction is being
executed. If the instruction is an input (IN), the cassette

TRS-80 HARDWARE TRS-80 OR OTHER HARDWARE

|
1
|
)
|
{
|
TRS-80 ;
CPU '
1
i
[}
|
|
i
alld 19 I
TRS-80 - i
EXPANSION ", !
OPTIONAL) | CABLE : pevice [, | Device
¢ ' CONTROLLER 23
1
“a |
Z| |@ | DETECTS PORT ADDRESS 23,
w(@|S| | CONTROLS DATA FLOW
SIE|L 1
£l |
SEE
|
| DEVICE DEVICE
d : CONTROLLER [~ 177
E
| DETECTS PORT ADDRESS 177,
) CONTROLS DATA FLOW
t

Fig. 10-5. I/0 ports and port addressing.

171

logic will send a byte of data to the A register. Seven of those
bits will be zeros, with only the most significant bit being
active. If the instruction is an output (OUT), the contents of
the A register will be sent to the cassette logic. Only the four
least significant bits will cause actions in the logic.

The TRS-80 is expandable so that additional ports can be
used by external devices, as long as the port addresses do not
conflict with FFH or other port addresses used by TRS-80
devices. Since there are 256 total port addresses, however,
there is a great deal of room for expansion, and conceivably
the TRS-80 could be used to control dozens of functions such
as home heating and lighting, burglar alarms, and others
limited only by the user’s imagination (and bank account).

Keyboard Decoding

Refer back to Figure 10-3. The keyboard is set up in eight
rows and eight columns as shown in the figure. If a key is
pressed, then the corresponding bit for that column becomes a
one, and if the associated row address is read by a load in-
struction, then the column byte that is loaded will contain a
one bit for the column of the key. As the program knows
which row of the eight is being addressed when the one bit
appears, it knows the key junction from the row and column.
This type of I/0 operation is called matriz decoding as the
keyboard forms an eight-by-eight matrix.

The following program continually scans the keyboard and
waits for a one bit to appear for the first and second rows
(characters @, A through 0). When a one does appear, the
row and column is computed to give an index of 0 through 15.
This index is then used to look up the corresponding char-
acter in a sixteen-byte look-up table. The character is then
printed on the screen.

2R168 ; KEVEDRRD SO ROUTINE FIR FIRST THD ROMS
R

man CINT

s] EAD T B
| SPUR FIRST Ridy

A KEYRE LD
& T

W

Y
a1
]
)
4]
]

S e

G4 4
e ¥y SEYT A
bery |

—
HHEh O Featl
3

[y}
'
oy o
) My
]

¥
£ o TOOT FLON O A T

e LTOCT OO N0 L D
L i Fipad ZERU IR RUR-ZEsU

The A register is loaded with the contents of row 1 by ad-
dressing 3801H. If this is zero, the next row, 3802H, is ad-
dressed. If either row has at least one bit, the rest of the

173

program is executed, otherwise the program loops back to
KEYSCN to scan the rows again. If a one bit has been de-
tected, the C register holds either 0 for row one or 8 for row
2. The A register holds the column bit corresponding to the
key column. As this is a power of two (80H, 40H, 20H, 10H,
8H, 4H, 2H, or 1H) it must be converted to a number repre-
senting the column of 0 through 7. This is done by shifting A
until it becomes zero, and keeping a count of the number of
shifts. 80H will require 7 shifts, for example, before A be-
comes 0. At the end of the shifting B holds the column number.
This is added to the row number of 0 or 8 to produce an index
of 0 through 15. This index is then added to the address of
TABLE to point to the corresponding character in the table.
This character is picked up and displayed on the center of
the screen. LOOP is a timing loop to debounce the key so that
the program does not loop back to the same key depression
and output a spurious character (the same character twice or
a number of times).

Although this program works only with the first two rows
of keys, the reader can see how it can be expanded to work
with all keys on the keyboard, and he will find a similar pro-
gram in Level I or 1T BASIC.

Display Programming

We have used programs that output both ASCII and
graphics characters to the screen, but have not discussed the
graphics capabilities of the TRS-80 in any detail. The display
memory is similar to normal RAM memory, except that each
address of the 1024 bytes of display memory is made up of
seven instead of eight bits, as shown in Figure 10-6. As the
reader knows from his BASIC experiences, the display can
display upper case alphanumeric and special characters or
graphics characters, intermixed in any combination. The most
significant bit of the 7-bit display memory is used to mark a
graphics character. If this bit is a zero, then the remaining
six bits define an alphanumeric or special character. If the
most significant bit is a one, then the other six bits define a
graphics character. The ASCII codes for alphanumeric and
special characters are defined in the Editor/Assembler manual
or the TRS-80 BASIC manual.

The graphics codes define a six-element graphics character
that occupies one character position on the screen. As there
are 1024 character positions (64 characters per line and 16
lines), there are 6144 graphics elements on the screen, ar-

174

ranged in a 128 by 48 matrix. The question arises of how one
sets or resets a single element. There is no corresponding as-
sembly-language SET or RESET command as there is in
BASIC.

MISSING

7 6 5 4 3 2 1 0

[

IF THIS BIT iS A 1
THEN BITS 5-0 DEFINE
A GRAPHICS CHARACTER / \
N - S
. .
- —~ 1/
GRAPHICS CHARACTER

(OCCUPIES ONE OF THE 1024
SCREEN CHARACTER POSITIONS)

Fig. 10-6. Display memory format.

The following code attempts to solve the problem of con-
verting an x,y coordinate into the proper bit position in the
graphics memory cell. There are three entry points in the
routine. The first entry point sets the pixzel (element) corre-
sponding to the given x,y (horizontal, vertical) position. The
second entry point resets the pixel corresponding to the given
X,y position, and the third entry point tests the current on/off
status of the pixel, returning the zero/non-zero status in the
zero flag. The three entry points of SET, RESET, and TEST
all converge to a common location at TEST10. The store at
TEST10 stores the second byte or a SET, RES, or BIT in-
struction at location INST+1. The first byte of all three in-
structions are the same, a CBH. The second byte is complete
except for a three-bit field defining the bit to be set, reset, or
tested. This will be calculated in the main body of the routine,
along with the location in screen memory to be used, which
will be put into HL. All three instructions use HL as a register
pointer. See Figure 10-7.

175

The main body of the code converts an x,y location into a
screen memory location and bit position. The bit position is
merged into INST+1 to set the proper field. The memory loca-
tion is retained in HL for the instruction. The actual algorithm
works like this: The y position of 0-47 is converted to a line
number by dividing by 3 to give 0 through 15. The remainder
is saved. The x position is divided by 2 to give the character
position along the line. We now have a line number of 0
through 15 and a character position of 0 through 63. If the
line number is multiplied by 64 and the character position
added to it, we will have the byte displacement from the start
of screen memory, as shown in Figure 10-8, The actual loca-
tion can then be found by adding 3C00H, the start of display
memory.

The only remaining task is to find the bit position of the
pixel to be set, reset, or tested. This is given by the remainder
of the Y/3 operation times 2 plus the remainder of the X/2
operation. This value is stored in the bit position field of
the instruction at INST+1. As a last step, bit 7 is set to en-
sure that all character positions processed will be graphics
characters.

The code for this problem is somewhat complex and it may
help the reader to “play computer” by actually using some
values of X and y and working through the routine to find

SET B,(HL)

I 1 0 0 1t 0 1 1| OPCODE = CBH
1 1|0 0 0]1 1 0] SECONDBYTE = C6H

RES B.(HL)

1 1 0 0 1 0 1 1} OPCODE = CBH
1 010 0 0|1 1 0] SECOND BYTE = 86H

BIT B.{HL)

I 10 0 1 0 1 1| OPCODE = CBH
0 1370 0 0|1 t O] SECONDBYTE = 46H

THIS FIELD FILLED N LATER FOR ALL
THREE INSTRUCTIONS TO DEFINE THE
BIT TO BE ACTED UPON

Fig. 10-7. Modifying instructions.

