

Sam Coup

INTRODUCTION

EDITING AND DEBUGGING C

WORD LEFT/RIGHT
 LAST LINE RECALL

JOIN program lines
 SPLIT program lines
 SEARCHING THE PROGRA
 LISTING PROGRAM REFE

PROGRAM SEARCH AND C
 LINE NUMBER TRACING
 SPEED IMPROVEMENTS

DATA HANDLING COMMANDS:

EDIT variables
 SORTING DATA
 DELETING STRINGS AND
 JOINING STRINGS AND

DATA HANDLING FUNCTIONS

SEARCHING STRING ARR
 FORMATTING NUMBERS w
 SVAL$ - converting n
 NVAL - converting st
 SHIFT$ - upper/lower
 EQU - case-insensiti

SOUND commands:

SOUND CLEAR
 RECORD SOUND TO a$
 RECORD SOUND OFF TO
 RECORD SOUND STOP
 BLITZ SOUND a$

GRAPHICS:
 IMPROVED PUT COMMAND
 COPY SCREEN - copy b
 FASTER ANIMATION wit
 ALTER DISPLAY - spli
 BLOCKS 2 - extra UDG
 CLS * - CLS to black
 IMPROVED CSIZE COMMA
 SCRAD function - scr

CONTENTS
è MasterBasic page - 1 –

 3

OMMANDS:

 5
5

 5
 6
M 7
RENCES 8
HANGE 9
 10
 11

 12
 13
 STRING ARRAYS 15
STRING ARRAYS 16

:

AYS with INARRAY 17
ith USING$ 19
umbers to strings 20
rings to numbers 21
 case conversion 22
ve comparison 22

 23
 23
a$ 23
 23
 23

 25
etween screens 27
h POKE 27
t-MODE display 28
s 29
 on white 29
ND 30
een address 30

Sam Coupè MasterBasic page - 2 –

PRINTERS and SCREEN DUMPS:

INTERRUPT-DRIVEN PRINTING 31
 SERIAL INPUT AND OUTPUT 32
 SCREEN DUMPS 33
 POUND and HASH characters 34

NEW TIMING FACILITIES:
(with MasterDOS and the SAMBus)

TIME + 35
 TIME - 35
 TICS function 35

STRUCTURED BASIC:

HIDING PROCEDURES and FUNCTIONS 37
 EXIT PROC 38
 EXIT DO 38
 EXIT FOR 39

DOS ENHANCEMENTS:

FILE COMPRESSION with SAVE MODE 40
 SAVING the DOS/MasterBASIC BOOT file 41
 FASTER MERGE with MERGE * 41
 Protecting CODE files 41
 FORMAT enhancement 42
 Faster DIR (drive number) 42

With MasterDOS:

RAM Disk speed improvements 43
 ALTER DEVICE drive TO drive 43
 RESERVING SERIAL FILE BUFFERS 44
 Alternative syntax for
 COPY, RENAME, BACKUP, MOVE 44
 FSTAT extensions 45
 DIR$ extension 45
 INP$ extension 45

SPECIAL PURPOSE FEATURES:

LOCN function - searching memory 46
 RESERVED function -
 reserving Heap space 47
 INKEY$ #0 improvement 47
 XVAR function - extra system variables 48
 DVAR extensions 52

APPENDIX A - ASCII and Keyword Codes 53

Sam Coupè MasterBasic page - 3 –

INTRODUCTION

Thank you for buying MasterBASIC. This program provides major
enhancements to the SAM Coupe's editing, data-handling, sound,
graphics and printing capabilities. I hope you like it.

The master disk supplied with this manual contains a program
called "autoMBM" that will combine MasterBASIC with your DOS
(preferably MasterDOS, but SAMDOS2 will do) to give a single
convenient BOOTable file. Before running the program, make sure
you have at least one disk available which has been formatted.
The first position in the directory should either be free or
contain a file you do not mind overwriting. This disk or disks
will hold working copies of the DOS/MasterBASIC file, with the
name "SD+MBASxx" or "MD+MBASxx" according to whether SAMDOS or
MasterDOS was used, with "xx" being the current version number.
To run the program, just place the supplied MasterBASIC disk into
drive 1 and press the F9 key. The program will tell you what to
do at each stage.

You can load your working copies of MasterBASIC by resetting the
computer, inserting the working disk and pressing the F9 key, as
you do to load DOS. If you have somehow forgotten to do this to
start with, you can over-write SAMDOS or MasterDOS in memory
using BOOT 1. (Note: Any RAM Disks you are using will be lost.)

The "autoMBM" program performs extensive linking with the DOS to
give full compatibility and improved DOS performance. When used
with MasterDOS, the DOS version number (PEEK DVAR 7) is increased
to 50 to reflect these changes. (Any known faults in MasterDOS
are corrected by the "autoMBM" program.) A few MasterDOS
features, such as an improved FORMAT, are provided even with a
SAMDOS/MasterBASIC combination (DVAR 7 will be set to 21 to
reflect this). However, it is a very good idea to purchase
MasterDOS if you have not already done so.

MasterBASIC requires ROM 20 or later (PRINT PEEK 15) to work.

The DOS/MasterBASIC BOOT file takes up two of the Coupe's 16K
pages. The DOS part is loaded into the highest free page, as
usual, and the MasterBASIC part goes into the next highest free
page. After altering the program as you wish using DVAR and XVAR
POKEs, the entire program can be SAVEd by a simple SAVE BOOT
command - see SAVE BOOT.

Ensure that you keep the original MasterBASIC disk in a safe
place - though naturally I will replace it if anything bad
happens to it. Just return the disk and enclose a stamped
addressed envelope. If you live abroad forget the stamp but
enclose an International Postal Reply Coupon instead.

If you bought this product directly from Betasoft, you are
already recorded as a customer with possible upgrade privileges.
If you bought it elsewhere, it would be a good idea to send me
your name and address and tell me where you got the product. This
information may be used to tell you about future products.

Thanks to the many users who contributed suggestions for an
extended BASIC. If your idea isn't implemented here, do not give
up hope - maybe I just haven't managed it yet! If you have any
suggestions, or problems with this program or manual, please let
me know. Don't assume that your problem is unimportant, or that I
must know about it already. I am always interested in your
comments or suggestions. Please write to:

Dr.Andrew Wright, 24 Wyche Ave, Kings Heath, BIRMINGHAM, B14 6LQ.

(C)1991 Copyright Andrew J.A. Wright.
First Edition, June 1991. All Rights Reserved.

This program took me a lot of time and effort to write, and I
hope it reflects that. The price is very reasonable. Please do
not give away my work - let your friends buy their own copy, so
that I can make a living and continue to develop new products
for this excellent machine!
Sam Coupè MasterBasic page - 4 –

Sam Coupè MasterBasic page - 5 –

EDITING AND DEBUGGING FEATURES

WORD LEFT or RIGHT

MasterBASIC allows you to move the cursor left or right by an
entire word by pressing SHIFT and the left or right cursor key.
This makes editing faster, particularly in long lines, and it is
also handy when you are INPUTing or EDITing (see EDIT in this
manual) a long text string.

The word left and right facility is provided by the use of two
new control codes, CHR$ 24 and CHR$ 25. When these codes are
received from the keyboard they tell the editor to perform the
word left or right action. MasterBASIC does the equivalent of KEY
36+70,24 and KEY 27+70,25 to assign these codes to the shifted
left and right cursors (see the Keyboard Map on page 180 of The
Coupe User's Guide). You can assign the same codes to other keys
if you like. Note that a word is taken to be any block of
characters delimited by spaces, or the start or end of the
editing area.

LAST LINE RECALL

MasterBASIC allows you to recall lines that you typed earlier by
holding down CNTRL and pressing the up-arrow cursor key. You can
then edit the line, if required, and enter it again. Once you get
used to this facility you will wonder how you ever managed
without it! For example, if you try to load a file from the wrong
disk you can simply insert a new disk and press CNTRL/up-arrow
and then RETURN to repeat the command. Or if you type something
and the computer doesn't do what you expect, you can check to see
if you really typed what you thought you did.

If you press CNTRL/up-arrow twice you will recall the line you
typed before the last line. In fact you can keep recalling lines
until eventually you go right "round" the line-storage buffer and
come back to where you were when you came in. (The buffer
capacity is 256 bytes.) You can also use CNTRL/down-arrow to move
from, say, the second-to-last line to the last line. Try it!

An easy way to transfer a few lines from one program to another
is to edit the lines you want to transfer, without making any
changes to them (if you know what I mean). Then LOAD the program
you want to add the lines to, and use CNTRL/up-arrow to recall
the lines and RETURN to add them to the listing.

JOIN program lines

See also: SPLIT program lines

e.g. JOIN 100
 JOIN

This command joins together the specified line (or, if one is not
specified, the line with the current line cursor) and the one
below, if there is one. The JOINed-on line will lose its line
number, and will be separated from the text of the first line by
the normal inter-statement marker, a colon.

Sam Coupè MasterBasic page - 6 –

SPLIT program lines

MasterBASIC allows program lines to be split by typing a slash
(/) at the position for the "cut" and pressing RETURN. The slash
must be the first non-space character after the colon inter-
statement marker. The part of the line before the slash will be
put into the listing. The remainder of the line, with a copy of
the original line number, will remain in the editing area. The
slash disappears automatically. The cursor will be just to the
right of the line number, ready for you to alter it before
pressing RETURN (unless you want to overwrite the first part of
the line in the listing). If you enter:

10 PRINT "hello": GO TO 10:/ PRINT "goodbye"

Then

10 PRINT "hello": GO TO 10

will appear in the listing, and

10 (cursor)PRINT "goodbye"

will remain at the bottom of the screen.

Sam Coupè MasterBasic page - 7 –

SEARCHING THE PROGRAM

REF (reference)
REF (reference),first line
REF (reference),first line,last line

This command is used to search a program for a specified
"reference", which can be a variable, number, or sequence of
characters. You can specify the first line to search or limit a
search to a range of lines. When the reference is located, the
line containing it will appear in the edit line with the cursor
just after the reference. Simply press RETURN if you do not wish
to alter the line. To find any more examples of the reference,
press RETURN again, and the search will continue, until
eventually "O.K." appears. If you enter a command, rather than
pressing RETURN, REF assumes that you are finished, and you will
have to re-enter the REF command to look for more instances.

In the examples below, a character that cannot be a letter, a
number or "$" if the match is to succeed is shown by "_ ".

REF a$ Looks for: a$
 REF a$,100 Looks for: a$, starting at line 100
 REF a$,5,90 Looks for: a$, from line 5 to 90
 REF count Looks for: _count_
 REF "count" Looks for: count
 REF 1 Looks for: 1 (invisible form)
 REF "1" Looks for: 1
 REF 12*4 Looks for: 12 (invisible form)*4(invisible form)
 REF (a$) Looks for: value of a$ (e.g. if a$="fish", looks
 for "fish", not "a$".
 REF (x) Looks for: value of x,such as 10(invisible form)

It does not matter whether any letters in the reference are in
capitals or not. For example, both REF abc$ and REF ABC$ will
find "abc$", "ABC$" or "AbC$".

When looking for numeric variables, the requirement for the
target to start and finish with a character that is not a letter
or a number prevents, confusion. between, for example, "count"
and "account'' or "count '. When looking; for numbers, the search
also looks for the invisible 5-byte form that follows them in a
Basic line, again preventing confusion. Variables and numbers are
not looked for inside strings - so if you REF zebra you will not
find "The animal is a zebra'. To look for a sequence of
characters anywhere in the program, including inside strings,
just enclose the sequence in, quotes - e.g. REF "zebra" or, if
you wish to use a string variable, enclose its name in brackets
so that REF can tell you don't wish to search for references to
the name of the variable, but to its value.

If you want to search for a keyword, the easiest way is to type
something like: REF print" and then press RETURN. The line will
fail syntax and the "token" form of PRINT will appear. Backspace
twice and add a quote mark before PRINT. (This will cease to
appear as a keyword, but this doesn't matter.) Now press RETURN.
You could also use: REF (CHR$ 187) - the internal token code for
PRINT. See Appendix A for a list of these codes.

Sam Coupè MasterBasic page - 8 –

LISTING PROGRAM REFERENCES

PRINT REF (reference)

LPRINT REF (reference)

See also: REF

PRINT REF (reference) gives a list of the line numbers in which a
specified "reference" occurs. This can be a variable name, a
number, or a sequence of characters. PRINT REF is related to the
REF command explained in this manual. See REF for more detail on
what a "reference" can be. PRINT REF can specify a range of line
numbers in the same way that REF can. For example:

PRINT REF test,100,500

If the reference is used more than once in a line, the line
number will be given more than once too. For example, if your
program is:

10 FOR n=1 TO 10: PRINT n
 20 NEXT n

then PRINT REF n will give:
 10
 10
 20

LPRINT REF n would send the list to the printer.

