

BETA BASIC NEWSLETTER No. 11

"MADNESS"

This routine is either a graphical doodle or a plot of a complex
mathematical curve, depending on your prejudices! It was inspired by
an article in Scientific American's Computer Recreations column; the
expressions the program uses in drawing are similar to some discovered
accidentally by an American, Stanley S. Miller. I have used DRAW TO,
rather than PLOT; the display is therefore made up of short straight
lines. This improves speed no end, while still giving very acceptable
results.

 10 LET s=50
 20 LET XRG=3.8,YRG=2.6,XOS=XRG/2,YOS=YRG/2
 30 LET T=-s
 40 PLOT SINE(.98*T)-.7*COS (3.05*T),COSE(1*T)+.1*SINE(13*T)
 50 FOR T=-s TO +s STEP .05
 60 DRAW TO SINE(.98*T)-.7*COS (3.05*T),COSE(1*T)+.1*SINE(
 13*T)
 70 NEXT T

- 2 -

"THE ROSE" - a pattern making program.

 The algorithm (basic method) embodied in this program was recently
made public by mathematician Peter Maurer; I got hold of it via Keith
Devlin's Micromaths column in Computer Guardian. The algorithm is
called "The Rose" because many of the patterns it produces have a
flower-like appearance. It has been used in graphics demos on high
powered machines. My adaptation uses a LIM variable to reduce time-
wasting re-drawing of the same lines due to rotational symmetry. N and
D should both be whole numbers between 1 and 359.

 10 LET XRG=3,YRG=XRG*176/256
 20 LET XOS=XRG/2.5,YOS=YRG/2
 30 DO
 40 INPUT "N:";N
 50 INPUT "D:";D
 60 PRINT "N=";N'"D=";D
 70 PLOT 0,0
 80 LET A=0,OX=0,OY=0,LIM=0
 90 IF MOD(N,2)=1 THEN LET LIM=180
 100 DO
 110 LET A=MOD(A+D,360)
 120 LET R=SIN (MOD(N*A,360)*.01745)
 130 LET T=A*.01745
 140 LET NX=R*SIN (T),NY=R*COS (T)
 150 DRAW TO NX,NY
 160 LET OX=NX,OY=NY
 170 LOOP UNTIL A=LIM
 180 BEEP .1,0
 PAUSE 0
 190 CLS
 200 LOOP

(The triangular pattern rubs in the fact that my printer dumps are
slightly distorted - it should be completely symmetrical!)

- 3 -

PROC TASLIST - converting programs to Tasword 3 files.

 This contribution from G.R.J. Baldwin is an improvement to one
published in Newsletter 5. The author writes:

"The problems [with the original] were, firstly that we need to use
JOIN instead of LET a$=a$+... otherwise long programs cannot be
converted as there is not enough memory (this is explained on page 36
of the Beta Basic 3.0 manual). Secondly, when the tokens are expanded,
the resulting line can be quite a bit longer than the normal 64
character screen-width in Tasword, which makes editing tedious. This
can be corrected by chopping the expanded line into 64-character
chunks, each with its own carriage return/line feed, before adding it
to a$. I've added the little luxury of asking for a filename for the
saved file, and removing the ERASE, assuming that the file is being
saved for the first time."

 9980 DEF PROC taslist
 9981 CLEAR
 INPUT "Tasfile name? ";n$
 9982 LIST FORMAT 2
 9983 OPEN #5;"m";1;”temp"
 LIST #5; TO 9979
 CLOSE #5
 9984 OPEN #5;"m";1;"temp"
 LET a$=""
 9985 DO UNTIL EOF(5)
 9986 INPUT #5; LINE z$
 9987 LET z$=SHIFT$(7,z$)
 9988 IF LEN z$>64 THEN LET y$=z$(TO 64)
 LET z$=z$(65 TO)
 LET b$=y$+CHR$ 13+CHR$ 10
 JOIN b$ TO a$
 GO TO 9988
 9989 LET z$=z$+CHR$ 13+CHR$ 10
 JOIN z$ TO a$
 9990 LOOP
 9991 CLOSE #5
 9992 ERASE "temp"
 OPEN #5;"m";1;n$
 PRINT #5;a$
 CLOSE #5
 9993 END PROC

Comments: I had also run across the need for dealing with long lines.
These occur because when the program is listed to a file, there is no
"screen width" and so long lines (e.g. DATA statements) never have
carriage returns inserted. The use of JOIN is a good idea for longer
programs. The CLEAR in line 9981 results in a "Missing DEF PROC"
report when line 9993 is reached - but Mr. Baldwin must have needed
all the memory he could get! I use a version that indents most program
lines; the line equivalent to 9987 is altered slightly to achieve
this:

 LET z$=" "+SHIFT$(7,z$)

- 4 -

PARAMETER PASSING USING REF

 Judging by my correspondence, quite a few of you are sometimes
confused by parameter passing, particularly passing by reference. This
is natural, I think; some difficult concepts are involved, and they
are not easy to explain. However, I will try to clarify a few points.