176

X CHARACTER

1
7 POSITION 6
. POSITION 2 0 D :
iE 7 T
XY = 0,0 XY = 1270 .
LINE -~ ------ =
Y . = e i
POSITION
XY = 047 XY = 12747
a7 ny 15 \
FOR ANY X.Y: 0
— 1} ROW#
L LINE # = - QUOTIENT y
2. ROW # OF GRAPHICS CHARACTER = -‘3-'- REMAINDER 0 1
3. CHARACTER POSITION = % QUOTIENT COLUMN #

4. COLUMN # OF GRAPHICS CHARACTER = -)2(— REMAINDER

5. BYTE DISPLACEMENT FROM START OF SCREEN MEMORY = {LINE #} *64 + CHARACTER POSITION
6. ACTUAL LOCATION IN MEMORY = {LINE #) *64 + CHARACTER POSITION + 3CO0H

7. BIT POSITION WITHIN GRAPHICS CHARACTER = (ROW #) *2 + COLUMN NUMBER

Fig. 10-8. Screen coordinate algorithm.

out how it works. An interesting point is that the instruction
at INST has been treated as another piece of data to be pro-
cessed and modified. It is not a good practice to do this in
some types of programming (for example, where interrupts
are involved), but it is perfectly permissible in many stand-
alone programs of this type.

BEL8 ; SLEROUTINE 70 CONVERT SCREER COLRDINATES

BRLIE ENTRY:(DEXSY, X CORDINATES OF POINT

EEE L ST SSETS POINT

w4 ; AL RESET RESETS POINT

Wi | GAL TEST TESTS POINT RETURAS 7 FLAG
@i6E; EAIT: (A THROUBH LIDESTROVED

177

aesE TESTER LD

B AORES LB

3 ;B THREE

iF HOT MINDS
A3 RINE YRR
R YR

i SHYE YR#Z

£
o e]

L T
&5 SONT HE RATIFLY BY &4
LOF: 00 IF MDY Yied

I8 SDE MW HRS

Hid It

LEEG T LN =
il IFER BE

>, 13y

jg EL} g&’ ?£$E+£k

ST MR T
LECT Mo

- H il H
e B e I 0

178

ir FTEST 8% e o s
Li} LiFn LG H iSiiEr
e Ta nrrn e LERETEET OTY STT nrr
INST a3 iRy FPLEFURA Gils3i:ELS
= o IS EN T ol ol SO O Y
..... DFFE B sEBILLEE FILIED IN
HE e T e T b B F TR P
Hdl Ski FiiFLG iFLE e
=T
L
Eras

5

Mysteries of the Cassette Revealed

The cassette of a one cassette system is controlled by three
bits of a 4-bit latch in the cpu. The latch is simply another
type of memory, which happens to be four bits wide instead
of the usual eight. When the cassette is addressed by perform-
ing an OUT instruction to port address OFFH, the cassette
latch is loaded with four bits of data as shown in Figure 10-9.

Br7I "7 -
1])
i l .
| i - LOST
5} ! o~ | (NOT REQUIRED)
1 |
DATA I .]
ADDRESSED
T0 PORT | 3 10 32/64
OFEH ™ CHARACTER
) MODE LOGIC
= T0 MOTOR
: TURN ON RELAY
CASSETTE
0 RECORDING [——= OUTPUT TO
L LOGIC WRITE HEAD
CASSETTE
LATCH
(4 BITS)

Fig. 10-9. Cassette latch transfers.

179

The other four bits of data, bits 7 through 4 are discarded
into the bit bucket on the floor near the TRS-80.

Bit number 3 of the latch controls the 32- and 64-character
mode of the TRS-80. Outputting a one to this bit will set the
display into 32 character mode; outputting a zero will reset
the display into the normal 64-character mode.

LD AS ;BIT 3 IS SET
OUT OFFH,A ;SET 32-CHAR MODE

Bit number 2 of the cassette latch is the cassette motor
on/off bit. Setting this bit by an OUT O0FFH will turn the
cassette motor on, and resetting the bit will turn the cassette
motor off. This action is produced by a small relay in the
TRS-80 cpu, and it would be wise to quench all thoughts about
controlling that four-ton air conditioner with this one small
control device!

LD A4 ;BIT 2 1S SET
OUT OFFH,A ;SET MOTOR ON

Bits number 1 and 0 in the cassette latch are used to write
data to the cassette tape. As you probably know from reading
your TRS-80 Technical Reference Handbook, data on cassette
is arranged serially, and everything is represented by a stream
of bits. In the implementation on the TRS-80, cassette data is
written by setting bit 0 of the cassette latch, then by setting

BITO =1
BIT1=20 \
BITO =) =t BITO =10
BTl1=0 CLOCK DATA BIT1 =0
PULSE PULSE
\ BITO=20 i / |
BIT1 =1 ! i
N e— o —
THIS OPERATION

IS PRESENT IF A ONE
BIT IS WRITTEN BUT
NOT PRESENT FOR
A ZERO BIT

Fig. 10-10. Cassette data waveform.

bit 1 of the cassette latch, and then by resetting both bits.
When this is done for both a clock pulse and data pulse the
waveform appears as shown in Figure 10-10.

180

To illustrate how this works, let us write a program to
record some music on cassette. It might be nice to try a little
Bach or Beethoven, but perhaps we’ll try something a little
simpler. First of all, it is necessary to know how to produce
any tone on the cassette. A simple tone has the appearance
of the sine wave of Figure 10-11. We can produce a square
wave on the cassette by turning the cassette output bits on
and off rapidly as shown in the figure.

We know how to turn the cassette signal to the recording
head on (01) and off (10), but what about the time delay to
produce the tone? If we look in the Editor/Assembler Manual
we find instruction times under “4MHZ E.T.” This is the
execution time in microseconds for a Z-80 microprocessor
running at a clock frequency of 4 megahertz (4 million cycles

PERIOD (DURATION) OF
1 CYCLE ~e— CYCLE = 1/FREQUENCY
I IN CYCLES PER SECOND

SMPLE /N V"N VN /\
TONE N N N/ N

o

BIT 0
OUTPUT BIT ON
"SQUARE ~ l
WAVE OF —_ "NORMAL" LEVEL
SAME BIT 1
FREQUENCY —— OUTPUT BIT ON

Fig. 10-11. Square wave tones.

per second). The TRS-80 clock frequency is about 1.774 mega-
hertz, so to get the actual execution times of TRS-80 instruc-
tions we must multiply the 4 MHZ E.T. by 2.26. Let us see
how long a simple loop would take. If we have a value of 1
through 255 in the B register, then the simple loop

LOOP DINZ LCOP LOOP HERE FOR 1 TO 255 TIMES

would take 3.25 microseconds (4 MHZ E.T.) * 2.255 * count
in B, or 7.32 microseconds * count in B. This gives us a range
of frequencies from about 535 Hz through 136,612 Hz. (The
frequency of the tone can be found by dividing one by the
time in microseconds, for example, 500 microseconds would
produce a tone of 1/500E-06 or 2000 Hz.)

As the complete cycle would be determined by a timing
delay to turn the write head on one direction and off the other,
the actual tones that could be produced are 267 Hz through

181

68,306 Hz. If we stay on the lower end of that range we should
be able to get a nice range of notes.
The routine to play a note with a given value in B follows:

PLAYN D C.,(DURTN) ;GET DURATION
CONT LD B,(FREQ) {GET FREQUENCY

LD Al

OUT (OFFH),A ;TURN ON 1/2 CYCLE
LOOP1 DINZ LOOPI ;DELAY FOR FREQUENCY

LD ,(FREQ) ;GET FREQUENCY

LD A2

OUT (OFFH),A ;TURN ON OTHER 1/2 CYCLE
LOOP2 DINZ LOOP2 ;DELAY FOR FREQUENCY
DEC € ;DECREMENT DURATION
JP NZCONT ;CONTINUE IF NOT DONE
The additional count in C is used to adjust the length of
time that the note plays. The value of D is related to the
value of the frequency count to make all notes a quarter note
duration, or approximately so (what did you expect, the New
York Philharmonic?). The entire code required to play the
TRS-80 concerto is given below. A table of delay values defines
the duration and notes, and is terminated by a zero.