Sam Coupè MasterBasic page - 9 –

PROGRAM SEARCH AND CHANGE

ALTER (reference) TO (reference)

This command looks through the program for all occurrences of the
first reference and alters them to the second reference. A
"reference" may be a variable, number, or sequence of characters.
(More details on the requirements for a successful search are
given under REF.) A range of line numbers can be specified, as
with REF. Below are some examples:

ALTER a$ TO andy$

will alter any occurrences of the variable name "a$" to "andy$".

ALTER count TO c,200

will alter the numeric variable name or procedure name "count" to
"c", starting at line 200. Note that "account" or "counts" will
not be affected.

ALTER 1 TO 23

will alter the number 1 to 23, and the invisible five-byte form
which follows will also be changed. However:

ALTER 1 TO "23"

would replace "1" and the invisible five-byte form with just the
two characters "23", and the program would not work correctly,
although the altered lines would appear to be correct. In all the
above cases, characters in the program enclosed in quote marks
will not be found; it is assumed that you wish to alter variable
names, procedure names, or numbers. However, if you alter a
string of characters to something else, as in:

ALTER "break to stop" TO "any key to stop"

the string will be found anywhere in the program, even inside
quotes. (The quote marks themselves are not looked for.) If you
wish to do something like this, but with a variable in place of
one or both literal strings, you must enclose its name in
brackets so that ALTER can tell you don't want to alter the name
of the variable, but something specified by its contents. For
example, to correct a spelling error:

LET s$="excecute": ALTER (s$) TO "execute"

If you wish to use ALTER with strings containing keywords, you
can enter them using the method explained for REF.

To DELETE a reference, use the null string, e.g.:

ALTER "word" TO ""

Sam Coupè MasterBasic page - 10 –

Ordinary numbers in a program are always followed by an invisible
CHR$ 14 and the value of the number in a special invisible five-
byte form that can be handled faster by the computer than the
digits you can actually see. One consequence of this is that
numbers often take more room than variables or expressions, and
you can save memory by altering any number to VAL "number". An
extra 2 bytes are used by the internal form of VAL, and 2 are
used by the quotes, but we still save 2 bytes. To do this for all
numbers from 1 to 100, we could use the following (on your disk
as "alter"):

1 LET spare=FREE
 2 FOR n=1 TO 100
 3 PRINT AT 10,10;n
 4 ALTER (n) TO (CHR$ 255+CHR$ 110+CHR$ 34+STR$ n+CHR$ 34),8
 5 NEXT n
 6 PRINT "Saved ";FREE-spare;" bytes"
 7 STOP

(CHR$ 255+CHR$ 110 is the internal code for VAL, and CHR$ 34 is
the code for a quote mark - see Appendix A.)

The "n" in line 3 is in brackets so that ALTER knows that we wish
to look for the current value of the variable, not the variable
name itself.

NOTE: Be cautious when using ALTER. You can make irreversible
changes to a program if you are careless. For example, if you
change all uses of the numeric variable "apple" to "a" and then
realise that you have already used the variable name "a", you
cannot simply alter all uses of "a" to "apple" to rectify
matters! You should have checked for previous use of "a" using
the REF or PRINT REF command.

LINE NUMBER TRACING

LINE
 LINE delay
 LINE STEP
 LINE OFF

LINE controls display of the current line and statement number
while a program is running. This feature, called TRACE or TRON in
some other Basics, is useful for debugging a program. The
information is displayed on the lower right-hand side of the
screen, in PEN 0 on PAPER 15.

LINE used by itself shows the information without any delays.
This may be too fast to read, so you can specify a delay to make
life easier. LINE 1 will give a very short delay, LINE 10 is
longer and LINE 200 is very long. You can also use LINE STEP -
this will display the number of the line about to be executed and
then wait for you to press CNTRL before continuing. You can hold
down the CNTRL key to let the program run.

LINE OFF turns off the line number output.

Sam Coupè MasterBasic page - 11 –

SPEED IMPROVEMENTS

SAM BASIC keeps internal information on the locations of
procedures and functions, and the values of LABELs. This has to
be updated after the program is edited, before it can be
executed. In long programs this can introduce an annoying delay
before the program starts to do anything. MasterBASIC does this
updating rather faster, especially with long programs, which
makes writing and testing such programs easier. MasterBASIC also
uses a more sophisticated method of moving memory around, which
amongst other things speeds up the addition or deletion of lines
in the listing. See POKE for more information on this
improvement.

Cursor movement has been speeded up in LIST FORMAT 1 and 2. This
is particularly noticeable when editing long lines in MODE 3.

Sam Coupè MasterBasic page - 12 –

DATA-HANDLING COMMANDS

EDIT variable

The EDIT command can be used to modify the values of variables
that already exist. It is particularly useful when you have INPUT
a long string and then discover an error in it. EDIT will give
you the string back, with your cursor at the end of the line
ready to alter it. Without EDIT, you would normally have to re-
type the entire string. Here are some simple examples:

10 LET name$="Jon Brown"
 20 EDIT name$
 30 PRINT name$
 40 LET num=365.253
 50 EDIT num
 60 PRINT num

EDIT has a syntax very similar to that of INPUT. You can use
semi-colons, commas, AT, TAB, LINE, # stream and prompt strings
in the same way as you can with INPUT. However, only one variable
can be edited with a single statement; if you use more, all
except the first one are treated as INPUT variables.

The following example (which is on your disk as "edit") lets you
create an array and then edit it, as you might want to do with a
database:

10 DIM db$(10,15)
 20 FOR n=1 TO 10
 30 INPUT db$(n)
 40 NEXT n
 50 PRINT "Editing"
 60 PRINT
 70 DO
 80 INPUT "Record number? ";rn
 90 EXIT IF rn=0
 100 EDIT ("Record ";rn;" ");db$(rn)
 110 LOOP

If the variable specified in the EDIT command does not exist, the
command is exactly equivalent to INPUT.

Sam Coupè MasterBasic page - 13 –

SORTING DATA

SORT a$
or SORT ABS a$
or SORT ABS INVERSE a$

SORT arranges strings in a string array or letters in an ordinary
string into ascending or descending order. It can also be used to
sort numbers coded as strings. The command's use with string
arrays will be discussed first. Here is a program to generate an
array of 100 random 10-.letter strings (on your disk as "sort"):

100 DIM a$(100,10)
 110 FOR str=1 TO 100
 120 FOR ltr=1 TO 10
 130 LET a$(str,ltr)=CHR$(RND(25)+65)
 140 NEXT ltr
 150 NEXT str
 200 FOR str=1 TO 100
 210 PRINT a$(str)
 220 NEXT str

As soon as the array has been created - which will take a little
while - it is printed for you. Now add: 190 SORT a$ and then GO
TO 190 and the array will be SORTed and printed again (avoid RUN
or you will lose your array). The time taken to SORT this array
is about 0.14 of a second; this time will increase relatively
little if you use longer strings. The number of strings is more
important - 200 will take about 0.46 seconds, 400 about 1.6
seconds and 800 about 6 seconds.

The normal SORT does not care if letters are in capitals or not.
(If you want to get technical, bit 5 of each character's CODE is
irrelevant to sort order, so CHR$ 96-127 are seen as equal to
CHR$ 64-95.) This is probably what you want for sorting text, but
there is another option that is more suitable for other kinds of
data: SORT ABS a$. With this option, strings are sorted entirely
according to their ASCII CODEs, so that "A" comes before "a", and
"Z" also comes before "a" - see the list in Appendix A of this
manual. This is the form to use if you are sorting numbers coded
as strings using the SVAL$ function (see SVAL$, and below) or
other kinds of coded data. The sort speed is also slightly better
using this ABS option.

SORT ABS can also do an INVERSE sort - try changing line 190 to
190 SORT ABS INVERSE a$. The strings will be sorted into reverse
order.

You can select any given block of strings to sort with a slicer.
For example:

SORT a$(1 TO 20)

will sort only the first 20 strings and:

SORT a$(30 TO)

will sort all the strings from string 30 onwards.

Sam Coupè MasterBasic page - 14 –

It is also possible to sort according to particular parts of the
strings:

SORT a$()(2 TO)

will sort the entire array on the basis of the second and
subsequent letters of each string - the first letter is not taken
into account, although it is moved with the rest of the string.
(Note that we had to use two slicers even though we wanted to
sort the whole array. This is because SORT expects the second of
two slicers to specify the part of the string to consider.)

Complex forms are possible, such as: SORT ABS q$(4 TO 9)(1 TO 5)

SORT makes it very easy to develop a fast and flexible data base.
In this context, it is common to call the array a "file" and its
strings "records". Areas of each string would probably be
reserved for particular kinds of information, and would be called
"fields". You would often want to use relatively long strings; a
file of names and addresses and other data - say, age - might be
set up so that the first 20 characters in each record (string)
were the person's name, the next 20 their address, and the last
character their age. Since age is bound to be in the range 0 to
255, we can use something like:

LET a$(str,41)=CHR$ age

If we wish to place the age data into record STR. Such storage
of numbers is simple and saves memory, but suppose we needed to
store something more complex, like a bank balance? If you use:

LET a$(str,41 TO 46)=STR$ balance

the information will be stored in the string, but it will be
left-justified (the "9" of a 9 Pound balance will be in position
41, as will the "1" of a 100 Pound balance). This will prevent
SORT from working correctly on this field. The answer is to
format everything neatly so that any decimal points line up, and
we have all the units, tens and hundreds in the same position for
each string. This is easy with the formatting function, USING$:

LET a$(str,41 TO 46)=USING$("000.00",balance)

(See USING$ for a complete description of this function, and
SVAL$ for information on string-coded numbers.) You can now do
things like sort a set of records on the basis of age, or bank
balance, and then sort the top 20 into alphabetical order. Note
that because the CODE for "1" comes before that for "2", SORT
will give smaller numbers first, and SORT INVERSE will give
larger numbers first, when the numbers are represented as strings
in this way. You will need to be careful with the fielding of
your data - e.g. make sure that the first letter of all the last
names occurs in the same position in each string.

SORT will also work on ordinary strings and one dimensional
string arrays:

INPUT s$: SORT s$: PRINT s$

Sam Coupè MasterBasic page - 15 –

will give " BdeFgglors" if "Fred Bloggs" is input. This doesn't
look very useful, but it allows SORT to work on certain kinds of
numeric data which can be stored most efficiently in strings
using, for example:

LET s$(position) = CHR$(data)

You would probably use the SORT ABS form.

Below is a program to demonstrate sorting of numbers coded as
strings. See also: SVAL$ and NVAL.

1000 DIM num$(100,5)
 1010 FOR n=1 TO 100
 1020 LET num$(n)=SVAL$(RND*100-50,5)
 1030 NEXT n
 1040 PRINT "Sorting"
 1050 SORT ABS num$
 1060 FOR n=1 TO 100
 1070 PRINT NVAL num$(n) 1080 NEXT n

Note that mixed positive and negative numbers can be dealt with.
Numbers coded in this way can be sorted about 4 times faster than
"real" numbers could be - which is one reason that I have not
implemented SORT for normal numeric arrays.

DELETING STRINGS AND STRING ARRAYS

DELETE a$
DELETE a$(start TO end)

DELETE is used to remove part or all of a string or string array.
Some examples are on your disk as "delete". For example:

10 LET a$="123456789"
 20 DELETE a$(3 TO 6)
 30 PRINT a$

This could be done by other methods, but not so simply or
quickly.

DELETE is ideal for removing unwanted information from a database
stored in a string array. Here it is used to delete the fifth
string:

110 DIM dat$(10,10)
 120 FOR n=1 TO 10
 130 LET dat$(n)=STR$ n+" gwerty"
 140 NEXT n
 150 DELETE dat$(5)
 160 FOR n=1 TO LENGTH(l,dat$)
 170 PRINT dat$(n)
 180 NEXT n

LENGTH is a SAM BASIC function for telling you the size of an
array - useful when this keeps changing! Try altering line 50 to
DELETE dat$(TO 3) or DELETE dat$(3 TO 6) or DELETE dat$.