Why use REF parameters?

 If a procedure is to calculate a result, you can just use e.g. LET
result=(something) inside the procedure, and then use result outside
the procedure without any problems. No REF parameters are needed. The
only problem is that you cannot use that procedure in any future
program without looking at it and realising that the answer is going
to be in the variable result - which you might have used already.
However, if you use REF in the DEF PROC, you can "tell" the procedure
that the main program will supply the name to be used; this allows you
to write a procedure to deal with any numeric or string variable. For
example, a procedure could convert a Fahrenheit temperature held in a
variable to a Celsius temperature in the same variable, whether it was
called temp, x, fh or zzz:

 10 LET zzz=98.4
 20 FCconvert zzz
 30 PRINT zzz

 100 DEF PROC FCconvert REF temp
 LET temp=(temp-32)/1.8
 END PROC

 Of course, the main program must supply a name - if e.g. 123 is given
in the procedure call, there is no variable to put the result in!

 It doesn't matter if the name after REF is used in the main
program - it is automatically LOCAL to the procedure. (In other words,
if the variable is in use, its value will be saved before the
procedure is used, and restored afterwards.) If you want a procedure
to "plug in" to any program, you should make sure that all variables
are LOCAL. Parameters are automatically LOCAL; other variables need a
LOCAL statement naming them. If you follow these rules, it doesn't
matter what variable names the procedure uses; there will be no
conflict with the rest of the program.

 You may notice that not everything I write obeys these guidelines!
The truth is, I often don't need a procedure to act as a plug-in unit;
once it works, I might not always bother to tidy it up. (Also,
parameter passing and LOCAL do slow execution, and you might not
always want to use them for that reason.) Perhaps it is better that I
produce another imperfect idea rather than spend a long time polishing
the current one... Besides, it is more fun! If you readers are sparked
to modify or improve things in the Newsletter, I am well pleased.

- 5 -

PROC FACT - calculating factorials.

Dave Swales (Gainsborough, Lincs.) writes:

"The enclosed... finds the factorial of a number. Briefly, a factorial
is the product of all the positive integers from 1 to a given number.
E.g. 4 factorial is the product 1*2*3*4=24"

(Such things are involved in calculating, say, how many 7-letter
arrangements you can make with a set of 7 Scrabble tiles. For the
first letter you have 7 choices, for the second 6, etc. The number of
arrangements is 7*6*5*4*3*2*1=5040.)

9999 DEF PROC fact x
 LOCAL a(),b,c
 DIM a(x)
 LET b=1
 FOR c=1 TO x
 LET b=b*c,a(c)=b
 NEXT c
 PRINT x;" Factorial = ";a(x)
 END PROC

I seem to remember there is a non-BB way to do this using a

cunning recursive function definition, but I can't quite reconstruct
it!

PROC DEGREE - defining a degree symbol

This contribution from A.E. Legat configures any specified UDG as

a useful degree symbol. My demonstration lines show UDG "A" being
altered. You could also have used: 10 DEGREE" ALTER" with ALTER got by
typing GRAPHICS-A. The ALTERs in line 30 need to be typed as GRAPHIC-
A. Below the listing is a "blown-up" copy of the output.

 10 DEGREE "A"
 20 KEYWORDS 0
 30 PRINT "0 ALTER C=32 ALTER F"
 40 KEYWORDS 1

100 DEF PROC DEGREE X$
 LOCAL A
 LET A=USR X$
 POKE A,STRING$(8,CHR$ 0)
 DPOKE A+1,18480
 DPOKE A+3,12360
 END PROC

- 6 -

PROC WIND0 - switching between multiple windows

Contributor David Swales (Gainsborough, Lincs.) writes:

"I chose the title wind0 to distinguish it from PROC windo in
Newsletter 4. One of the problems when debugging programs is having to
scroll up and down the listing. With PROC wind0 it is possible to show
parts of a listing in any of four windows. It is then fairly easy to
follow the flow of the program."