H0AOFUC 1 OTE TRS-BB CONCERTD

-t"a.!'- Fr 2
EECE (k]
Aiualat]
GHEE
"' T .:'?:'k!'" Prial T Nk Fud
I4LTRRE sRIAT OF MBID THELE
£OSTLEY L PImCT I
Lenidd JHEATIH
o~ THIC TR o TRD TECT
i L PENE R riFE IES
o e .
i ; TECT ’_fl: 8

CTHEE SR OSTIED 400 runy
id ,a—i—
#3

182

ts of James Garon

men

Arrangement compl

183

Real-World Interfacing

I+ it possible to use the TRS-80 to control real-world events?
An emphatic yes! But here’s the catch. It does take some hard-
ware. In this section, we will discuss how real-world control
is done. We will be talking about some simple hardware, but
you should find it interesting. (Just think about that TRS-80
controlled robot mowing the grass while you sleep in! But
seriously...)

First of all, let us talk about what types of control can be
provided to the external world with the TRS-80. Things ex-
ternally are controlled by on/off conditions in a large number
of cases. Such things as garage door openers, burglar alarms
triggered by a switch being opened, sprinkler valves being
turned on by a time switch-——these are all events controlled by
an on/off state. This class of functions can be controlled by
discrete inputs and outputs to the TRS-80. One bit of an out-
put or input can control or detect the operation, as only an on
or off state is involved.

A second class of things in the external world are those
events that are not controlled in binary fashion. The tem-
perature of a room, windspeed, dampness of the soil, and
lighting intensity are but a few items that have a range of
values and cannot be represented by a single binary one or
zero. These physical quantities require many bits to represent
them, but they can be represented. There are many available
devices that convert external world quantities into voltage,
current, or resistance analogs that are then converted into
binary form by an analog-to-digital converter. The resulting
digital form, whether it is 8 bits or 24 can then be read into a
computer such as a TRS-80 and processed.

Discrete Inputs

Suppose that we want to input a set of eight bits into the
A register. These bits represent eight different discrete inputs
that are either on or off. A good example would be a set of
inputs from burglar alarm switches in eight rooms of a house.
The bits are either a one (switch closed) or a zero (switch
open), and we would like to read these eight inputs once a
second or so to find out whether a switch that is mormally
closed is open, or a switch that is normally open is closed.
How do we go about designing interface circuitry to do this,
and what programming steps are required?

184

Earlier we discussed I/0 ports. If we set up our burglar
alarm inputs for a particular I/0 port, then that port must
have the following capability :

1.

It must be able to recognize its address when it
over the system address lines.

is sent

2. It must be able to tell when an I/0 instruction is being
executed.
l INTERFACE LOGIC | BURGLAR-ALARM
TRS80 | (5 PARTS) I INPUTS (GROUND
! : OR +5vDC)
D7 -l :IX‘Q‘ —— ALARM 7
' NS '
D6 ~—d] : ALARM 6
I }\/l I
D5 i }g E ALARM 5
D4 - : }3\,{ : ALARM 4
] 1
DI - 3 g i ALARM 3
|
D2 - i —<} } ALARM 2
1
- :5"\1 L ALARM 1
: 034 |
DO - i < L— ALARM 0
|
GROUND —— LT GROUND
: L
|
|
|
1
l
A7 : Df-
A6 — >
|
A3 : SIGNAL INPUT
A4 , 33H* ADDRESS 33H*
A3 : D° AND IN®
A2 ! {>¢ IN*
|
Al :
AD t
1
{
IN* >
{
i

Fig. 10-12. Inputting external data.

185

3. It must be able to pass the eight bits of data to the cpu
over the system data lines.

The circuitry for performing these tasks is shown in Figure
10-12. When signal RD* is active (this is the signal on pin
15 of the cpu or interface 40-pin connector), address lines
A7 through A0 contain the port address from the IN instruc-
tion (address lines A7 through A0 are on various pins of the
40-pin connector). If, for example, we have defined the ad-
dress of the port as 33H, executing an IN A, (33H) instruc-
tion would cause signal RD* to become active and simultan-
eously put 00110011 on address lines A7 through A0. The cir-
cuitry shown in the figure outputs a one for signal INPUT
when both RD* and address 33H are present. This will only
occur for the IN A, (33H) instruction. Signal INPUT allows
the burglar alarm inputs to be gated (transmitted) from the
eight lines onto the system data bus lines D7 through D0 (on
various pins of the connector). During the execution of the
IN A,(33H) the cpu will take the contents of the data bus
and store it in the A register, completing the execution of the
IN instruction. Now the data from the eight inputs can be
processed, which might go something like this

LCOP IN A (33H) GET INPUTS

XOR 0B3H ;TEST 7,5,4,1,0 ON;6,3,2 OFF
JP NZ,HELP ;GO IF BURGLAR
JP LOOP ;TRY AGAIN

As the entire input, test, and loop takes under 20 millionths
of a second (!) the constraint of one test every second is in-
deed met. As a matter of fact, there is more than enough time
to do all kinds of other processing or control applications and
still meet the poll of the burglar alarms every second.

This implementation is one of the more simple real-world
applications. However, an output of discrete values is not
much more complicated. The signal decoded in this case is
analogous to the IN* signal, and, strangely enough, is called
OUT*. The output operation works as follows: When signal
OUT* is active a port address is present on the address bus
lines A7 through AO. If the port address matches the built-in
address of the hardware, then there is data for the port on
data lines D7 through DO. If this is the case, the data lines are
written into a memory latch similar to that used for the cas-
sette. When the data disappears (it is only present for a few
microseconds), the latch will retain the bit configuration and
transmit it to the outside world. This circuitry is shown in
Figure 10-13.

186

TRS-80
D7

INTERFACE LOGIC
(4 PARTS)

Dé

8-BIT

LATCH

D3

D4
D3

02

D1

D0

A7
A6

>

D -

A5

M

j E—

SIGNAL

A3
A2

[>- 33H

Al

>— o

AD

our*

s B B R i it e ik il s (NG U Ry W S U S S N

i

ADDRESS 33H
AND OUT*

Fig. 10-13. Outputting data to the external world.

EXTERNAL
WORLD

ouTt 7
ouT 6
outTs
ouT 4
ouT 3
ouT 2
ouT 1
ouT o

Suppose we have a set of lawn sprinkler valves that must be
turned on at certain times. Location TIME holds the time in
increments of one minute. The time at 12:00 noon is repre-
sented by a count of 720 in the two-byte variable. To turn
sprinklers 3 and 5 on at noon, the interface in Figure 10-13
is used, along with the code below,

LD
LD
OR
SBC
Jp
LD
ouTt

HL,TIME ;GET CURRENT TIME IN MINUTES

BC,720 iNOON
A ;RESET CARRY
HL,BL ;TEST FOR NOON

NZ,OTHER ;CONTINUE WITH OTHER PROCESSING

A,28H ;SPRINKLERS 3 AND 5

{033H),A ;TURN THEM ON

Another method for implementing discrete input and out-
puts involves a memory-mapped approach similar to that used
for the line printer and other devices. Here IN and OUT in-
structions are not used, but the external logic is treated as

187

memory locations and loads and stores are used instead. This
is also a valid approach but requires slightly different imple-
mentation. The problem of reading in other than discrete in-
puts or of outputting other than discrete bit patterns is sim-
ilar to the methods described previously. The major considera-
tion in this case is the conversion between analog values and
digital 8-bit values required. The logic required for reading or
writing the digital values between the cpu registers and the
I/0 port, however, is exactly the same as described above.

We hope that these very simple examples will give you
some insight into the nature of external-world interfacing.
With a little bit of external logic, the TRS-80 can indeed be
used to control any number of things around the home or in
industry, and with assembly-language programming, this con-
trol can be fast indeed.