Sam Coupè MasterBasic page - 16 –

JOINING STRINGS AND STRING ARRAYS

JOIN TO a$,b$

JOIN TO is used to add a copy of the second string or string
array onto the first. When using strings, JOIN TO a$,b$ is
equivalent to LET a$=a$+b$, but it is faster and requires less
free memory. Try this program (which is on your disk as "join"):

10 LET a$="",b$=STRING$(100,"a")
 20 DO
 30 JOIN TO a$,a$
 40 PRINT AT 10,10;LEN a$
 50 LOOP

Now replace line 30 with the line below and try it again:

30 LET a$=a$+b$

Another example shows that the second string is unchanged:

110 LET a$="abcdefg",b$="123456"
 120 JOIN TO a$,b$
 130 PRINT a$,b$

String arrays can be joined together provided the strings in both
arrays are the same length. For example:

210 DIM fi$(10,8),se$(1,8)
 220 LET se$(1)="testing"
 230 JOIN TO fi$,se$
 240 PRINT fi$(11),se$(1)

Note that the array fi$ now has 11 strings in it, not 10. The
function LENGTH (see The User's Guide) can be used to keep track
of changing array sizes. JOIN TO is useful for adding new data to
an existing array, either one string at a time, as in the
previous example, or by merging two entire arrays.

Sam Coupè MasterBasic page - 17 –

DATA-HANDLING FUNCTIONS

SEARCHING STRING ARRAYS

INARRAY (a$(start element),target$)
INARRAY (a$(start element,slicer),target$)
INARRAY (a$(start element,slicer),target$,ABS)

See also: INSTR function in The User's Guide.

This function searches a specified string array for a target
string, and returns the number of the first string in which it is
contained, or 0 if it is not found. It is essentially an array
version of INSTR; I suggest you make sure that you understand
INSTR before you try out INARRAY - see The User's Guide.

The example below (on your disk as "inarray") will find all the
"howdy"s in an array:

10 DIM a$(20,10)
 20 LET a$(RND*19+1)="howdy"
 REM repeat the above for more targets
 30 LET num=l
 40 DO
 50 LET num=INARRAY(a$(num),"howdy")
 60 EXIT IF num=0
 70 PRINT num;" ";a$(num)
 80 LET num=num+1
 90 LOOP UNTIL num >20

The "a$(num)" with num=1 in line 50 specifies that the search
should begin with the first string in the array. When an
occurrence of the target string is found, it will be printed, and
the search will continue from the next string (num+l). The EXIT
IF will jump out of the loop when no more "howdy"s are found, and
the loop will finish anyway if we try to continue the search
beyond the last element (LOOP UNTIL num>20).

The example above used case-insensitive matching, so that "HOWDY"
would be found too. To specify absolutely precisely the string to
match on, follow it with ABS - e.g.

70 LET num=INARRAY(a$(l),"test",ABS)

This also has the advantage of being faster than the first
method, but you are unlikely to notice the difference unless you
are using very large arrays.

The whole of each string in the array will be searched for the
target unless you specify otherwise. If you wish to limit the
search to a specific section of each string, use a slicer like

50 LET num=INARRAY(a$(num,3 TO 7),"howdy")

(This will fail to find anything in our example array, where the
"howdy"s are always in the first five characters of a string;
i.e. a$(num,l TO 5).) Use of a slicer increases the search speed,

Sam Coupè MasterBasic page - 18 –

and it also becomes possible to dedicate different parts of the
strings to different kinds of data, such as street names or town
names, and search each region separately. This avoids problems
such as searching for "Oxford" and finding a string containing
"Oxford Road".

You can replace some of the characters in the string being looked
for with "#", which means "don't care", as it does for INSTR. The
only time " " (literally) is looked for is when it is the first
character of the string being looked for. If you have an array in
which two items of data - say, surnames and towns - both start at
a fixed position within each string, you can search for a
combination of items - such as "Brown" and "London" - by looking
for a long string containing both of the items, separated by the
required number of "#" characters. The following example does
this. The first section lets you create a small array of data. In
each string, the first 20 characters are reserved for a name, and
the last 15 hold a town.

110 LET namelen=20,townlen=15
 120 DIM d$(l0,namelen+townlen)
 130 FOR n=1 TO 10
 140 INPUT "name? ";n$
 150 INPUT "town? ";t$
 160 LET d$(n,l TO namelen)=n$
 170 LET d$(n,namelen+l TO)=t$
 180 NEXT n
 190 PRINT "array filled"

The following section lets you look for a particular combination
of name and address. The function STRING$ generates the correct
number of "#" characters to separate the start of the name and
the start of the town by 20 characters.

200 DO
 205 INPUT "name? ";n$
 210 INPUT "town? ";t$
 220 LET s$=n$+STRING$(namelen-LEN n$,"#")+t$
 230 LET loc=INARRAY(d$(1),s$)
 240 IF loc=0 THEN
 PRINT "not found"
 ELSE
 PRINT loc;" ";d$(loc)
 250 LOOP

Note: INARRAY will not work with arrays of more than two
dimensions. For example, it will not work on the array A$(8,9,5).

Note: An XVAR can be used to find the exact position within the
array element that a string was found at - see XVAR.

Sam Coupè MasterBasic page - 19 –

USING$(format$,number)

This function converts a number to a string with a fixed number
of characters before and after the decimal point. The desired
format is specified by a string in which hash signs (#) stand for
leading spaces, zeros stand for leading zeros, and either can be
used for showing the number of digits after the decimal point:

10 FOR n=1 TO 18: LET x=RND*100
 20 PRINT x,USING$("###.##°',x): NEXT n

Note how much neater the formatted numbers are. By comparing the
two columns, you will see that USING$ rounds to the nearest
printed digit. Experiment with different strings for formatting.
You can use a string variable if you like. Some possible format
strings, and their output (with spaces shown by "s") for the
number 12.3456 are:

"##.#" 12.3
 "###.#" s12.3
 "####.##" ss12.35
 "11000.00" 012.35
 "00" 12
 "$00.00" $12.35
 "110.00" $..3

The second-to-last example shows that it is possible to include
leading characters in the format string other than the usual hash
and "0". The last example demonstrated an output with a "%" sign
which indicates overflow of the specified format. Very large
numbers like 1E+8 will always overflow. Very small numbers like
lE-8 are handled by conversion to their non-exponent forms
automatically. Trailing spaces in the format string are ignored -
this is useful if you want to keep an array of format strings.

The advantage of USING$ over the PRINT USING provided by some
BASICs is that it can be used with commands like LET to assign
numeric data to a fixed part of a string in a known format. SORT
can be used on such data when it is part of a string array.

Sam Coupè MasterBasic page - 20 –

SVAL$(number,characters)

See also: NVAL a$ function

This function converts numbers into 2, 3, 4 or 5-character
strings, allowing compact storage of numeric data in a fixed
space. NVAL provides the reverse conversion. Coding numbers as
strings can be particularly convenient in random-access files, as
implemented with MasterDOS, or in string arrays, since you always
know how much space a value will take in the file, and you can
place numeric information alongside associated string
information. This is convenient as it allows each record in a
database, or string in an array, to contain all relevant
information. See also the USING$ function.

An array containing string-coded numbers can be SORTed according
to their value, and it may be more compact than an equivalent
numeric array, in which 5 bytes are always used to store each
number. (For economy of disk space when saving numeric arrays,
see SAVE MODE.)

SVAL$ allows you to set a balance between precision and memory
usage. Below are the characteristics of the four length options:

2 Characters: Only whole positive numbers between 0 and 65535 can
be encoded. Floating-point numbers are converted to whole numbers
where possible. You might consider pre-scaling values before
using this option - you can multiply up something like 87.643 to
give 8764.3. SVAL$ would use the 8764 part of this to produce a
two-character string; subsequent use of NVAL and division by 100
would give 87.64, which is acceptable accuracy for many purposes.

3 Characters: The complete range of positive and negative numbers
(about 10E-39 to 10E38) is encoded, but only about the first 5
digits in the number will be correct.

4 Characters: As above, but first 7 digits are usually correct.

5 Characters: As above, but the first 9 digits are usually
correct. This is the normal internal numeric precision of the
Coup6. Not all the digits are displayable by printing the value,
but numbers are stored and manipulated at this level of accuracy.

Normal numbers occupy 5 bytes. This example shows the precision
of 2, 3 and 4-character SVAL$s (it is on your disk as "sval").

10 MODE 3
 20 CSIZE 8,9
 30 PRINT " Original 2 chars 3 chars 4 chars"
 40 FOR n=1 TO 15
 50 LET x=RND*60000
 60 LET two$=SVAL$(x,2),three$=SVAL$(x,3),four$=SVAL$(x,4)
 70 PRINT x;TAB 11;NVAL two$;
 80 PRINT TAB 22;NVAL three$;TAB 33;NVAL four$
 90 NEXT n

The string result of SVAL$ will often give an "Invalid colour"
report if an attempt is made to print it, since it may contain
characters equivalent to invalid print control codes.

Sam Coupè MasterBasic page - 21 –

NVAL a$

This function converts 2-5 character strings created by SVAL$
back into numbers. For example:

PRINT LAVAL abc$
or LET xyz=LAVAL da$(56 TO 57)

See SVAL$ for more details and a working example.

Sam Coupè MasterBasic page - 22 –

SHIFT$(a$,n)

This function is used to alter the capitalization of text
strings, or remove inconvenient control codes from them. The
action taken is determined by the number you specify in the
brackets.

1 Forces upper-case. E.g. PRINT SHIFT$("Fred Bloggs",1) gives
 "FRED BLOGGS".
2 Forces lower-case. E.g. PRINT SHIFT$("Fred is 23",2) gives
 "fred is 23".
3 Forces case reversal. E.g. PRINT SHIFT$("AaBb test",3) gives
 "aAbB TEST".
4 Normally, replaces control codes with a full stop and replaces
 characters above 127 with their character code minus 128.
 However, POKE DVAR 24,1 will make characters above 127 print
 as block graphics and/or user-defined graphics instead.
 (BLOCKS 0 or 1 or 2 will modify the results.) POKE DVAR 24,0
 for the original effect. The character used to replace control
 codes can be modified by POKE DVAR 25,(character).

Options 1 and 2 are useful when checking input. For example:

10 GET i$
 20 IF SHIFT$(i$,1)="Y" THEN PRINT "Erasing...": etc.

This will work with either "y" or "Y".

Option 4 is useful when you want to look through memory quickly.
For example, to look for hidden messages in the DOS:

10 FOR n=DVAR 0 TO DVAR 15000 STEP 256
 20 LET a$=MEM$(n TO n+255)
 30 PRINT SHIFT$(a$,4)
 40 NEXT n

You will usually find that PRINT a$ by itself will fail because
some of the characters are control codes.

SHIFT$ will only work with strings of 16383 characters or less.

EQU(a$,b$)

This function compares two strings to see if they are the same.
Any differences in capitalization are ignored. For example:

10 DO: INPUT nm$
 20 IF EQU(nm$,"Jones") THEN PRINT "yes": ELSE PRINT "no"
 30 LOOP

This will say yes to "jONES", "JONES" or "jOnEs". The function is
convenient for checking input without forcing it into a
particular format.

Sam Coupè MasterBasic page - 23 –

SOUND COMMANDS

SOUND CLEAR
SOUND CLEAR size
RECORD SOUND TO a$
RECORD SOUND OFF TO a$
RECORD SOUND STOP

MasterBASIC allows sound data produced by the SOUND and PAUSE
commands to be stored in strings for playing later under
interrupt control. In other words, sound can be set going and
then left to continue without further effort on the part of the
program. Your disk contains a file called "soundFX" which is
basically the sound effects section of the old Coupé demo with a
few extra lines. The extra lines are these;

10 SOUND CLEAR 2048
 20 RECORD SOUND PFF TO snd$
 30 PRINT “Preparing sound data...”
 40 GO SUB 100
 50 RECORD SOUND STOP
 60 BLITZ SOUND snd$

The first line allocates a storage area 2048 bytes long for
interrupt-driven sounds. Space is allocated in 1K (1024-byte)
units - the value you supply will be rounded up if need be. This
buffer space will be used later by BLITZ SOUND. Line 20 has the
effect of making all SOUND and PAUSE commands add special codes
to the string snd$, without having their normal effect, since OFF
is used in the line. This makes the subroutine execute faster. If
you omit the OFF the data will still be added to the string but
the SOUNDs and the PAUSEs that determine their length will be
acted on as well.

Line 50 tells the Coup6 to stop adding any further data to the
string. At this point all the data that would have been sent to
the sound chip, plus extra codes denoting any PAUSEs, have been
stored in snd$. BLITZ SOUND snd$ transfers this data to the
buffer we prepared earlier, and the computer then doles out this
data as required. Meanwhile you can edit, load another program,
or create a graphic display of some kind.