"The definitions of keys 1 to 0 are displayed in the header. Part of a
program can be listed in one window, and the program run in another.
Here is an explanation of the keys:"

 1 w1.........Window 1 current window (LH 1/2 of screen)
 2 w2.........Window 2 current window (Top RH 1/4 of screen)
 3 w3.........Window 3 current window (Bottom RH 1/4 of screen)
 4 w4.........Window 4 current window (Full screen - 20 lines)
 5 CLS........Clear current window
 6 LIST.......List to current window (Scroll? appears as normal)
 7 LIST x,y...List specified lines to current window
 8 RUN x......Run program from a specified line
 9 INIT.......Call PROC wind0 (only after keys are defined)
 0 NORM.......Return to normal (Window 0 - CLS - CSIZE 8)

The key definitions certainly make the windows easy to switch between.
Some may feel that key 8 is not really necessary. The seemingly
pointless key 9 actually is needed if the program you are debugging
alters the windows. The WINDOW ERASE associated with key 0 could be
changed to WINDOW 0 - this would have the advantage that· you could
switch back to say, window 1 without having to use key 9 first. The
possible disadvantage is that the existence of 4 windows might alter
the operation of the program you are debugging. (Note: For some
reason, WINDOW ERASE requires a CLS before the next PRINT to avoid a
spurious error message... I must have goofed up somewhere!)

9000 DEF PROC wind0
 LOCAL x,y
 DEF KEY "1";" WINDOW 1: CSIZE 4,8"
 DEF KEY "2";" WINDOW 2: CSIZE 4,8"
9010 DEF KEY "3";" WINDOW 3: CSIZE 4,8"
 DEF KEY "4";" WINDOW 4: CSIZE 4,8"
 DEF KEY "5";" CLS "
 DEF KEY "6";" LIST "
9020 DEF KEY "7";" INPUT x,y: LIST x TO y"
 DEF KEY "8";" INPUT x: RUN x"
 DEF KEY "9";"wind0"
 DEF KEY "0";" WINDOW ERASE : CLS "
9030 WINDOW 1,0,165,122,165
 WINDOW 2,130,165,122,82
 WINDOW 3,130,83,122,83
 WINDOW 4,0,165,255,160
9040 CSIZE 4,8
 CLS
 PRINT "1 w1:2 w2:3 w3:4 w4:5 CLS:6 LIST xy:8 RUN x
 9:INIT 0:NORM"
 PLOT 0,166
 DRAW TO 255,166
 WINDOW 4
9050 END PROC

- 7 -

ORBITS - simulating spacecraft behaviour.

I had been vaguely aware for some years that spacecraft behaved in
a non-obvious way; for example, if a rocket orbiting the Earth (or
anything else, for that matter) fires against its direction of
movement, it slows down briefly, but then drops into a lower, faster
orbit. And firing the rocket straight towards the planet in an attempt
to reach a higher orbit is the wrong thing to do - you need to fire it
behind you. Anyway, recently I decided to try to write an orbit
display program to help give some sort of "feel" to these ideas. The
result is no arcade game, but it is reasonably accurate, I think.

Line 10 sets the graphics origin to the centre of the screen; the
"planet" will be placed here. (Actually, the small "planet" size I
have used means that the orbits are very distant ones compared to real
satellite orbits - better pretend it is the sun we are orbiting!)
Lines 20 and 30 set the spacecraft's initial position, and velocity in
the horizontal and vertical directions.

Lines 70 and 160 provide a primitive manoeuvring system; if you
press a cursor key, your rocket fires in the direction of the cursor
arrow. (So you will have to press a different key to brake if you are
in a different part of the orbit - sorry about that...I got fed up
with the trigonometry....)

Line 130 draws the orbit as a series of straight lines;
alternatively, use line 140 to plot a series of points (this shows up
speed changes nicely), or line 150 to plot one moving point. You might
also like to duplicate the general form of lines 130 and 160 as lines
135 and 165, but using different variables. With a few other changes,
this will give you two orbiting objects. It is surprisingly hard to
manage an interception of the second object if you start in a
different orbit! (I am quite interested in simulating two orbiting
spacecraft with a few tens of miles of wire connecting them together -
which is an actual proposal - if you get this working, please send it
to me! Though not for publication.)