188

CHAPTER 11

Common Subroutines

The subroutines presented in this section are the “common”
subroutines described elsewhere in the book. Many of them
are used continually in larger programs, and they are given
here so that the reader may incorporate them into his own
programs if he desires. All of them are subroutines and must
be CALLed from the reader’s code. All are assembled at
4A00H, and must be reassembled by incorporating the source
code into the reader’s source code, or by separate reassembly
with a new ORiGin. A brief description of each routine is
given below, with the assembly following.

FILL Subroutine

The FILL subroutine is used to fill a block of memory with
a given 8-bit value. FILL could be used, for example, to zero
a buffer, or to fill the video display area with blank characters.
On entry, the D register contains the character to be filled, HL
points to the start of the fill area, and BC contains the number
of bytes to fill, 1 through 65535. An entry with BC=0 is treated
as 65536 bytes to fill. On exit HL points to the last byte filled
plus one, D is unchanged, and A and BC are zeroed.

189

MOVE Subroutine

The MOVE subroutine is used to move one block of memory
to another area in memory. The blocks may be overlapping
without conflict; the program is “smart” enough to calculate
the direction of the move based on the type of overlap. On
entry HL, DE, and BC are set up as in the block move instruc-
tions—HL points to the source block, DE points to the destina-
tion block, and BC holds the number of bytes to move. On exit,
HL and DE point either to the block areas plus one, or to the
block areas minus one, based on the direction of the move.
BC contains zero.

ST T T T BT RCRNDE!

: SLDRIRJEAND

EITT

190

G #2128 e ;O O RERSSTRRLY
6 2 B NRE R OH JSE SEELE AR
Bl B = {F i SLLERR CARRY

:RESTIRE PHIE
i60 IF HIME BACK
AR FURRD
IR BlSh IR s BT
B EERENE B RE ;FOIRT 70 EMR

% ¥

I:' R

B &

T &y =

ﬁ; " i
ok
=
b
[ecn)

e 2 #308 LIM (PHINT 10 B
sl B #ia 3 Ei P SHAP DRLK
@iz He @i HEES FBNE ORE
s 03 HER VA R JRETIEE

e 4D b
B TR RS

A 4l

HHig AE
B 4

MULADD Subroutine

MULADD is a subroutine to perform multiple-precision
adds. Two multiple-precision operands from one to 256 bytes
in length are added to each other, and the result is put into the
destination operand. The source operand remains unchanged.
The operands are located anywhere in memory desired, with
the data arranged most significant byte through least signifi-
cant byte from low memory through high memory. On entry
the IX register points to the first byte (most significant) of
the destination operand and IY points to the first byte (most
significant) of the source operand. Both operands are treated
as the same length. The B register contains the number of
bytes in each operand from 1 through 255. An entry of B=0
is treated as a length of 256 bytes. On exit, the destination
operand contains the result of the add. IX and IY are un-

191

changed. The B register is zeroed, and the A register is de-

stroyed.

ARDG 412
gLl s it

e 18
#e 03
WS R Beiee
b 3R &

=R

192

LR

¥ Yl
[RitEE]

nee
YL

rn
P]
o0
g
s
i

B

TIE Rl
ide it

FOINT TR S BTE
RESTORE ORTGINAL
;RESET CHREY

JEET DESTINATION

RETIEY

.GET TROMCVT
%1 isd HLAT

sPRT T NEAT HIGER

JCORTINE

MULSUB Subroutine

The MULSUB subroutine performs multiple-precision sub-
tracts. Two multiple-precision operands from one byte to 256
bytes in length are subtracted from each other, and the result
is put into the destination operand memory locations. The
source operand remains unchanged. The operands are located
anywhere in memory desired, with the data arranged most
significant byte through least significant byte from low mem-
ory through high memory. On entry the IX register points to
the first byte (most significant) of the destination operand
and I'Y points to the first byte (most significant) of the source
operand. Both operands are treated as the same length. The
B register contains the number of bytes in each operand from
1 through 255. An entry of B=0 is treated as a length of 256
byteés. On exit, the destination operand contains the result of
the subtract. IX and IY are unchanged. The B register is
zeroed, and the A register is destroyed.

GHIGE SUBRTETTING TO DO BRATIPLE-FREDISI(N SURTRACTS
B0 ENTRY(IMM=ROINTS TO WS BYTE OF DESTINATION
B {Bi=§ F E,:?:_ i PREEES

BBi4 AL miESE

HALSE {RETIENY

AR EXIT: (1)< BfHaEED

83170 ; (1Y EHRD

Fy=ICTTONET
(Hisprsimifmd

-
{E¥=§
g
TH aE
A5 i, e ALISEET R ST 'R
I T4t §HE CHANGE ON RERSREMRLY
A DS THA T s KB i i) =T LJESE N
g8 0h BHASH BULSE FUSH D PSRYE IE
inhs B0 Sy 1. r oo TS T
f 58 Y) EEB YRS IO E
[Y 00
i -
e bE
A T oRr
FHAY PA:
Y T3 R
I . ia
et E B S
s e
i e
v .
i E
iR [=TRES £10Y) e o 'r--_rvg_ e
ML iET Py HEREPENETG m

193

CMPARE Subroutine

The CMPARE subroutine compares two 8-bit operands in
true algebraic fashion, that is, a —5 is less than a —1, and so
forth. Three return points must be provided by the user after
the CALL to CMPARE. Each return point must have a jump
instruction of three bytes. The first return point is the return
made when the A operand is less than the B operand. The
second return point is the return made when the two operands
are equal. The third return point is the return made when
operand A is greater than operand B. By putting in jumps to
the same areas, any combination of equalities may be con-
structed. For example, if the three return points have

JF ONE ;JUMP TO ONE ON LESS THAN
JP ONE ;JUMP TO ONE ON EQUAL
JP TWO JUMP TO TWO ON GREATER THAN
a jump will be made to location “ONE” if A is less than or
equal to B, and a jump to location “TWOQO” will be made if A
is greater than B.
Omn entry, the A register contains the first operand, and the
B register contains the second. On exit, the return point is
based on the comparison of A to B. A remains unchanged
along with B, and the HL register is destroyed.

TRTM o

S S ST,
{R=(FERRND

™ Ftu T aud i CR Y
{RI=[FERAN: [

1]
H

T T ~31mar R TES
JTEST 519N BITS

R TG C

L3 w]

fF FRESTIEE FLARS

H

LESET RLTE

MUL16 Subroutine

The MUL16 multiplies an unsigned 16-bit number in the
DE register by an unsigned 8-bit number in the B register,

195

putting the result in the HL register. As the numbers are
unsigned, DE may hold from 0 through 65535 and B may
hold from 0 through 255. Overflow may result if the product
is too large to be held in 16 bits. There is no check on overflow.
On entry, DE contains the 16-bit multiplicand and B contains
the 8-bit multiplier. On exit, HL contains the 16-bit product,
DE is destroyed, and B contains 0.

e HRRTIN TRRETIY S5 B 5
B8 ;. ENTRY:(DEMATIPLICHE. BRIGED
80 (BX=MLTIPLIER, IASIRNED

Sl " . ol ¥ 45

B (L HEis

s A CUTT. Fii L _DROR T

BAidE ¢ EXIT. {HPROEET

GoATG . SR Ty

I (I =DESTRINED

SHRE ST . S it

HBigd {8

TR .

ELE o
P S04 0o e ¥ i CPLUSAYT fad DESTIOMoG O
HER: aias T 4458 JOHAGE N RERESEERY

TTET AT ATrm TTT
SHIFT @7 BIER ED

0 TR N Mohfur 3 DTS
;G0 IF M CRRRY (L BRI

DIV16 Subroutine

The DIV16 subroutine divides an unsigned 16-bit number
in the HL register pair by an unsigned 8-bit number in the D
register. The quotient is placed in the IX register and the re-
mainder is left in H. As the numbers are unsigned, the divid-
end in HL: may be 0 through 65535 and the divisor in D may

196

be 0 through 255. Overflow will result on division by zero.
The remainder is less than the divisor. On entry, HL contains
the 16-bit dividend and D contains the 8-bit divisor. On exit,
IX contains the 16-bit quotient and H contains the 8-bit re-
mainder. The L. and A registers are destroyed, E is zeroed,
and the D register is unchanged.