Fifty times a second, the Coupé looks at the sound buffer. If it
finds a PAUSE code it simply sets up a counter showing how many
50ths of a second it can ignore the sound chip for. Otherwise
data is sent to the chip until another PAUSE code is found or the
data runs out. So if there are no PAUSEs in your original BASIC,
there will be no PAUSE codes in the sound buffer and the whole
sound will take a fraction of a second. You must use PAUSE!

If your sound buffer is big enough (and it can be up to 256K)
hours of sound can be stored. Multiple BLITZ SOUND commands can
be used to queue data for the sound chip. If the buffer becomes
full, BLITZ SOUND will wait until some of the data is used and
enough room becomes available.

To change the sound buffer size, simply use SOUND CLEAR with a

Sam Coupè MasterBasic page - 24 –

different value. Any data in the buffer will be lost. SOUND CLEAR
0 will delete the buffer and free the memory for other uses.
SOUND CLEAR used on its own will clear the buffer and silence the
sound chip, without altering the buffer size.
Strings like snd$ can be saved to disk and reloaded later, using
SAVE and LOAD "name" DATA snd$. Only lines 10 and 70 of the
example need be retained.

Many existing sound routines can be converted for BLITZ SOUND.
The main requirement is that timing is controlled by PAUSE, and
not by FOR-NEXT loops or the speed of execution of BASIC. It is
also a good idea not to generate hundreds of numbers per note, or
the sound string will become quite long.

If a sound routine sounds satisfactory before you start recording
it, and then sounds odd while recording is turned on (with RECORD
SOUND TO a$) don't worry - this is due to the extra delay caused
by adding the data to the sound string. The delay will not occur
when you use BLITZ SOUND to replay the string.

NEW will silence the sound chip, so avoid it if you want the
sound to continue. RUN and CLEAR normally silence the sound chip,
but if sound is being generated by BLITZ SOUND this is prevented.
RUN and CLEAR turn off RECORD SOUND TO.

The MasterBASIC disk contains more demonstrations of the use of
BLITZ SOUND which I hope you will find interesting. Their names
all start with "sound".

Sam Coupè MasterBasic page - 25 –

GRAPHICS

IMPROVED PUT COMMAND

The PUT command built into the Coupe's ROM allows blocks of
graphics (usually read from the screen using GRAB) to be placed
anywhere on the screen. MasterDOS includes a faster version of
PUT which is used automatically in most cases. Since there is a
slight chance that this change in speed could make existing
programs too fast, I have also included a way of turning off the
new PUT and reverting to the ROM version of the command. In the
example below, I have used this facility to demonstrate the speed
difference with the new version. (This listing is on your disk as
"put".)

10 DO
 20 POKE DPEEK XVAR 0,0
 30 PRINT AT 0,10;"ROM "
 40 movcirc
 50 POKE DPEEK XVAR 0,172
 60 PRINT AT 0,10;"MBAS"
 70 movcirc
 80 LOOP

100 DEF PROC movcirc
 110 CIRCLE 20,154,18
 120 FILL 20,154
 130 GRAB cir$,0,173,40,40
 140 FOR n=0 TO 100
 150 PUT n*2,n+20,cir$
 160 NEXT n
 170 END PROC

The "MBAS" version moves the circle about 40% faster. (This
difference was at one time more remarkable, but since then I have
improved a general "move memory" routine that speeds up even the
ROM version of PUT. The "MBAS" version of MOVCIRC runs about 75%
faster than the same procedure does without MasterBASIC.)

For advanced users:

The MasterBASIC version of PUT is unable to handle string data
that straddles two of the I6K "pages" that make up the Coup6's
RAM. These cases are automatically handled by the ROM version of
the command. This could make execution speed unpredictable. If
this worries you, you can check the location in memory of the
strings you are using, by e.g. PRINT LENGTH (O,circ$) and create
dummy strings before doing a GRAB if the string straddles a page
boundary, or you can use POKE to place the strings at known
positions above RAMTOP, and use for example:

PUT x,y,MEM$(65536 TO 65826).

Sometimes it is desirable to save the area of screen about to be
overwritten by PUT, for example in designing a pull-down menu
system. This would usually be done using GRAB, but MasterBasic
provides a faster way of doing things with a combination PUT and
GRAB that swaps the data in the string being PUT with what is

Sam Coupè MasterBasic page - 26 –

already on the screen. Doing this again will reverse the swap and
restore the original screen, as shown here:

(This example is on your disk as "put grabl".)

10 PAPER 1
 20 CLS
 30 CIRCLE 16,155,15
 40 GRAB bl$,0,173,32,48
 50 PAPER 15
 60 CLS
 130 GRAB m$,0,173,32,48
 140 CLS #
 150 LIST
 160 DO
 170 PUT GRAB 10,160,b1$,m$
 180 PAUSE 50
 190 LOOP

The first four lines give us a blue block with a circle on it in
bl$, and an ordinary PUT can place it anywhere on the screen -
try PUT 100,100,b1$. The next three lines give us a block of the
same size in m$. This block will be used as a "mask" to determine
exactly which parts of bl$ will be swapped with the screen. PUT
GRAB has to use a mask, so we need one even if we want to use all
of bl$. All bits which are 1 in the mask will let the
corresponding bit in bl$ be swapped with the screen, and all bits
which are 0 in the mask will prevent their corresponding bits
being swapped. In the example the mask has the colour PEN 15;
since 15 is 1111 in binary, the mask is solid is and all of bl$
is used.

We can modify the program to use an irregular mask. The mask will
be partly PEN 0 and partly PEN 15. Add or modify these lines, or
load "put grab2" from your disk.

50 PAPER 0
 60 CLS
 70 PEN 15
 80 PLOT 0,155
 90 DRAW 30,10
 100 DRAW -10,-40
 110 DRAW TO 0,155,-1
 120 FILL PEN 15;6,155

You may find it interesting to PUT 100,100,m$ to see the shape of
the mask.

You can get interesting effects by making the mask other than PEN
0 and PEN 15. Try altering the PEN specified in line 120 and/or
line 50 - this will give a "transparent" mask, because some of
the bits making up pixels on the screen are combined with bits
from bl$, giving a composite image with modified colours.

Finally, I'd like to remind you that most of the principles
outlined above work with the normal PUT. If you remove the GRAB
from line 170, bl$ will still be PUT, but it cannot be removed by
a second PUT.

Sam Coupè MasterBasic page - 27 –

COPY SCREEN number TO number

This command copies whatever is on the first screen to the second
screen. For example (on your disk as "copyscr"):

10 MODE 4
 20 CLOSE SCREEN 2: OPEN SCREEN 2,4
 30 CIRCLE 128,88,70: FILL 128,88
 40 SCREEN 2: PAUSE 50
 50 COPY SCREEN 1 TO 2: PAUSE 50
 60 SCREEN 1

The screen is copied very quickly in the example above, because
both source and destination screens are in MODE 4, and no
conversion work needs to be done as the image is copied.

Now alter line 20 to finish with OPEN SCREEN ,2,2 or 2,1 and run
the program again. This illustrates one of the main purposes of
COPY SCREEN - the conversion of an image created using commands
specific to MODEs 3 and 4, such as FILL, PUT or SCROLL, to a less
memory-hungry MODE 1 or 2 format. The results can then be used
for animation or whatever. Obviously conversion from the high
colour resolution of MODEs 3 and 4 to MODE 1 or 2 will often
result in imperfections due to attribute clashes.

In contrast, copying a MODE 1 or 2 screen to MODE 4 should always
produce a perfect result, apart from the lack of character-based
FLASH. This allows easy conversion of Spectrum screens to MODE 4
for manipulation by GRAB, PUT, FILL etc.

Faster Animation with POKE address,a$

If you already know how to animate graphics by POKEing a string
onto the screen, all you need to know is that it now works faster
than before. However, there is an example on your disk for those
who have not used this technique before, called "spinner".

The general idea is to create a series of screens that differ by
a small amount, saving them as you go into an array using SCRAD
to find the screen (see SCRAD in this section) and MEM$ to handle
part of memory as a string. Then a series of POKEs is used to
replay the sequence of screens. SPINNER uses MODE 2 because one
third of the screen can be stored in only 2K, if you ignore
colour information, and the memory is arranged in a way that
gives smoother results than in MODE 1. The program uses 48 frames
to achieve its effect. The spinning objects seem to pass behind
two of the coloured columns because this MODE uses an attribute-
mapped colour system and both PEN and PAPER colours are the same
in the area of these columns, making the objects invisible there.

Sam Coupè MasterBasic page - 28 –

ALTER DISPLAY number TO number LINE n

See also: DISPLAY command in the Coupe User's Guide.

This command allows parts of two SCREENs to be displayed at once.
The display alters at the specified line (y coordinate) on the
screen. The two screens do not have to be in the same MODE, so it
is possible to mix MODE 4 graphics and MODE 3 text or MODE 1
FLASHing. Here is an example, on disk as "alt displ".

10 MODE 4
 20 SCREEN 1: CLS #: PALETTE 3,127: LIST
 30 CLOSE SCREEN 2: OPEN SCREEN 2,3
 40 SCREEN 2: PAPER 3: PEN 0
 50 WINDOW 0,63,10,18
 60 CLS: LIST
 70 ALTER DISPLAY 1 TO 2 LINE 84

These lines make SCREEN 1 a MODE 4 screen with a listing of the
program on it, and SCREEN 2 a MODE 3 screen with an inverse
listing of the program on it, restricted to the lower part of the
screen using WINDOW. Line 70 means that only the top half of
SCREEN 1 (down to y-coordinate 84) is shown before the display
switches to the lower part of SCREEN 2. If you type:

SCREEN 1

then that screen will become the current screen for LIST, PRINT
or graphics - but you will have to type blind because you cannot
see the editing area for that screen! Such things are best
handled within the program. Type:

SCREEN 2

to get back to a usable edit area. Notice that ALTER DISPLAY does
not alter the current SCREEN that output is sent to, but rather
which screen is displayed, and where. In fact the current screen
does not even have to be one of the displayed screens.

Try removing line 50 of the program - you will have to LIST
several times before the program comes into view.

Note: The PALETTE command in line 20 is needed because the
palette used for the whole screen is that of the top part (SCREEN
1 here) and I wanted PEN 3 to be bright white to suit an inverse
display for the lower part of the screen in MODE 3. It is
important to use any PALETTE commands before ALTER DISPLAY is
turned on. PALETTE acts differently according to whether the
current SCREEN is displayed or not, and will act unpredictably
while ALTER DISPLAY is running.

ALTER DISPLAY OFF turns off the display switching, as does CLS #.
CLS, ZAP, POW, ZOOM, BOOM and tape and disk commands will cause
flickering because the interrupts used by ALTER DISPLAY are
turned off temporarily. CLS 1, which clears just the current
WINDOW, does not cause this problem.

Your disk contains a longer example under the name "alt disp2".

Sam Coupè MasterBasic page - 29 –

BLOCKS 2

The ROM supports:

BLOCKS 0 - Turn block graphics off and display CHR$ 128-168 as
user-defined graphics.
BLOCKS 1 - Turn block graphics on, only CHR$ 144-168 are shown as
user-defined graphics.

MasterBASIC supports in addition:

BLOCKS 2 - Turn block graphics off and swap the entire set of
user-defined graphics with the set stored within MasterBASIC.
This is initially an IBM standard foreign character set. Using
BLOCKS 1 now will re-enable the block graphics but leave CHR$
144-168 as user-defined graphics. Using BLOCKS 0 will turn off
the block graphics and swap the user-defined graphics with the
original, stored within MasterBASIC.

To replace the foreign character set with another, you could do
this, assuming the new set is a CODE file:

BLOCKS 2
 LOAD "newset" CODE UDG CHR$ 128
 BLOCKS 0
 SAVE BOOT "filename"

This SAVEs MasterDOS with the new character set included within
it. Make sure the file is saved into the first position in the
disk directory.

The lower- and upper-case cursor characters are normally CHR$ 128
and 129, but to prevent the cursor changing when a new set of
characters is switched in by BLOCKS 2, the cursors are
temporarily re-defined as CHR$ 169 and 170, the patterns for
which are stored separately.

This example is on your disk as "blocks"

10 FOR bl=0 TO 2
 20 BLOCKS bl
 30 FOR c=128 TO 170
 40 PRINT CHR$ c;
 50 NEXT c
 60 PRINT
 70 PRINT
 80 NEXT bl

CLS *

This command is equivalent to PEN 0: PAPER 15: BORDER 15: CLS.
Many users seem to use their computers in this black-on-white
mode, and CLS * is provided for their convenience. CLS #, or key
F6, is a quick way to get back to the normal white-on-black
display.