The calculations are crammed into line 170 to keep things as fast
as possible. First we get distance from the planet (d) using
Pythagoras' Theorem (sum of the squares of the other two sides and all
that). Then the angle that gravity will pull from (i.e. the direction
of the planet) is obtained by a bit of trigonometry that took me a lot
of head-scratching and trial-and-error. The gravitational force on the
spacecraft (f) is inversely related to distance from the planet,
squared. That force will have an effect on the horizontal velocity
(hv) and vertical velocity (vv) of the spacecraft that depends on both
the strength of the force and its angle. From the two velocity
variables it is pretty easy to calculate new coordinates (x and y)
after a certain time. The calculation assumes that all the factors
like distance, angle and force can be considered to be constant over
the small section of the orbit that is calculated at one time. In real
life, this isn't true, but the error isn't serious unless your orbit
goes quite close to the planet. (I have not provided any check for a
collision with the planet, but you could add this by checking the
value of d.) The variable s sets the size of each calculation step,
allowing you to obtain greater precision at the expense of speed.

- 8 -

 10 LET xos=128,yos=88
 20 LET x=-80,y=0
 30 LET hv=0,vv=2.5
 40 LET s=.5
 50 LET g=600/s
 60 LET ox=x,oy=y
 70 LET a$=CHR$ 8+CHR$ 9+CHRS 10+CHR$ 11
 80 LET p=.1
 90 BORDER 6
100 CIRCLE 0,0,2
110 PLOT x,y
120 DO
130 DRAW TO x,y
140 REM PLOT x,y
150 REM
 PLOT OVER 1;ox,oy
 PLOT x,y
 LET ox=x,oy=y
160 ON INSTRING(1,aS,INKEY$)
 LET hv=hv-p
 LET hv=hv+p
 LET vv=vv-p
 LET vv=vv+p
170 LET d=SQR (x*x+y*y),a=PI*(x<0)+PI/2-ATN (y/x),f=g/(d*d
),hv=hv+f*SIN a,vv=vv+f*COS a,x=x-hv/s,y=y-vv/s
180 LOOP

In the illustration, I was initially in the outer orbit, then I

fired a braking burst at A to drop to a lower orbit. Note that only
the other side of the orbit moves. At point B, I fired two more
braking bursts to make the orbit progressively more circular.

- 9 -

PROC JUST - Proportional text justification on the screen.

This contribution is from Alan Salmon of Bristol. He writes:

"The advantage of this routine is that, instead of merely expanding
the spaces between words, it expands each letter into the correct size
to fill the line. The syntax of the command is JUST t$,cpl, where t$
is the text to be justified, and cpl is the required number of
characters per line. Note: the last line of the text is not justified,
as this delineates the end of a paragraph."

"Notes: Lines 1030-1050 choose a suitable height for the
characters. Line 1060 gets the current CSIZE. Line 1130 restores the
CSIZE. PROC CHOP chops off <= cpl characters from a$ to b$. PROC DISP
displays a line of text, justified."

Sometimes, if the number of characters per line is small, the font
size will vary within the text, because of large changes in the
required character spacing. However, the routine would be useful for
outputting information or instructions neatly.

 10 OVER 2
 20 INPUT "Characters per line:";cpl
 30 just "This procedure is used to justify text and make it
 look generally neater. Its advantage over similar
 procedures is that it uses fractional spaces, as you can
 probably see.",cpl

1000 DEF PROC just a$,cpl
1010 LOCAL csiz1,csiz2,h,b$
1020 DEFAULT cpl=32
1030 LET h=INT (256/cpl)-2
1040 DO UNTIL h/8=INT (h/8)
 LET h=h+1
 LOOP
1050 LET h=h+2
1060 LET csiz1=PEEK 57370,csiz2=PEEK 57371
1070 CSIZE h
1080 DO UNTIL LEN a$<=cpl
1090 chop a$,b$,cpl
1100 disp b$,h
1110 LOOP
1120 PRINT CSIZE INT (256/cpl),h;a$
1130 CSIZE csiz1,csiz2
1140 END PROC

2000 DEF PROC chop REF a$, REF b$,cpl
2010 LOCAL f
2020 LET b$=""
2030 FOR f=cpl+1 TO 1 STEP -1
2040 IF a$(f)<>" " THEN
 NEXT f
2050 IF f=0 THEN
 LET f=cpl
2060 JOIN a$(TO f-1) TO b$
2070 IF a$(1)=" " THEN DELETE a$(1)
2080 END PROC

- 10 -

 3000 DEF PROC disp x$,h
 3010 LOCAL w,x
 3020 LET x=256
 3030 DO UNTIL LEN x$<=1
 3040 LET w=INT (x/LEN x$)
 3050 PRINT CSIZE w,h;x$(1);
 3060 LET x=x-w
 3070 DELETE x$(1)
 3080 LOOP
 3090 PRINT CSIZE w,h;x$
 3100 END PROC