- ke’ -

R . .
IR imh EEEE
GG Tl S i By 3

g i pivih LY oL

1 T
if =
L LF it

TYITTT Y TN
SINITHEEA

T LS T ‘Sl
5 Wi [
WFF FLAET L

4) onnd THE TY

3 b 3y O

o i (R S
s0d ERES oo tn ne
1 T O SEL Hik

o4 DT An TT it
1- :-'Lll-

L 18 A HLIE :FESTORE

e r LRNOT0 AT
i VP i 1r Ml

197

#2102 T
e B4ng
a0 TOTAL ERRIRS
[NT 4fiF

L 412

P 4

bivie 4mem

RETURN

a8

HEXCYV Subroutine

HEXCV is a subroutine to convert an 8-bit value (two
hexadecimal digits) into two ASCII characters representing
the hexadecimal characters 0 through 9 and A through F. On
entry, the A register contains the 8-bit value to be converted.
On exit, the H register contains an ASCII character repre-
senting the hex character for the four high-order bits and the
L register contains an ASCII character representing the hex
character for the four low-order bits. The A and C registers
are destroyed.

1 ASCTD VRUES, HIE AR L

[T
{R=MESTRINED

Fel = ' e P §

H i s B £ I et L T OATTS
T i &8 2L S oiEEssf i
it T T Ll pRrd 't T4 11 L IZ -

E x| o e o T | RISTT
SE L SHUIGN HIGH BIGI
e .
ﬁﬂﬂ‘i -1

198

SEARCH Subroutine

The SEARCH subroutine searches a table for a given key
value of 8 bits. The table may be any number of entries from
1 through 256, with each entry a fixred-length of one to n bytes.
The table may be located anywhere in memory. The key value
is assumed to be the first byte in each entry.

On entry, the A register holds the 8-bit key of 0 through
255. HL. points to the start of the table in memory. DE con-
tains the length of each entry in bytes. The C register holds
the number of entries in the table, from 1 through 255. On
exit, the Z flag is set if the key has been found in the table,
and the HL register points to the entry containing the match-
ing value in this case. If the key is not found, the Z flag is not
set upon return. If the key is found, BC contains the current
number of entries left in the table. In this case the subroutine
may be called again to search for another occurrence of the
key, without changing the contents of HL, DE, BC, or A.

SET, RESET, and TEST Subroutines

These subroutines are used to set, reset, and test a point on
the screen in similar fashion to SET, RESET, and POINT in
BASIC. The screen coordinate values given are converted into
corresponding memory locations in video memory, which are

199

(Ci=h OF ENTRIES IH THREE

FOIREL MOT SET IF NOT FOEE
.
o MATCH IF FOAE

rr--..-—--’xl.}rx iz
ey oty e W

i
iy
i
vl
L
[
-
Il;‘-ﬂ

L AT DR SLIR MNT TR
il i'éi EEHE

PRI
+FHSTH

P TED

i 1RY HRERMH

T OTS Mmoo
FLAST T FEND LIE

then processed. The high-order bit of each memory location
is set when any of the three subroutines is called, on the as-
sumption that the coordinates addressed represent graphics
points.

On entry, DE contains the y,x coordinates. The D register
contains the Y value of 0 through 47, while the E register
holds the X value of 0 through 127. A CALL is made to SET,
- RESET, or TEST to set, reset, or test the coordinate specified.

200

On exit, the A, B, C, D, E, H, and L registers are destroyed.
If a test was involved, the Z flag is set if the point was a zero
and reset if the point was a one.

Care must be taken in using this subroutine to make certain
that the x and y values are in the range given, as the sub-
routine may wreak havoc if invalid values are input.

GRGINATES OF FHINT

B g v oFTTHT
FECIEED Fiifd

.1-1'-1- 2THT DOTIERIT 3 OOt
i T' 5'1 iifi REtilRtin £ E,_‘T._‘

201

202

SECTION 11l

Appendices

203

APPENDIX 1

Z-80 Instruction Set

A Register Operations

Complement CPL
Decimal DAA
Negate NEG

Adding/Subtracting Two 8-Bit Numbers

A and Another Register
ADC Ar SBC A
ADD Ayr SUB Ar
A and Immediate Operand
ADC An SBC An
ADD A,n SUB An
A and Memory Operand
ADC A,(HL) ADD A,(HL) SBC (HL)
ADC A,(IX4+d) ADD A,(IX4d) SBC (IX4d)
ADC A,(IY4+d) ADD A,(IY4+d) SBC (IY+d)

Adding/Subtracting Two 16-Bit Numbers
HL and Another Register Pair
ADC HL,ss ADD HL,ss SBC HL,ss
IX and Another Register Pair
ADD IX,pp ADD IY,rr

Bit Instructions

Test Bit
Register BIT b,r

SUB (HL)
SUB (IX+d)
SUB (IY-+d)

Memory BIT b,(HL) BIT b,(IX-+4d) BIT b,(IY+)

Reset Bit
Register RES b,r

Memory RES b,(HL) RES b,(IX4d) RES b,(IY+d)

Set Bit
Register SET b,r

Memory SET b,(HL) SET b,(I1X+d) SET b,(1Y4d)

205

Carry Flag

Complement CCF
Set SCF

Compare Two 8-Bit Operands

A and Another Register CP r
A and Immediate Operand CP n
A and Memory Operand
CP (HL) CP (IX4d) CP (IY4d)
Block Compare
CPD,CPDR,CPI,CPIR

Decrements and Increments

Single Register

DECr INCr DEC IX DEC IY INC
Register Pair

DEC ss INC ss DEC IX DEC IY INC IX DEC IY
Memory

DEC HL DEC (IX4d) DEC (IY+4d)

Exchanges

DE and HLL. EX DE,HL
Top of Stack
EX (SP),HL EX (SP),IX EX (SP),lY

Input/Output

1/0 To/From A and Port
IN A,(n}) OUT (n),A

1/0 To/From Register and Port
IN r,(C) OUT (C),r

Block
IND,INDR,INR,INIR,OTDR,OTIR,OUTD,0UTI

Interrupts

Disable DI
Enable EI
Interrupt Mode
IM0O IM1 IM2
Return From Interrupt
RETI RETN

Jumps

Unconditional

JP (HL) JP (IX) JP (IY) JP (nn) JR e
Conditional

JP ¢ce,nn JR Ce JR NZe JR Ze
Special Conditional

DINZ e

Loads

A Load Memory Operand
LD A,(BC) LD A,(DE) LD A,(nn)

206

A and Other Registers
LD AI LD AR LDIA LD RA
Between Registers, 8-Bit
LD rp»’
Immediate 8-Bit
LD rn
Immediate 16-Bit
LD ddpnn LD IXnn LD IY,nn
Register Pairs From Other Register Pairs
LD SP,HL. LD SP,IX LD SP,IY
From Memory, 8-Bits
LD r,(HL) LD r,(IX4d) LD r,(IY+4d)
From Memory, 16-Bits
LD HL,(nn) LD IX,(nn) LD IY,(nn) LD dd,(nn)
Block
LDD,LDDR,LDI,LDIR

Logical Operations 8 Bits With A

A and Another Register
ANDr ORr XORTr

A and Immediate Operand
ANDn ORn XORn

A and Memory Operand
AND (HL) OR (HL) XOR (HL)
AND (IX4d) OR (IX4d) XOR (IX+d)
AND (IY+4+d) OR (IY4+d) XOR (IY4d)