Sam Coupè MasterBasic page - 30 –

CSIZE Improvements

SAM BASIC allows some control of character size using the CSIZE
command. Single and double-height characters are available in
any screen mode, and MODE 3 allows 6-pixel or 8-pixel wide
characters to be displayed, using e.g. CSIZE 6,9 or CSIZE 8,9.

MasterBASIC allows a much more flexible choice of character size,
for example:

CSIZE 16,9
 CSIZE 16,18
 CSIZE 8,32
 CSIZE 40,40

The width should be divisible by 8 unless you are working in MODE
3. The height can be 6-173. INT(height/8) gives the height
multiplication factor, double, triple, quadruple, etc. The
remainder is used to space out the rows of characters. The
maximum width is 248 and the maximum height is 173 pixels. It is
possible to specify CSIZEs that would make it impossible to type
any command in, so as a safety measure the CSIZE reverts to
something sensible when the program stops. Try:

10 CSIZE 240,160: PRINT "A"

Indentation of program lines is turned off when the character
width exceeds 40 pixels.

In MODE 3, if the width you specify is divisible by eight, output
is based on magnified 8-pixel wide characters, so CSIZE 16,9
gives 32 characters per line and CSIZE 32,18 gives 16. If the
width is not divisible by 8 it is divided by 6 instead to give a
multiplication factor for 6-pixel wide characters. CSIZE 12,9
gives a rather nice 42 characters per line mode, but many other
possibilities are not very pretty.

CSIZE combined with the DUMP command makes it easy to produce
large banners printed sideways on the paper.

SCRAD

This function gives the address of the start of the current
screen. It is useful when you want to POKE or LOAD to the screen
and you do not know where it is. This function, or something that
does the same job, should be used if you want direct access to
the screen to work correctly in programs written for both 256K
and 512K Coup6s. Here are some examples:

POKE SCRAD,1,2,3,4,5,6
 LOAD "name" CODE SCRAD
 PRINT SCRAD
 OPEN SCREEN 2,4: SCREEN 2: PRINT SCRAD

Sam Coupè MasterBasic page - 31 –

PRINTERS and SCREEN DUMPS

INTERRUPT-DRIVEN PRINTING

LPRINT CLEAR
LPRINT CLEAR size

Printers work considerably more slowly than computers, which
means that you normally have to sit and wait for a long program
to LLIST, even though the computer's part of the job could be
done very quickly. Screen dumps require more work from both
printer and computer, but the same principle applies.
MasterBASIC, however, is able to store output that is intended
for the printer and feed it to the printer later, when the
printer is able to take it. This is called Interrupt-Driven
Printing, because the computer feeds data to the printer 50 times
per second, at every frame interrupt. You can switch the printer
temporarily off line during printing if you want, and you can use
NEW or LOAD another program while the printer is running. You
must avoid using LPRINT CLEAR or LPRINT MODE until the printer
stops, or you will lose the data. The data for many printer
commands can be queued. For example:

LPRINT CLEAR 50000
 LOAD "any prog": LLIST: LPRINT: CIRCLE 128,88,60: DUMP 1

It is probably a good idea to save a valued screen image to disk
before doing a DUMP - you may find the printer jams after you
have cleared the screen!

To use this facility, you must first of all specify the size of
the storage area you want to reserve for the printer data, using
LPRINT CLEAR. This "buffer space" can be anything up to 256K,
depending on the free memory available. Space is allocated in 1K
units. The number you supply is rounded up, so LPRINT CLEAR 2048
and LPRINT CLEAR 1025 both reserved 2048 bytes (2K). Large screen
dumps may need 55K or more for a complete dump to fit in memory.
If the buffer becomes full, the computer will wait for the
printer to deal with some of the data before finishing the LLIST,
DUMP or LPRINT.

LPRINT CLEAR 0 has the special function of turning off interrupt-
driven printing and freeing the buffer space for other uses.

LPRINT CLEAR used on its own clears the existing buffer space

and stops transmission of data to the printer.

Large dumps take a lot of computer time, even with interrupt-
driven printing, but you will have control of your machine back
much faster than before.

This facility should work with well-behaved programs (including
word-processors) that output to the printer via channel "P" (like
LPRINT) or channel "B" and do not over-write MasterBASIC or the
buffer space. For example, Tasword II works, as do the SDC SAM
Supplement printing option and SAM Scratch.

Sam Coupè MasterBasic page - 32 –

SERIAL INPUT AND OUTPUT

LPRINT MODE 1 - use parallel printer
LPRINT MODE 2 - use serial printer

The serial printer driver program that was previously required to
use the serial interface is now part of MasterBASIC. You can
switch from parallel to serial output simply by entering LPRINT
MODE 2. The baud rate, number of data bits and number of stop
bits come from internal MasterBASIC variables that you can POKE -
see XVAR. The new values become effective when you next select
LPRINT MODE 2. You can also POKE the program so that it starts up
in LPRINT MODE 2 automatically - see XVAR.

Any use of the LPRINT MODE command will clear and close any
printer buffer space you may have allocated, but subsequent use
of LPRINT CLEAR (space) will allow either parallel or serial
output to be interrupt-driven. Serial output can of course be
sent to a suitably equipped computer instead of a printer.

Either setting of LPRINT MODE allows serial input. For example:

10 CLOSE #5: OPEN #5;"b"
 20 DO
 30 INPUT #5;a$
 40 PRINT a$
 50 LOOP

For increased speed, if you have MasterDOS, replace line 30 with
LET a$=INP$(#5,0). Note: This example will not work unless you
are transmitting something to the Coupé on the serial interface!

Sam Coupè MasterBasic page - 33 –

DUMP

A wide range of screen dump options are provided by MasterBASIC,
including those available in the separate DUMP utility provided
with SAMDOS 2.0. This utility can still be used, but it is no
longer required. The five main DUMP variants available are:

DUMP 1 - small shaded dump.
 DUMP 2 - medium shaded dump.
 DUMP 3 - large shaded dump (sideways).
 DUMP 4 - medium non-shaded dump. Like DUMP with utility.
 DUMP 5 - text dump. Like DUMP CHR$ with utility.

The first three dumps all scan the screen palette, determine the
brightness of the colours in use, and use a pattern of dots of
approximately the correct darkness when reproducing each colour
on the printer. If the screen is fairly dark, you may want to
save wear on your printer ribbon by using DUMP INVERSE 1, 2 or 3,
which gives a dump with dark colours light and vice versa.

The number 1, 2 or 3 actually specifies the width magnification
of the dump; the height magnification is assumed to be the same
unless you specify differently by including a second number. E.g.

DUMP 1,2 - single width, double height
 DUMP 3,1 - treble width, single height

DUMP works in all screen modes, but MODE 3 is slightly different
from the others because it has 512 pixels across the screen
instead of 256. This gives screen dumps which are twice as wide
as in the other MODEs, which you may not always want. DUMP 1,2 or
DUMP 2,3 can be used to reduce the width relative to the height.
If you are dumping a screen of text, it is often a good idea to
print it in PEN 15, and use DUMP INVERSE (size).

For DUMPs 1 to 3, POKEing the relevant XVAR will allow you to
modify the number of times the printer strikes the paper, the
control codes used to control the graphics dumps, and the dumped
area. You can produce mirror-image DUMPs, or change their
orientation. (The normal setting produces upright dumps unless
the width would be too big to fit the printer.) See XVAR.

The next two DUMPs, 4 and 5, are essentially the same as DUMP and
DUMP CHR$ supported by the utility program supplied with SAMDOS.

DUMP 4 is an unshaded dump in which anything which is the current
PAPER colour comes out white, and anything else comes out black.
It is most suitable for something like a graph or line drawing,
where you want a clear black-on-white output. The User's Guide,
page 176, documents some SVARs that can be used to control the
size of this DUMP. (This DUMP, and the equivalent of DUMP 5, were
at one time built into the ROM, but had to be discarded because
of lack of room.)

All the DUMPs can be stopped immediately by ESC, but this may
leave the printer in bit-image mode and require you to reset it.
It is better to hold down the space bar, which will stop the DUMP
but leave the printer in the normal text mode

Sam Coupè MasterBasic page - 34 –

DUMP 5 is a text dump. Instead of sending a picture of the screen
to the printer, the computer reads any characters it can
recognize from the current screen window and sends them as single
bytes, much faster than a graphic screen dump. Any user- defined
graphics that are recognized will be converted to the appropriate
single character code. Unrecognized characters are printed as
spaces. The colour the characters appear in on the screen is
irrelevant. The ROM's SCREEN$ routine is used - the colour of the
top left-hand pixel is assumed to be the background colour and an
uncoloured version is compared with the character set in an
attempt to match the character. Only single-height characters in
one of the CSIZEs provided by the ROM can be recognized.

One possible problem with DUMP 5 is that the number of characters
across a MODE 3 screen can exceed the width your printer can
handle, making the text dump look odd. Usually it, will look
double-spaced because the first 80 characters will fill. the line
and then a few more will be printed on the next line down. To get
round this, you can tell the printer to produce smaller
characters, so that more fit on a line. I use:

OPEN #4;"b": PRINT #4;CHR$ 15;

On my Epson this switches to a about 132 characters per line. the
WINDOW size:

10 MODE 3: CSIZE 6,9
20 WINDOW 0,79,0,18: REM 30 LIST
40 PRINT STRING$(80,"MB") 60 DUMP 5

POUND (£) and HASH (#) characters

Many users will be aware that a program like the one below can
look slightly odd when LLISTed

10 PRINT #3;"£10.00"

Try it, then CALL 0 to reset the machine and try it again without
MasterBASIC loaded. With a little luck the LLIST with MasterBASIC
loaded will look the same as a LIST. Without the program loaded,
you may see the hash symbol replaced by a Pound sign, and/or the
Pound sign replaced by a single quote mark. These problems happen
with many printers because the Coupe (and the Spectrum) use a
code of 96 for Pound whereas printers often use this for a single
quote mark. Also, if the printer is set up for an English
character set, the code used for hash (35) on the computer will
often print as a Pound sign. If you select another character set
on the printer, the hash becomes printable but the possibility of
getting a Pound by printing CHR$ 35 is lost.

MasterBASIC deals with this problem by converting any hash or
Pound signs LPRINTed or LLISTed into a sequence of characters
that switch between different character sets on the printer. The
initial set-up is suitable for use with an Epson compatible
printer, but can be modified - see XVARs.

Sam Coupè MasterBasic page - 35 –

NEW TIMING FACILITIES WITH MASTERDOS AND THE SAMBUS

TIME +
TIME -
TICS function

MasterDOS provides the commands TIME and DATE to set and read the
time and date on the clock/calendar built into the SAMBus, and it
also allows use of the TIME$ and DATE$ functions. Date-stamping
of files is done automatically.

MasterBASIC provides extra support for the clock, provided you
have got the SAMBus and MasterDOS. The new features are intended
for those who want to time things accurately.

It is of course possible to work out elapsed time from two
readings of the clock. For example, part of a keyboard speed test
might look like this (the file is on your disk as "tics"):

10 LET q=RND(899)+100
 20 LET t$=TIME$
 30 INPUT ("Enter: ;q;" ");a
 40 IF a<>q THEN PRINT "Wrong!"
 50 PRINT TIME$'t$

The information displayed by line 50 is sufficient to work out
how long you took, to 1 second accuracy, but it is a bit awkward,
especially near the end of an hour or minute. Hence the need for
the new function, TICS.

PRINT TICS will give you the number of seconds elapsed in the
month so far, so it can give a value between 0 and 2678399
(31*24*60*60-1). It will restart at zero at midnight on the last
day of the month. Try modifying the example above by including:

20 LET t=TICS
 50 PRINT TICS-t

This gives the elapsed time very easily, but it is still not very
accurate. It would be nice if the clock gave time in hundredths
of a second, but it doesn't. However, there IS a special high-
speed test mode which makes the clock run 5416.3 times faster
than normal. This can be turned on and off by TIME + and TIME -.

100 TIME +
 110 FOR n=1 TO 2000
 120 PRINT AT 0,0;TIME$'DATE$
 130 NEXT n
 140 TIME –

Arrgh! There are your carefully set time and date changed to
00:00:00 and O1/00/00 and then sent whirling out of control,
apparently. Fortunately, MasterBASIC saves the real time and date
before turning on this high-speed mode. When you change back to
normal using TIME -, the real value is updated by the time
elapsed in high-speed mode (divided by 5416.3 to get it right)
and replaced. Therefore the time and date should be correct
unless you leave the clock/calendar in the TIME + mode

Sam Coupè MasterBasic page - 36 –

continuously for more than one month of "fast" time (about 8
minutes of real time), which would exceed Masterbasic's abilities
to correct. Even if you leave the TIME + mode on for longer than
this, the date should be correct on return to normal mode unless
the real time was close to midnight. If you turn the computer off
with TIME + selected, the clock will stay in high-speed mode
until you reBOOT. The date and time will be rubbish.