Miscellaneous

Halt HALT
No Operation NOP

Prime/Non-Prime

Switch AF
EX AF AW

Switch Others
EXX

Shifts

Circular (Rotate)
A Only RLA, RLCA, RRA, RRCA
All Registers RLr RLCr RRr RRCr
Memory
RL (HL) RLC (HL) RR (HL) RRC (HL)
RL (IX4d) RLC (IX4d) RR (IX+d) RRC (IX44d)
RL (IY+d) RLC (IY+d) RR (IY+4+d) RRC (IY+d)
Logieal
Registers SRL r
Memory SRL (HL) SRL (IX4d) SRL (IY++d)
Arithmetic
Registers SLA r SRA r
Memory
SLA (HL) SRA (HL)
SLA (IX+d) SRA (IX+4d)
SLA (IY4d) SRA (IY+d)

Stack Operations
PUSH IX PUSH IY PUSH qq POP IX POP IY POP qq

Stores

Of A Only

LD (BC),A LD (DE),A LD (HL),A LD (nn),A
All Registers

LD (HL)r LD (IX4d),r LD (IY+4d),r
Immediate Data

LD (HL),n LD (IX+4d),n LD (IY+4d),n
16-Bit Registers

LD ((nn)dd LD (nn),IX LD (nn),IY

Subroutine Action

Conditionai CALLs CALL ce,nn
Uneconditional CALLs CALL nn
Conditional Return RET cc
Unconditional Return RET cec
Special CALL RST p

208

APPENDIX I

Z-80 Operation Code Listings

U ® & & & & 0 & & © & & ® & & O O 0 O O

>
o
o

N

v

¥ OL{(P+Al) ANV V
¥ o (P4 X1) ANV V
V o (TH) ANV V¥

¥ OU NV V

¥ OLIANY V

Al OFdd 4 A

X1 03 dd 4 x|

TH 04 ss+41H
Voi(P+A+Y
VOoi(p+XD+V
Vo) +V
volit+y

Voiuty
YOLAD+H(P+ADN+Y
VOLAD P+ X+ V
Vo ADH(TH) 4V
VOLAD+U+Y
VOLADHI4Y

TH 04 AD -+ 55+ TH

uondiidsag

P [otoolol [Lottt
P Joiioot0l {101t1011L
01100101
| v |otwcotne
[+ o]
| 10014200 { 1011111
Lootddoo | (otL 1011
[oo1ss00]
p__otioooor [1otitiin]
P |oti00001 | t0t110LL
[ov100001
1 00001
v [otiocoott |
P |otiwooot [ottt
P |otiioo0l | 1ot1l011 |
[ot11000(]
v [ottioos
» 10001 |
olotssio [tottottt |
jewioyg

(P+AD ONV
(P+X1) NV
(1H) aNV

u aNv

1 QNV

WAl agy
dd’'xl gav
ss1H Qav
{P+A'Y aav
(P+XiYv aav
(HYY aav
I'y Qavy

u'y gav
(P+AN'Y DAV
(P+Xx1Yv Dav
(OHYv 2av
u'y Dav

Iy Dav

$s1H Dav

suo AqQ (TH) wuewateg

auo Aq J Juswaidaq

v isnlpy |ewidag

(ajdwod ¢,|) v Juswa|dwoy
teadad ‘ssedwion yd0|g
jeadal ou ‘asedwio) yao)g
jeadai ‘asedwon yaolg

sraday ou ‘asedwor yoo|g

(P+ Al)v ssedwioy
{P+X1):v 21edwoy
(TH)'v =24edwo)

uy asedwon

1y asedwon

Gey Alies juswa|dwon
uu 11y Ajjeuonipuooun
32 1 uu je Juinouqns 1TYD
(P+ADNJOqHq 89
(P+XI1) 40 g uqise]
(1H) 30 q Hiq 4se)

140 q 4919

o1 4 00
LL100LOO0
tocot 1ol | Lottotit |
10000101 | toLLoLiL

tootttot | tottortt

tooLoLol
oLl

LoLLOLLL

10111ttt

oLL1itol | toLLioLt

oLLL110l

oLttt

4 LLtot

LLLLLLOO

u 10110011 |

| u oot > 1t

oLl 9 10 LLoL00LL | totLtitl
oLL 9 10 LLotooLL § Lottlol |

ott 9 10 Liotoott

4 9 10| 11010011

(OH) 53a
4034

vvda

1d

didd

IdD

4ad>

Qadd

(P+AD d2
{P+X1) d2
(H) 42

u dd

4 dD

400

uu 1vD
ua'>2 1D
(P+AD'q LI9
{P+xD'9 1i9
(H)'q Lig
g L8

u woyy indul yum y peoq
z apow jdnaiafui 4ag

L epouwst ydnuizyul Jag

0 spow ydnusajul jag

{eH

aAloe 1-g swnd jag

1H pue 3 ab6ueydx3
aanoe 4y swnd Jag

Al pue (d5) aBueyox3

XI pue (dS) abueydxgz

TH Pue (4) sBueydxgy
sydnuiagul a|qeuy

0748 §! ¥r pue g juswa.nag
sidnasajul ajqesig

Jied Jays1684 Justuasnag
U0 AQ A tuswauda(

auo Aq x| Juawaidag

auo Aq (P Al) duswausag
auc AqQ (p 4 X|) tuawaudaq

uonduaseq

u

LLoLiotLt

oLiiole

ol1oLtl

ottototo | totiotut |

| ottoo010 | 1ot10111

olLolLLo

tootioLt

LLOLOLLL

00010000

| teooortt | Lottt

t1000LLL

Lott1otl

Lot

00001000

:oo__.:_

:o_,mmoo_

11010100 | tottiiut |

[tiotot00 | Lottiont

P

| tototio0 10111114

P

| 1oto1100 [touttott

4Ruriog

(W'v NI

z Wi

L wi

o Wi

L1VH

XX3

1H3a X3
AVdvY X3
Al'dS) X3
X1°(ds} x3
TH{(dS) X3
13

e ZNra

la

ss 031a

Al D3a

Xl >3a
(P+Al) D3a
(P+x1) D3a

Jluoweuy

Adied ou JI eanpejaa dwnr
aale|as dwnl reuocipuocoun
Alied 41 aayejos dwnp

uu 0} dwn| jeuoyipuodur)
35 §1 uu o dwnp

(Al} 01 duwin] jeuonipuodufn
{x1) o4 dwni |euoiipuosun
(1H) o4 dwn] jeuolipuodun
teaday "yndu g/ Fo0ig

(D) wouy yndut ¢ f1 3I0ig
teadas ‘yndur 9 /1 320i9

{2} woug sndut O /| ¥o01g
Jied saysiBas juawaiou
3u0 AQ A} Juawaidu|

suo Aq X| ‘uswaudy|

auo Aq (p 4 Al) tuswaaduj
aue Aq (p 4 XI) tusawaJsoug
auc Aq {1H) tuawaldu|

auo AqQ J juawaiou|

(D) wouy induy yum 4 peo]

z2 | 00001100 |
z= | oootio00
ze [ooottioo |
[tioo00tt |
u 10102 I
1oototit | ottt |
10010111 | totttoLt
oto01 10t | 1ot 101 L1
01000101 | 10110111
ototttot | tottot Ll |
otolotot | Lottolil
1L000E00 | LOLLLL L
11000100 | 10111011
00101100 | LOLILLLE
00101100 | LOLL1OLL
000 4 10] t0L10L11

"IN r
°r

D ur

uu dr

uuoo dr
(Al dr

(X1 dr

(1H) dr
diNI

INI

YONI

AaNI

55 IN|

Al JNi

X1 DNI
(P+Al} ONI
(P4 X1} DNI
(1K) ONI

1 JNI

Q)Y NI

Ald

{P+X1) o4 4 2u0ig

(P+X1) 04 uai0ig

uu UoleI0| YiIM ¥| PROT
uy yim x| peot

WV Yilm | peo]

{1H) 04 4 auoig

UU UDIIBID| WM JH Peo]
uu uoledo] Yiim Jied aaysibas peon
uu yim aied JagsiBas peoq
(1H) o} u 3uo4g

(3Q) o4 v d310i5

(08) o4 v aJ0ig

Y Yim y peol

UL UOHeIO] Yitm Y peo

| Yim Y peo

(3Q) yim v peol

(D8) yim v peoq

043z §) aane|as dwnyg

0JozZ-uou 41 eaye|as dwnp

uoydusseq

101110] 1oL1101t
u oL101100 [LoLL1011
[| toooo100 | 10111011
[u [ototot00 | totiiont
‘ 11100010 | L1011 11
101110
u |otolol00
u LLO1PPLO | 10LLOLLL |
u 1000PP00 |
v [ottotioo
01000000
LLLLLOLO | Lot oL1 1
T oottt
LLLOIOLO | 10110111
~ [otot1000
01010000
zo |00010100
z° | 00000100
Jeuuoy

P +X1)
u(p +X1)
uu’x|
{uuyxi
V'l
Y{1H)
(uuy1H
(uuypp
uu’pp
W'(TH)
v'(3q)
v'(o9)
d'y
(uu)y
I'Y
3arv
(og)'v
a7

'ZN

sluoweuy

a
A
a
al
a
ai
ai
al
al
al
M
al
al
a
ar
ar

jeadaz hﬁ;m\s,w ._umo_ Foig
teadaa ou ..V._m}an_. .VMO_ 32014
Al Yim gg peoq

X1 Yitm 4g peo

TH Y dg peo]

(P + Al) Ytim 41 peo

(P +X1) yhm 1 peoq

(TH) ysm J peo)

U Ym 1 peoq

A Y a1 peod

¥ Yim Y peo]

UU UCHEI0| O} Al 210)G

Uu uolle30| 0} Y| |l0lg

U uoed0| 0§ T4 aIOIg

uu u 0| o} Jied Jays1631 3048
UuU u0l4230] O} Y 81045

P+ Al 011 su0ig

(P4 AN o4 udioig

UL LOIRIO| Yiim A peo]

UU YiIM Af PEOT

| oootttor] ottot
ooototot | oottt |
EamEnnm
T Y

[
[ot 2 10] 101111
ott + 10] wottont |

oLL 1 00

| 1110010

| o1to111 |

0L000100

ot |

01000100

[1ottont |

E

01000100 |

| L1o0pP10

LlotioLtt

e

0l001100

401110

[totient

[ot1o1100

frotininy |

01010100

[ot |

10000100

oLttt

¥aal
aql

Al'ds @1
X1'dS Q1
H'dS a1
(P+ AN a1
(P+x1Y4 a1
(Y2 a1
uwa @

A al

vy al
Al'{uu) @1
X1'{uu) @1
TH(uu) @1
pp(uu) Q1
v'{uu) Q1
Yp+ AN @
wp+Al) @
(uuyal a1

uu'Al Q1

o O O o ©o

o

Ald

joeys oJuo X| Ysig

yoeys wouy bb dog

yorys wouy A| dod

¥aeys woiy x| dod

1da ou ‘paem 4 ‘Indino yoolg
$da ou ‘paem, q ‘Indine y20|g
u pod o4y inding

(5) o4 1 4nding

jeadas ‘piem § ‘indino yoojg
teadal ‘piem,q ‘4ndino yoo|g
VoI {P+ANAO ¥
Voi(P+Xxhiov

Voi(TH 30 v

VOIUYO v

VoA v

uoyesado oN

(luawajdwod s,omy) v ajebspy
teadal ‘piem g peo| X20[g

teadas ou ‘piem.q ‘peO| 20|g

uonduseg

[totoott | 10111011]

LOCOOLLL | LOLLLLLL

R emem

Lioootot | tottotin |

—I:o_os_ 101101 L L
[v

[11001011

100 4 10 | 10110111
[11ootton | 1ottottn |

LEOLLLOL | LOLLOLLY

[ottotto [rotitin |

CLtOELOL | 1OLLLOLL

[otto110]
v Jotloit]

4 oLLot

[Gooooooo]

100100010 | Lot 10111

| oooot 1ot | tottoi1t |

| ooootot | totronit |

jeuiog

X1 HSNd
bb d4Od

Al dOd

Xl dOd
1LNO
aLno
¥Y'(¥) 1NO
() 1NO
410
¥4LO
(P+Al) O
(P+X1) ¥0
(H) ¥0

u 30

i 30

dON

93IN

a7

tal

Jruowouy

v R[N J43] 3jej0y

(P+ Al Jepnoap 1a) ajejoy
(P + X1) Jepnaa> j4a] a4eioy
(TH) 2e|n2u Yoy a1ejoy

4 Jetnoals Ja| aeloy

ALigd> Nyl yo| v sejoy

(P4 Al) Adae2 nuyy 4je| a1pjoy
P+ Al Aued niy 4| ajeloy
(1H) A11ed Nyt o] ageioy

J Aued nayy 1ya| alejoy

Jul 3|qeYSRW-UOU WICi4 uIniay
sdnyssul wouy uingay

32 §1 SULNOIYNS WOJJ LINEY
BULNOCIGNS WOLJ UNSY
(P+AI} 40 g 1iq 1as3y

(P+ X1} §0 q 419 1253y

(TH) 30 q 41 yesay

130 9 1q lasay

y>eys opuo bb ysng

ORI O4UO A Ysng

| 01100000 |

[Liotoott [1ottnit]

[ot 100000 |

)

[tiotoott | 1ot1t011

01100000 | LLOLOOLL

_ 4 ooooo_ L101GOLL
LLLOLO0O

01100000 |

[1iotoout | tototort

f ot101000 |

[tiotoout [tottiont]

[01101000 [11010011
[4+ 01000 | 11010011]

| 10100010 | 10110t11]

[10110010 [10110118

[o1t a0t

LLoLgotLl _o::_;

oit 9 ot

tiotoott | torviont |

[otL a ot] wiotooLt

| + aot] oot

10100111 | 1oLzttt f

VO

(P+AD DN
(P-+X1 DT
(H) DN
100

v

(P+AD ¥
P+XD ¥
(aH) ™

17

NL3¥

1133

2 34

139
{P+AD'g S3¥
(P4-X1Y'q s
(1HYq s34
49 $3y

bb Hsnd

Al HSNd

v o4 (1H)-V

¥ O} u-y

v ol Iy

Suawyie JYBL (P 4 A)) 4H1YS
suawyie b (p+ X1 $41Y$
auswyIe WyBL (TH) Hiys
1e2160j 4ybis 1 11y
duawiyiIe B (P4 Al HHYS
duswiyire Jybis (p+ X1) 1HYS
SuswyIe B (YR} H4S
ayaLuyie JYBiL 1 YIys
B Y| (P+ Al HIYS
dlswiie 13| (P + X1) HIYS
udwyLe 13| (TH) HiYS
AuBWILE 33| I IHYS
140949438

(P+Al) 40 9 319 455

(P4 X1} 40 q 419 485

(1H} 0 G 1iq 408

Gey Ased jag

01101001
v Joutotonn
1 01008
outtitoe | P} ttowoott f oLttt
ottttoo | P | 010011 _o:ﬂ
oLLtLt00 | 11010011
[1 1100 | 1totoot
Totttotoo | P | tiotoolt Jtotttitt
ottioteo | P | tl0100LL |i0tLiOlL
01110100 | 1101001 L
110100 | 11010011 |
01100100 | P | 11010011 | 10lLLLLL]
lotootos [P | 1101001t [rotiion |
01100100 | 1101001 L
[+ oo100 | 11010011
» 9 1t | 1totoont
otLatt | P | Liowott]lotiitt
fortaw | e | tiotoott [rotion
otL q 11 | LotooLt
. LLLOL 10O