TICS works in the faster TIME + mode, and you may anticipate that
you will be able to take two readings and divide the difference
by the magic number 5416.3, but in fact life is even easier than
this, because MasterBASIC does the division for you! Try this:

10 TIME +
 20 DO
 30 PRINT AT O,O;TICS;" "
 40 LOOP

You get a floating-point number accurate to about 0.0002 of a
second. This is set to zero when you select TIME +. The first
example in this section could make use of these modified lines:

20 TIME +
 LET t=TICS

50 PRINT USING$("##.##",TICS-t)
 TIME –

USING$ is used to format the result to two decimal places. It is
a good idea to get into the habit of adding TIME - after a timing
has been performed, so that the clock time and date stay correct.

Sam Coupè MasterBasic page - 37 –

STRUCTURED PROGRAMMING

HIDE TO line number

One of the best features of SAM BASIC is the ability to define
new commands using DEF PROC. Many users accumulate a set of
procedures that they want to use frequently, either in many of
their programs, or direct from the keyboard as "utility"
commands. These may be loaded at the start of the day, or always
included as part of the current program, but there are one or two
disadvantages. For example, the procedures are lost if NEW or
LOAD are used, and they may get in the way in listings. For this
reason Master-BASIC allows some lines of a program to be HIDDEN.
Such lines are safe from NEW and LOAD and cannot be LISTed.

The line numbers in the hidden section become irrelevant and
there is no conflict with line numbers in the normal program,
even if they are the same. This means that you cannot use GO TO,
GO SUB or any command that depends on line numbers to refer to
part of the hidden section. You must use procedure or DEF FN
names to make use of the hidden code. Here is a simple example,
which is included on your disk as "hide":

10 DEF PROC mymode
 20 MODE 3: CLS #1: PALETTE 0,107: PALETTE 3,0: CSIZE 8,9
 30 END PROC
 40 DEF FN pal(c)=PEEK(&55d8+c): REM read PALETTE entry
 50 REM still here

Now type: HIDE TO 40 and all the lines except 50 will be hidden.
Typing: mymode or: PRINT FN pal(3) will still work, however, even
after NEW or LOAD. You can add some new lines numbered 10 to 40
without any problems - at least, until you decide you want to
alter the procedure MYMODE. To do this, type: HIDE TO 0. This has
the special function of revealing any hidden lines. If you added
some lines as I suggested earlier, you will notice that you now
have several lines with the same line number and probably two
with a current line cursor! (The top one is the "real" one.) This
can make editing tricky, and sometimes you can get a prolonged
automatic LIST. You can re-HIDE the lines with HIDE TO 40 or use
a combination of manual renumbering and RENUM to allow certain
lines to be edited. However, it is probably better to use NEW
before using HIDE TO 0 to reveal and edit the lines. A problem
can still arise when you un-HIDE several accumulated blocks of
hidden lines. Life will be easier if you add new hidden lines
with lowish but increasing line numbers. One problem you may run
into is the use of DATA in hidden lines. This DATA will not
normally be found by READ, but you can force READ to look at the
right place by POKEing "address of DATA" with "address of next
line", like this:

10 DEF PROC reader
 20 POKE SVAR 138,PEEK SVAR 156: DPOKE SVAR 139,DPEEK SVAR
 157+4 30 DATA "hello"
 40 READ a$: PRINT a$
 50 END PROC

Note: Line 20 must be a single line. Hidden lines will not be
SAVEd as part of the current program.

Sam Coupè MasterBasic page - 38 –

NEW EXIT COMMANDS

MasterBASIC includes three minor but useful new program control
keywords. These are EXIT PROC, EXIT FOR and EXIT DO. They provide
neat ways of leaving procedures, FOR-NEXT loops or DO loops.

EXIT PROC

You can leave a procedure prematurely by GO TO the END PROC, but
in modern programming GO TO is discouraged because it can lead to
programs that are hard to read, understand and modify. You could
use an extra END PROC instead, but the indentation of the program
would suffer, and the computer would no longer be able to
automatically avoid executing the procedure if it ran into it in
the program. EXIT PROC does not have these disadvantages, and it
will work correctly even if you use it within a loop. For example
(this example is on your disk as "exit"):

10 waitspace
 100 DEF PROC waitspace 110 LET t=0
 120 DO
 130 LET t=t+1
 140 IF INKEY$=" " THEN EXIT PROC
 150 LOOP UNTIL t=1000
 160 PRINT "time is up!"
 170 END PROC

EXIT DO

You can already branch out of a DO loop using EXIT IF
(condition). However, users have found themselves writing EXIT IF
1 (which is always true) quite often, and this looks a bit odd
and isn't very elegant. Now you can use EXIT DO instead, e.g.:

210 LET accum$=""
 220 DO
 230 INPUT wd$
 240 IF wd$="end" THEN
 PRINT "Terminated"
 EXIT DO
 250 LET accum$=accum$+wd$+CHR$ 13
 260 LOOP
 270 PRINT accum$

EXIT DO will leave the DO-loop by jumping to the statement after
the appropriate LOOP. It will jump over any nested DO-loops if
necessary - for example, it will still jump to line 270 even if
you add:

255 DO UNTIL INKEY$=""
 256 LOOP

Sam Coupè MasterBasic page - 39 –

EXIT FOR

SAM BASIC does not offer any structured way to jump out of a FOR-
NEXT loop. You either have to set the FOR variable to a value
outside the limit for the loop, or GO TO the line after the NEXT.
EXIT FOR is more convenient and does not depend on line numbers.

310 FOR n=l TO 20
 320 PRINT n;
 330 PAUSE 50
 340 IF INKEY$=" " THEN EXIT FOR 350 PRINT " hello"
 360 NEXT n
 370 PRINT "Out of loop"

EXIT FOR has no effect on the value of the FOR variable.

Sam Coupè MasterBasic page - 40 –

DOS ENHANCEMENTS

FILE COMPRESSION with SAVE MODE

It seems to be some sort of rule in computing that however much
disk space you have, it gets filled. This is particularly true if
you save lots of screen images, large arrays or big sections of
the computer's memory. To enable you to pack more files onto a
disk, MasterBASIC provides a file compression facility. Once this
is turned on, all SCREEN, CODE, String Array and Number Array
files are compressed as they are saved. A compressed file will be
automatically expanded again on reloading. The options available
are controlled by SAVE MODE:

SAVE MODE 1

SAVE normally, no compression.

SAVE MODE 2

Compress SCREEN, CODE and Array files. The method used is fairly
fast but it requires at least one 16K page of memory as a working
area during both SAVE and LOAD. If there is no page free, the
screen will be used - this will corrupt the display. (If you are
saving' a SCREEN file, it will be saved correctly and can be
reloaded by freeing at least one page before loading.)

The amount of compression achieved can be gauged by looking at
the sectors used as shown in a directory, compared with the
normal figure. Compression is best where there are repeats of the
same value in the data - for example, simple screens, string
arrays with lots of trailing spaces in most strings, or CODE
files with blank areas. Numeric arrays are highly compressible if
they are mainly filled with whole numbers. No attempt is made to
compress BASIC programs because it is not usually worthwhile.

SAVE MODE 3

As above, except that a slower but more intelligent routine is
used to compress SCREEN$ files. This can give worthwhile
reductions in file size compared with SAVE MODE 2, particularly
for complex screens. Another advantage of this alternative screen
compression method is that it does not require a spare memory
page. CODE and Array files are handled just as they are by SAVE
MODE 2.

The SAVE MODE setting is completely irrelevant when you come to
reload a file - any required expansion is handled automatically,
provided MasterBASIC is loaded. (If it's not, you will just get a
scrambled mess, instead of a file!)

The compressed status of a file is not shown in the DIRectory,
but it can be obtained using the FSTAT function if required,
provided you have MasterDOS. See FSTAT in this manual.

Sam Coupè MasterBasic page - 41 –

SAVING THE DOS/ MASTERBASIC FILE

SAVE BOOT "filename"

This command SAVEs MasterBASIC and whatever DOS it is associated
with as one file to disk. This allows you to modify the program
by altering the DVARs or XVARs and then SAVE it, without worrying
about exactly where it is in memory, or how long it is. For the
program to be BOOTable later on, it must be the first program in
the disk directory. Make sure that position is free before using
SAVE BOOT, or use the same name as the first program so that you
overwrite it. Otherwise, the name you use is not important.
Personally I'd start it with "MD+MBAS..." or "SD+MBAS..."
according to which DOS is part of the file. For example:

SAVE BOOT "MD+MBAS1-a"

The file created by SAVE BOOT is a special CODE file consisting
of your DOS combined with MasterBASIC. You can do the usual
things with it that you could do with any CODE file.

Faster MERGE with MERGE *"filename"

The MERGE command built into the ROM is very flexible. It can
handle MERGEing of random assortments of lines and variables from
disk or tape with the program in memory. Being able to do this
means handling lines one-by-one and shuffling a lot of memory
around, a process that can take a long time if the program is
large. This is annoying when the most common case of MERGE is in
fact a simple merging of a block of lines, which can be done
quite quickly. MasterBASIC allows the use of MERGE * for these
common cases. Any existing lines in the area spanned by the line
numbers of the merged program are obliterated. For example, if
the program in memory is numbered from 10 to 200 in steps of 5,
and the merged program is numbered from 100 to 150 in steps of
10, all the lines in the original program between 100 and 150
inclusive will be replaced by the merged program. Any variables
with the merged program will be lost.

Note: Some people use MERGE to stop a program auto-running, but
if you want to do this, it can be faster to use LOAD "filename"
LINE 65432 which forces the program to start at a non-existent
line number.

PROTECTING CODE FILES FROM BEING STOPPED

It is normally possible to prevent auto-executing CODE files from
starting by using MERGE "name" CODE. However a CODE file can be
prevented from being stopped in this way by using:

SAVE CHR$ 2+"name" CODE start,length,execute address

The CHR$ 2 does not become part of the name, but it turns on a
protection system.

Sam Coupè MasterBasic page - 42 –

FORMAT Enhancement

The first version of the MasterDOS FORMAT command formatted disks
without asking (y/n) if the disk had never been formatted or was
unreadable, and asked: FORMAT "disk name" (y/n) if the disk was
readable. Unfortunately this could fail when the disk name was
corrupt, because the "name" could consist of illegal control code
combinations. Therefore the command was changed before MasterDOS
was released, so that it just asked: FORMAT "" (y/n) when the
disk was readable. MasterBASIC reinstates the original concept
and prevents any problems with odd disk names by filtering out
any illegal characters. This works even if you have merged
MasterBASIC with lowly SAMDOS.

Faster DIR (drive number)

A command such as DIR 1 now reads the directory a track at a
time, rather than a sector at a time. This gives greater speed
when reading long directories.

Sam Coupè MasterBasic page - 43 –

MASTERDOS ENHANCEMENTS

Speed Improvements to RAM Disks.

To LOAD a file, the DOS normally has to look through the
directory for the file entry before loading can start. If the
file is, say, the 40th file on the disk, then IOK of directory
data must be read before it is found. On a "real" disk drive, as
opposed to a RAM Disk, this takes about 0.4 of a second, once the
disk is spinning - a trivial time compared with the overall
loading time. Using the RAM Disk, IOK of directory data still has
to be read, but this takes a very significant part of the loading
time when you are trying to do animations by loading, say, 6K of
data for each frame.

However, LOAD (file number) has the potential to go straight to
the correct directory entry without reading all the preceding
directory entries, because there is a simple relationship between
the file number and the location of the directory entry on the
disk. MasterBASIC modifies the DOS to take advantage of this,
giving a worthwhile improvement to RAM Disk loading speed when
LOAD (filenumber) is used. I would particularly recommend it for
animations, where you can use something like:

10 FOR frame=l TO 20
 20 LOAD frame
 30 NEXT frame

Even when LOAD (filenumber) is not used, improvements to the
loading code mean that some files load from RAM Disk faster than
before. The speed of READ AT from RAM Disk has also been
improved, by a factor of about two.

ALTER DEVICE drive TO drive

MasterDOS allows you to change which physical disk drive is
referred to by a given "logical" drive number employed by the
user. This is done by POKEs to a table at DVAR 111. MasterBASIC
allows the same thing to be done in a more comprehensible manner,
using ALTER DEVICE. The first drive number is the "logical" drive
number you normally type, and the second one is the number of the
"real" drive. So:

ALTER DEVICE 1 TO 3

will make commands like:

DIR 1
or: LOAD"dl:name"
or: DEVICE dl: LOAD "name"

work with drive 3 (a RAM Disk). This is useful for making
software run from RAMdisk without any program changes.

To make drive 2 act as if it were drive 1, and vice versa, you
can do this:

ALTER DEVICE 2 TO 1: ALTER DEVICE 1 TO 2

Sam Coupè MasterBasic page - 44 –

OPEN BLOCKS n - Reserving serial file buffers.

MasterDOS allows you to OPEN serial or random-access disk files.
These files each create a file buffer in a special area located
before the BASIC program. One consequence of this is that the
program is moved as the files are OPENed and CLOSEd and this can
cause problems because addresses used by any procedures within
the program are out of date. Another is that any variable
addresses found using LENGTH(0,name) will be out of date. It is
possible to get round this by forcing the program to update
itself when needed by DELETEing a non-existent line. However,
this is inelegant and can be a little slow in long programs.
Therefore MasterBASIC allows the use of OPEN BLOCKS to create
space for a given number of file buffers. The BASIC program will
be updated and will not move after this unless you OPEN a larger
number of files at once. The example below shows this.

10 PRINT FREE
 20 OPEN BLOCKS 2
 30 PRINT FREE
 40 OPEN #5;"TEMPI" OUT
 50 PRINT FREE
 60 OPEN #8;"TEMP2" OUT
 70 PRINT FREE
 80 OPEN #6;"TEMP3" OUT
 90 PRINT FREE
 100 CLEAR #
 110 PRINT FREE

The initial amount of free memory is reduced by the space needed
for two file buffers when OPEN BLOCKS 2 is executed. This value
does not change when two files are OPENed, because their file
buffers are created in the reserved area. The third OPEN causes
FREE to fall because a new area had to be created before the
BASIC program. FREE will not change when files in the reserved
area are CLOSEd, but CLEAR # deletes the entire area, as well as
any file buffers outside it, restoring FREE to the original
value.

MasterBASIC also modifies MasterDOS so that it does an automatic
program update if OPEN #, CLOSE # or CLEAR # move the program.

Any temporary files which are OPENed by e.g. MOVE "auto" TO #2
will be CLOSEd automatically the next time you access a different
disk.

Alternative Syntax for COPY, RENAME, BACKUP and MOVE

A slightly shorter syntax is now allowed as an alternative to
COPY/RENAME/BACKUP/MOVE "name" TO "name". The TO keyword can be
replaced by a comma. For example, you can use:

COPY "name","othername"
 RENAME "prog","newname"
 BACKUP "dl","d2"
 MOVE "name","other"

Sam Coupè MasterBasic page - 45 –

FSTAT extensions

e.g. PRINT FSTAT("m*",7)

If you have merged MasterBASIC with MasterDOS, the FSTAT function
provided by MasterDOS is expanded to support more than the
original four options. Here is the extended list:

1. File number in directory, or 0 (not found) or -1 (no disk).
2. File length in bytes, excluding any header. Gives expanded
 length for compressed files saved with SAVE MODE 2 or 3.
3. File type - see MasterDOS manual. (Note: type 5 is SNP 48K.)
4. File type plus 64 if protected, plus 128 if hidden.
5. Start address - usually only important if CODE.
6. Auto-start line for BASIC, execute address for CODE. Zero if
 none, or another file type.
7. The file date, as a number such as 231291 (23/12/91) or 30754
 (3/07/54). Zero if the file is undated.
8. File flags. Individual bits have the following meanings when
 set to 1:

Bit 0 - Not used.
 Bit 1 - If the file is a CODE file, it cannot be stopped by
 MERGE
 Bit 2 - The file is compressed.
 Bit 3 - The file is a SAVE MODE 3 SCREEN$ file.

DIR$ extension

The MasterDOS DIR$ function has been extended to allow ALL files
on a disk to be listed, including those in subdirectories. Follow
the name string with a question mark. For example:

PRINT DIR$("*"?)

INP$ extension

The MasterDOS INP$ function has been extended. As well as
allowing N characters to be input from a stream using e.g.:

LET a$=INP$(#stream,N)

you can use a special value of zero in place of the number of
characters. This reads in all characters until a carriage return
is found, like INPUT. So these lines have the same action:

LET a$=INP$(#5,0) INPUT #5;a$

The advantages that INP$ offers are that it does not clear the
lower part of the screen, it does not beep with each input
character even if you have POKEd SVAR 569 with a value, and it is
much faster than INPUT. Often loops using INP$ will run several
times as fast as loops using INPUT #.

Sam Coupè MasterBasic page - 46 –

SPECIAL PURPOSE FEATURES

LOCN Function - Searching Memory

LOCN(start,length,a$)
LOCN(start,length,a$,ABS)

This function searches a specified part of memory for a desired
string. "Match anything" characters (hashes) can be included in
the string, as with INSTR and INARRAY. The first form shown above
does a search which is case-insensitive, so that you can search
for e.g. "text" or "TEXT" or "Text" at the same time. The search
speed is about 90K/second, unless there are frequent occurrences
of the first character of the target string. The example below
searches from the address 32768, for up to 200K, looking for
"test". It is on your disk as "locn".

10 POKE 123456,"test"
 20 PRINT LOCN(32768,200*1024,"test")

You may prefer to search for a string which is absolutely as
specified, in which case a final ABS is included in the brackets.
This is the form to use when searching for, say, a particular
section of machine code. As well as being absolutely specific,
the search speed increases to over 200K/second. The example below
will deal with multiple instances of a desired string. It also
shows that including the Basic program area in a search can be
confusing, since the string you are looking for may exist in the
program, variables area, or special buffer areas, simply because
you are looking for it!

110 LET start=16383,tar$=CHR$ 205+CHR$ 65+CHR$ 66
 120 POKE 33000,tar$ '
 130 DO
 140 LET start=LOCN(start+1,40000,tar$,ABS)
 150 EXIT IF start=0
 160 PRINT start
 170 LOOP

Sam Coupè MasterBasic page - 47 –

RESERVED(space)

This function reserves space in the system heap, and returns its
address. For example:

10 PRINT RESERVED(10)

If you run this several times, the address will keep changing
because a new area is reserved each time. It is a good idea to
avoid this in a real program by making sure the line is only run
once. Heap space is limited and valuable. Its main purpose is to
hold short machine code routines that page in and CALL larger
routines in another page. It grows at the expense of BASIC's
GOSUB/DO/PROC stack and could make a "BASIC stack full" message
more likely later on.

If you try to reserve more space than is available, you will get
an "Out of memory" error and no space will have been reserved.

You can de-allocate heap space using e.g. LET junk=RESERVED(-10).
However, you should only de-allocate space that you allocated
yourself in the first place. Otherwise you may well crash the
machine by allowing some other programmer's code to be over-
written.

If the number of de-allocated bytes is more than the heap
contained to start with, the heap size will be reduced to nil
(the HEAPEND pointer, SVAR 456, will be the same as the HEAPSTART
pointer, SVAR 458).

INKEY$ #0 improvement

The following line used to work fine until you pressed CAPS:

10 DO: PRINT INKEY$ #0;: LOOP

This caused odd things to appear in the lower screen.... Now it
doesn't! INKEY$ #0 has the advantage over a simple INKEY$ that
you only get one copy of each keystroke, and unlike GET a$ the
keystrokes come from the keyboard buffer so you are unlikely to
miss any. To see what I mean, try changing the line to:

10 DO: PRINT INKEY$ #0;: FOR n=1 TO 500: NEXT n: LOOP

Sam Coupè MasterBasic page - 48 –

XVAR function - extra system variables

Certain locations within MasterBASIC contain values that control
specific aspects of the program. These are analogous with DOS
variables (DVARs) and the ROM's system variables (SVARs). The
contents can be changed by e.g. POKE XVAR 2,20 and examined by
e.g. PRINT PEEK XVAR.

0 PUTSWA. PUT Switch Address. 2 bytes. Unusual in that it holds
 the ADDRESS of a place you can POKE, rather than the XVAR
 itself being POKEable. POKE DPEEK XVAR 0,0 will make PUT use
 the ROM's version of PUT. POKE DPEEK XVAR 0,172 (the code for
 PUT) to use MasterBASIC's faster version again.

Because the PUTSWA variable is located right at the start of
 MasterBASIC, and XVAR gives the ADDRESS of a variable, PRINT
 XVAR 0 gives the start of the program.

2 SOFV. Screen Off Value. Controls time before screen turns
 itself off. Small values give shorter times. E.g. POKE XVAR
 2,12 gives a blank screen after about 1 minute without a
 keypress, while 75 gives a 5-minute delay, 255 gives an 11
 minute delay and 0 gives the normal 22-minute delay.

3 IAPOS. INARRAY Position. After you have used the INARRAY
 function, if the target string was found in the array, PRINT
 DPEEK XVAR 3 will return the position within the array string
 that the target string was found at (1 is the first position).

5 DTTH. DUMP Times To Hit the paper. Normally 1, meaning DUMPs
 1, 2 or 3 strike the paper once. Can be POKEd to 2 or more for
 darker copies. E.g. POKE XVAR 5,2 for double-strike.

6 SORP. Serial Or Parallel. Has a zero value when LPRINT MODE 1
 (parallel) has been set, and is non-zero when LPRINT MODE 2
 (serial) has been set. If you POKE XVAR 6,1 and then use SAVE
 BOOT "MD+MBAS1" to save the program, the next time you boot
 the DOS/MasterBASIC program serial output will be set
 automatically. (However, the POKE by itself does not do this -
 it is not examined until BOOT time.)

7 VERSION. Version. number of MasterBASIC, times 10.

8 ILPC. Interrupt LPRINT Characters. Number of characters that
 MasterBASIC will try to send to a printer per interrupt, when
 using interrupt-driven printing. Normally 15. Can be increased
 if you want the printing to take a bigger (but probably still
 minor) slice of the computer's time (making programs run more
 slowly) or decreased if you prefer.

Sam Coupè MasterBasic page - 49 –

9 ILPD. Interrupt LPRINT Delay. 2 bytes. Delay before
 MasterBASIC gives up, if the printer signals it isn't ready
 during interrupt-driven printing. Normally 12 (units of about
 25 microseconds). If this value is too short, only one
 character will be sent to the printer per interrupt (50 times
 per second) because the printer will get one character, signal
 "not ready" briefly as it accepts it, and MasterBASIC will
 give up waiting. The printer will print at 50 characters per
 second - probably rather slower than normal. If you have a
 serial printer running at 9600 baud then the time to send one
 character will be about 1000 microseconds and the printer will
 be "not ready" during this time. The delay may need to be 40
 or more - try DPOKE XVAR 9,50. (You may want to reduce the
 number of characters the computer tries to send with each
 interrupt to just 4 or 5 - e.g. POKE XVAR 8,4.)

If the delay value is too long, MasterBASIC will waste time
 waiting for the printer when there is no hope of quick
 readiness - for example, after a carriage return.

11 SPORT. Serial Port. The port used by the serial driver.
 Normally 236.

12 BAUD. Baud rate setting for serial input/output. This XVAR and
 the next two have no effect after being POKEd, until LPRINT
 MODE 2 is used, or the program BOOTs. The value is related to
 the actual baud rate in an odd way:

Value Baud rate
 0 50
 17 110
 34 134.5
 51 200
 68 300
 85 600
 102 1200
 119 1050
 136 2400
 153 4800
 170 7200
 187 9600 (Initial value)
 204 38400

13 DBITS. Data Bits in serial output setting.

Value Bits

 147 8 (Initial value)
 146 7
 145 6
 144 5

14 SBITS. Stop Bits in serial output setting.

Value Bits
 23 1
 31 2 (Initial value)

Sam Coupè MasterBasic page - 50 –

15 SDORI. Shaded DUMP Orientation. Normally 0, meaning "Upright
 DUMPS unless DUMP 3, or DUMP 2 and MODE 3". Can be set to:

1=Sideways. This might be preferred for making banners. Also,
 most printers introduce some distortion into the output and
 you may get a better match with the appearance of the
 screen in a sideways DUMP. E.g. POKE XVAR 15,1.

2=Sideways Mirror Image.

3=Force Upright. Might be used in combination with bit-image
 print modes that allow more dots across the printer width.

4=Upside Down, Mirror Image.

The next four XVARs control the area dumped when using DUMPS 1, 2
or 3. The coordinate system used has 191 at the extreme top of
the screen, 0 at the bottom, 0 at the left and 255 at the right,
whatever the screen MODE.