H) ans

u ans

s 4ans
(P+AD 138
(P+X1) 148
(IH) 1¥s
4798
{P+Al) vis
P+XI VS
(1H) wis

1 vas
(P+A) VIS
(P+XD VIS
(TH} V15
118

I'q 138
(P+AD9 135
(P+Xx1)q 138
(H)Yg 138
408

Index

A

A bed add with erroneous result,
126
Access, memory, 27
Accumulator, 34
register, 19
Action, subroutine, 208
Adding and subtracting
8-bit numbers, 113-115, 205
16-bit numbers, 116-119, 205
Address
effective, 22
symbolic, 63
Addtessing
bit, 57
direct, 42, 43-51
immediate, 43-45
implied, 42
indexed, 42, 54-57
index register, 47
register pair, 47
relative, 52-53
screen, b9
ALTU,19
AND, ORs, and Exclusive ORs,
131-134
An elegant block move, 96-100
An unsophisticated block move,
94-96
Architecture, Z-80, 18
A register operations, 205
Arithmetic
logical, and compare, 31-34
shift operation, 140
shifts, 139-140
ASCII representation of decimal
and hexadecimal, 132

Assembler

formats, 65-67

-generated strings, 151-152
Assembling, 64-65
Assembly-language

coding, 58

listing, typical, 26
Assembly operations, 64

B

Bed corrections, 127
Binary
data, 13
notation, 14
number, 13
Bit, 14
addressing, 57
instructions, 134, 205
least significant, 57
most significant, 57
operations, 39-40
Block
compare, 34, 155-158
input/output, 40
move, unsophisticated, 94-96
Breakpoint, 78
Buffers, I/0, 40
Bubble sort, 164-166
sample data, 166

Byte, 15
and word moves, 87-91
C
CALL

instructions, 36
stack action, 37
Carry flag, 206
Cassette data waveform, 180

221

CCF, 42
Chip, microprocessor, 15
CMPARE subroutine, 194-195
Coding
assembly language, 58
machine language, 58, 59-61
Command (s)
G, 82
L, 82
P, 82
T-BUG, 76-81
Comments, 67
Compare
operations, 128-130
two 8-bit operands, 206
Computers, shiftless, 134
Computer system, functional blocks,
11
Conversions
decimal/binary, 110
decimal/hexadecimal, 111
input and output, 147-150
Cpu, 11

D

Data
binary, 13
hexadecimal, 13
movement, 28-31
transfer for an LDDR, 98
transfer paths, 31
Decimal
arithmetic, 125-127
/binary conversions, 110
/hexadecimal conversions, 111
notation, 13
versus binary numbers, 109
Decrements and inerements, 206
Dedicated
locations, 16
memory addresses, 168
Decision making and jumps, 34-36
DEFB, 68
DEFL, 71
DEFM, 69
DEFS, 69
DEFW, 68
Desk checking, 62
Devices, I/0, 18
DI, 42
Direct addressing, 42, 49-51
involving HL, 51
Diserete inputs, 184-188
Display
memory format, 175

222

Display—econt
programming, 174-177

Divide register setup, 146

DIV16 subroutine, 196-198

E

Editing new programs, 63-64

Effective address, 52

El 42

EOU, 70

Examples of add and subtract flag
bit, 116

Exchanges, 206

F

Family tree, Z-80, 24-26

Fields, 39, 46

File of object code, 64

Filling or padding, 92-94

FILL subroutine, 100, 189-190

Flag register bit positions, 116

Flags, 22

Formats, assembler, 65-67

Form, symbolie, 61

Functional blocks of computer >
system, 11

G

G command, 79

Generalized string output, 152-153
General table structure, 161
Group, instruction, 28

H \
HALT, 42
Hexadecimal
data, 13
number, 13
HEXCV subroutines, 198-199

I

Immediate addressing, 43-45

Implied addressing, 42

Increments and decrements, 34

Index register addressing, 47

Indexed addressing, 42, 54-57 “

Indexing into tables, 160

Indirect, register, 48-49

Input ’
buffer, 154 :
and output conversions, 147-150
/output, 206

Inputting external data, 185

Instructional set, 15

Instruection (s), bit, 134
CALL, 36
group, 28
length of, 26-27
restart, 54-57
Z-80, 24-40
Interrupts, 206
I/0,11
buffers, 40
devices, 18
instruction format, 170
operations, 40
ports and port addressing, 171

J
Jump
action, relative, b3
and CALL format, 51
Jumps, 206

K
Keyboard
addressing, 169
decoding, 172-174

L

L command, 82
Least significant
bit, 57
registers, 30
Length of an instruction, 26-27
LIFO stack, 21
Loead, 28, 206
Loading, 65
and using T-BUG, 75-76
Locations, dedicated, 16
Logical
operations, 33, 207
shifting, 137-139
shift operation, 138

M

Machine-language coding, 58, 59-61
Mark II version of store “1"”
program, 72-74
Matrix decoding, 172
Memory, 11
access, 27
arrangement for 16-hit data, 30
mapping
TRS-80, 17
with I/0 addresses, 168
RAM, 16
ROM, 16
stack, 21
versus I/0, 167-172

Message buffer, 153
Microprocessor

chip, 15

Z-80, 16
Mnemonie, 29
Modifying instructions, 176
More pseudo-ops, 68-71
Most significant

bit, 57

registers, 30
Movement, data, 28-31
MOYVE subroutine, 101, 190-191
Moves, byte and word, 87-91
MULADD subroutine, 191-193
MTUL 16 subroutine, 195-196
MULSUB subroutine, 193-194
MULTEN, 138
Multiplication methods, 142
Multiple-precision adds by manual

methods, 120

Mysteries of the cassette, 179-183

N

New programs, editing, 63-64
NOP, 42
Notation

binary, 14

decimal, 13

two’s complement, 112
Number

binary, 13

formats, 108-110

hexadecimal, 13

0

Operations
assembly, 64
bit, 39-40
1/0, 40
logical, 33
shifting and bit, 38-40
stack, 36-38
Ordered tables, 163-165
ORG, 62
Outputting data to the external
world, 187
Overflow conditions, 114

P

Patching technique, 81-82
PC, 19-20

P command, 82

Precision instrument, 120-123
Prime/non-prime, 207
Pseudo-operation, 62

223

PUSH stack action, 38

R

RAM memory, 16
Real-world interfacing, 184
Register
accumulator, 19
addressing, 45-47
indirect, 48-49
least significant, 30
locations, T-BUG, 80
most significant, 30
pair
addressing, 47
data arrangements, 29
SP, 37
Relative
addressing, 52-53
jump action, 53
Reserved words, 65
Restart instruction, 54
ROM memory, 16
Rotate operation, 136
Rotates, 134

RST, 53
S
Sample
add operation, 32
table of

dise files, 162
T-BUG commands, 159
SCF, 42
Screen
addressing, 59
coordinate algorithm, 177
SEARCH subroutine, 199-200
Set, instructional, 15
SET, RESET, and TEST
subroutines, 200-202
Shifting and bit operations, 38-40
Shiftless computers, 134
Shifts, 207
in the Z-80, 39
Signed numbers, 110-113
SLA, 139
Software multiply and divide,
140-146
Scurce code, 64
SP, 20
register, 37
Square wave tones, 181

224

SRA, 139
Stack
action
CALL, 37
PUSH, 38
operations, 36-38, 103-107, 208
Store, 28, 208
String input, 154-155
Subroutine
action, 208
CMPARE, 194-195
DIV16,196-198
FILL, 189-190
format, 102
HEXCV, 198-199
MOVE, 101, 190-191
MULADD, 191-193
MUL16, 195-196
MULSUB, 193-194
SEARCH, 199-200
SET, RESET, and TEST,
200-202
Symbolic
address, 63
form, 61

T

Table searches, 158-161
T-BUG
commands, 76-81
register locations, 80
tape formats, 81-83
The bed representation, 126
TRS-80
Editor/Assembler, 61-63
memory mapping, 17
Two’s complement notation, 112
Typical assembly-language listing,
26

U
Unordered tables, 161-162

w
Words, reserved, 65

Z
Z-80
architecture, 18
family tree, 24-26
instructions, 24-40
microprocessor, 16