16 SDLHS. Shaded DUMP Left-Hand Side. Normally 0.
17 SDRHS. Shaded DUMP Right-Hand Side. Normally 255.
18 SDTOP. Shaded DUMP Top. Normally 191.
19 SDBOT. Shaded DUMP Bottom. Normally 0.

Control codes sent to printers by DUMP assume that your printer
understands Epson's ESC "*" codes, and that it will not produce
an automatic line feed. The codes can, however, be modified by
altering the XVARs below.

20 GCMX2. Eight bytes available. Message sent to printers before
 transmission of bit-image data by DUMP 1, 2 or 3. Normally
 4,13,27,42,4,0,0,0 for "4 byte message", carriage
return, ESC, "*", CHR$ 4, spare, spare, spare.

The carriage return is used to return to the left-hand side in
case multiple strike is being used. An earlier Epson standard
than ESC "*" CHR$ 4, supported by more printers; is ESC "K". To
use this control code, POKE XVAR 20,3,13,27,75. If you own a 24-
pin printer, you may want to us(- POKE XVAR 20,4,13,27,42,0
because this will give minimal distortion of height versus width
in the output. See also XVAR 35.

28 GCMX4. Three bytes available. Message sent to printers at the
 end of each line by DUMP 1, 2 o. 3. Normally 2,1;1,10 for "2
 byte message", carriage return, line feed.

31 DPVARS. Four bytes..Length, Width, Width multiplier, Height
 multiplier for DUMP 4. For compatibility with the original
 DUMP utility, these bytes are copied to the ROM's system
 variables area at BOOT time. See The User's Guide, page 176.

35 GCMX1. Nine bytes available. Message sent to printer before
 DUMP. Normally 6,27,108,8,27,51,24,0,0 for "6 byte message",
 set left margin at 8, set line advance to 24,'216", spare,
 spare. To alter the left margin which is in characters) POKE
 XVAR 38,margin. If you are using a 24- pin printer, you will
 need to alter the line advance - POKE XVAR 41,20.

Sam Coupè MasterBasic page - 51 –

44 GCMX2. Eight bytes available. Applies to DUMP 4 only. Copied
 to ROM's system variables at BOOT time. See The User's Guide,
 page 176. Normally 5,13,10,27,42,4,0,0 for "5 byte message",
 CR, LF, ESC,"*",CHR$ 4, spare, spare.

52 GCMX3. Six bytes available. Applies to DUMP 4 only. Copied to
 ROM's system variables at BOOT time. Normally 4,13,10,27,64,0
 for "4 byte message", CR, LF, reset printer, spare.

58 DMPTL. Two bytes. Top left address for DUMP 4. Copied to SVAR
 45 (not SVAR 16 - The User's Guide is wrong here).

60 MODCHAR1. First character to modify if it is LPRINTed.
 Normally 96 (computer's code for Pound).

61 MODCHAR2. Second character to modify if it is LPRINTed.

Normally 35 (computer's code for hash).

63 MODMSG1. Eight bytes available. Sequence to use instead of
 MODCHARI. Normally 4 (bytes in sequence),27,82,2,35,0,0,0.
 (ESC,"R",CHR$ 2,CHR$ 35=Epson codes for "select English
 character set, print CHR$ 35, 3 spare.) To return to the
 normal effect of printing the Pound sign, POKE XVAR 63,1,96.

71 MODMSG2. Eight bytes available. Sequence to use instead of
 MODCHAR2. Normally 4 (bytes in sequence),27,82,0,35,0,0,0.
 (ESC,"R",CHR$ O,CHR$ 35=Epson codes for "select American
 character set, print CHR$ 35, 3 spare.) To return to the
 normal effect of printing the hash sign, POKE XVAR 71,1,35.

87 ALTUDG. Two bytes. Displacement of the start of the
 alternative set of UDGs from XVAR 0. This set is initially an
 IBM standard international character set covering CHR$ 128168.
 PRINT XVAR O+DPEEK XVAR 85 gives the address of the first
 character. Do not POKE this XVAR.

89 ACRSU. (After Carriage Return Set Up) One Byte, normally set
 to 10. When you switch on your Coup6 SVAR 15 is set to 10 so
 that every time a Carriage Return (char 13) is sent to the
 printer a character 10 (Line Feed) is also sent. Many printers
 allow you to set them to do an 'Auto LF after CR' so you would
 get a double line feed if the Coup® sent one as well. POKEing
 SVAR 15,0 will stop this but you will need to do the poke
 every time you switch on. However, if you POKE XVAR 89,0 and
 then save a copy of DOS/MasterBASIC, XVAR 89 will be copied
 automaticaly to SVAR 15 every time you BOOT up the system.

Sam Coupè MasterBasic page - 52 –

DVAR extensions

The following extra DVARs can be used in addition to those
described in the MasterDOS manual:

151 BEEPT. Duration of warning BEEP using with the OVERWRITE and
 FORMAT y/n queries. Normally 133, but other values can be

DPOKEd. DPOKE DVAR 151,0 turns the BEEP off completely.

153 FVFG. Format Verify Flag. Normally 0, meaning "verify the
 disk after formatting". POKE with a non-zero value to avoid
 the verify stage. Warning: if you skip the verify stage, any
 faults on the disk will not show up until later - probably
 when you want to LOAD a vital file!

154 CMPFG. Compression Flag. Set to 0,1 or 2 for SAVE MODE 1/2/3.

155 DBSTP. Double Step. Normally 0, but can be POKEd to a nonzero
 value to cause double stepping of the drive head as it moves
 from track to track. This is useful when reading 40track
 disks.

Sam Coupè MasterBasic page - 53 –

APPENDIX A - ASCII AND KEYWORD CODES

These tables show all possible byte values in decimal and
hexadecimal notation, and the characters and/or keywords that
they code for on the Coup6. The character codes between 32 and
127 follow fairly closely the ASCII standard. Codes below 132
only represent keywords when preceded by 255 (FFH).

Dec Hex Char / Keyword Dec hex Char / Keyword

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

00
01
02
03
04
05
06
07
08
09
0A
0B
0C
0D
0E
0F
10
11
12
13
14
15
16
17
18
19
1A
1B
1C
1D
1E
1F
20
21
22
23
24
25
26
27
28
29
2A
2B
2C

PRINT comma
edit
cursor left
cursor right
cursor down
cursor up
delete
carriage Return
number prefix

PEN control
PAPER control
FLASH control
BRIGHT control
INVERSE control
OVER control
AT control
TAB control
cursor left word
cursor right word

space
!
“
#
$
%
& EXIT PROC
' EXIT DO
(EXIT FOR
) LOCN
* RESERVED
+ EQU
, TICS

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

2D
2E
2F
30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F
40
41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
4E
4F
50
51
52
53
54
55
56
57
58
59

- SHIFT$
. SVAL$
/ USING$
0 TIME$
1 DATE$
2 INP$
3 DIR$
4 FSTAT
5 DSTAT
6 FPAGES
7 SCRAD
8 INARRAY
9
:
; PI
< RND
= POINT
> FREE
? LENGTH
@ ITEM
A ATTR
B FN
C BIN
D XMOUSE
E YMOUSE
F XPEN
G YPEN
H RAMTOP
I
J INSTR
K INKEY$
L SCREEN$
M MEM$
N
0 PATH$
P STRING$
Q
R
S SIN
T COS
U TAN
V ASN
W ACS
X ATN
Y LN

Continued on next page.

Sam Coupè MasterBasic page - 54 –

APPENDIX A - ASCII AND KEYWORD CODES page 2.

Dec Hex Char / Keyword Dec hex Char / Keyword

90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

5A
5B
5C
5D
5E
5F
60
61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F
70
71
72
73
74
75
76
77
78
79
7A
7B
7C
7D
7E
7F
80
81
82
83
84
85
86
87
88
89
8A
8B
8C

z EXP
[ABS
\ SGN
] SQR
↑ INT
_ USR
£ IN
a PEEK
b DPEEK
c DVAR
d SVAR
e BUTTON
f EOF
g PTR
h XVAR
i UDG
j NVAL
k LEN
l CODE
m VAL$
n VAL
o TRUNC$
p CHR$
q STR$
r BIN$
s HEX$
t USR$
u
v NOT
w
x
y
z MOD
{ DIV
¦ BOR
}
~ BAND
© OR
Ç AND
ü < >
é <=
â >=
ä -
à USING
å WRITE
ç AT
ê TAB
ë OFF
è WHILE
ï UNTIL
î LINE

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

8D
8E
8F
90
91
92
93
94
95
96
97
98
99
9A
9B
9C
9D
9E
9F
AO
A1
A2
A3
A4
A5
A6
A7
A8
A9
AA
AB
AC
AD
AE
AF
BO
B1
B2
B3
B4
B5
B6
B7
B8
B9
BA
BB
BC
BD
BE
BF

ì THEN
Ä TO
Â STEP
É DIR
æ FORMAT
Æ ERASE
ô MOVE
ö SAVE
ò LOAD
û MERGE
ù VERIFY
Ÿ OPEN
Ö CLOSE
Ü CIRCLE
Ç PLOT
£ LET
Ұ BLITZ
₧ BORDER
ƒ CLS
á PALETTE
í PEN
ó PAPER
ú FLASH
ň BRIGHT
Ň INVERSE
ª OVER
º FATPIX
¿ CSIZE
 BLOCKS
 MODE
 GRAB
 PUT
 BEEP
 SOUND
 NEW
 RUN
 STOP
 CONTINUE
 CLEAR
 GO TO
 GO SUB
 RETURN
 REM
 READ
 DATA
 RESTORE
 PRINT
 LPRINT
 LIST
 LLIST
 DUMP

Continued on next page.

Sam Coupè MasterBasic page - 55 –

APPENDIX A - ASCII AND KEYWORD CODES page 3.

Dec Hex Char / Keyword Dec Hex

Char / Keyword

192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

C0
C1
C2
C3
C4
C5
C6
C7
C8
C9
CA
CB
CC
CD
CE
CF
D0
D1
D2
D3
D4
D5
D6
D7
D8
D9
DA
DB
DC
DD
DE
DF

FOR
 NEXT
 PAUSE
 DRAW
 DEFAULT
 DIM
 INPUT
 RANDOMIZE
 DEF FN
 DEF KEYCODE

DEF PROC
 END PROC
 RENUM
 DELETE
 REF
 COPY

KEYIN
 LOCAL
 LOOP
 IF DO
 LOOP
 EXIT IF
 IF
 IF
 ELSE
 ELSE
 END IF
 KEY
 ON ERROR
 ON
 GET

224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

E0
E1
E2
E3
E4
E5
E6
E7
E8
E9
EA
EB
EC
ED
EE
EF
F0
F1
F2
F3
F4
F5
F6
F7
F8
F9
FA
FB
FC
FD
FE
FF

 OUT
 POKE
 DPOKE
 RENAME
 CALL
 ROLL
 SCROLL
 SCREEN
 DISPLAY
 BOOT
 LABEL
 FILL
 WINDOW
 AUTO
 POP
 RECORD
 DEVICE
 PROTECT
 HIDE
 ZAP
 POW
 BOOM
 ZOOM
 BACKUP
 TIME
 DATE
 ALTER
 SORT
 JOIN
 EDIT

Keyword prefix

Typesetting and origination by:-

FORMAT PUBLICATIONS.
34, Bourton Road, Gloucester, GL4 OLE, England.

Tel:- 0452 412572

Sam Coupè MasterBasic page - 56 –

Sam Coupè MasterBasic page - 57 –

The following pages were not part of the original manual.

ERRATUM

Page 16
 “Join To a$ to a$”
 should be
 “Join To a$ to b$”

page 49
 “POKE XVAR 8,4”
 should be
 “POKE XVAR 8,20”

Page 51
 “Normally 4 (bytes in sequence),27,82,2,35,0,0,0”
 should be
 “Normally (bytes in sequence) 4,27,82,2,35,0,0,0”

Sam Coupè MasterBasic page - 58 –

Sam’s MasterBASIC Manual Front & Back Covers

This User Guide was OCRed with Textbridge Pro 11
& MS Word 2003. The PDF document was compiled with

JAWs Creator pdf version 6.3
by Steve Parry-Thomas 14 December 2004

For SAM Coupé users everywhere.

www.samcoupe.org

SAM MasterBASIC Manual
PDF version 2 – 14 December 2004

[Version number may change as errors and text formatting are

corrected There is bound to an error or two, I’ve over looked or
some text formatting that’s been left for another day]

http://www.samcoupe.org/