PROC ERASEY/N - optional file erase procedure

 This contribution comes from Robert Dickson (London). It requires
the CAT TO procedure from issue 9. Robert says:

"It runs through the catalogue, printing each program name, one at a
time, asking whether the file is to be erased or not. This procedure
is useful if you have lots of files on a cartridge that need to be
erased, it saves having to type lots of ERASE commands. The procedure
uses the DEFAULT drive, whereas the CAT_TO procedure uses drive 1. I
suggest the following alteration to PROC CAT_TO, so that it uses the
default drive:"

 1040 CAT #3;PEEK 57395

(That suggestion, and Robert's procedure, should work OK with
Microdrive or Discovery disc. PROC ERASEY/N could also be modified to
work with the Disciple or PLUS D, if allowance is made for the
different catalogue format.)

 10 erasey/n

 100 DEF PROC erasey/n
 LOCAL f,n,p$,c$,a$,b$
 GET p$,0,175,32,6;1
 WINDOW 2,0,175,256,48
 WINDOW 2
 BRIGHT 1
 CLS
 cat_to a$
 CLS
 PRINT "Cartridge name: ";a$(TO 10)
 PRINT "Free memory: ";a$(LEN a$-2 TO)
 120 LET a$=a$(13 TO LEN a$-4)
 130 FOR n=1 TO LEN a$ STEP 11
 LET c$=a$(n TO n+9)
 PRINT AT 3,0; "Current program: ";c$
 PRINT "Erase? (Y/N)"
 140 IF SHIFT$(1,INKEY$)="N" THEN GO TO 170
 150 IF SHIFT$(1,INKEY$)<>"Y" THEN GO TO 140
 160 ERASE c$
 GO TO 180
 170 FOR f=0 TO 50
 NEXT f
 180 NEXT n
 190 WINDOW 0
 PLOT 0,175;p:$
 END PROC

- 11 -

POPULATION FLUCTUATIONS

This section was stimulated by a book review; actually, three separate
reviews of "CHAOS: MAKING A NEW SCIENCE" by James Gleick. The book is
about the mathematics of chaotic systems. I'll probably never read it,
but the reviews were interesting. They made the point that the
behaviour of some systems, such as those controlling the weather, are
very sensitive to initial conditions; a tiny change in some input can
cause large changes to develop. If turbulence from your cough can
alter next month's weather, long-term forecasting is a difficult art!
The system modelled below is much simpler than weather, but it too can
exhibit this "chaotic" behaviour. The program simulates population
changes with a fixed food supply (e.g. on an island). The population
is X, where 0=extinction and 1=maximum. R is the rate of growth. The
first statement in line 110 is the heart of the simulation; it states
that the next population size depends on the current population size
times the rate of growth, times (1-X), which is a measure of how close
the population is to maximum. (The equation was invented by a chap
called Verhulst in 1845.) As the population increases, it gets harder
to reproduce because of shortage of resources. This normally leads to
same stable population size being reached; with growth rates between
about 1.1 and 2.9, al most any initial population will reach a stable
state quite quickly. But try a growth rate of 3.2 - this gives two
alternating population levels. A growth rate of 3.5 gives 4 levels in
regular succession. The illustration shows that complex, unpredictable
behaviour occurs with some growth rates. This is not at all that we
might expect from our simple equation! The picture is reminiscent of
data I've seen from some real-life populations - and looks rather like
some climate records, too. (The people working on "chaos" have found
some interesting rules that work for very varied phenomena.)

- 12 -

 20 INPUT "GROWTH RATE:";r
 30 INPUT "INITIAL POPULATION:";x
 40 PRINT AT 6,0; "GROWTH RATE:";r
 50 PRINT "INITIAL POPULATION: ";x
 60 LET mag=5
 70 PLOT 0,100
 DRAW 255,0
 80 PLOT 0,0
 DRAW 255,0
 90 PLOT 255-mag,x*100
100 DO
110 LET x=x*r*(1-x)
 DRAW TO 255,x*100
120 SCROLL 5,mag;0,99;32,99
130 PLOT 255-mag,x*100
140 LOOP

STRING INSERTION

Dave Swales (Gainsborough, Lines.) has been trying to write a
dictionary program in BB to aid in solving crossword puzzles. (See
issue 8, page 15.) It sounded like a lot of typing to me, but David
has gone ahead and got most of it working. He uses long strings to
store the dictionary information, with the words packed together to
save space. Each one starts with a capital letter and ends in "*".
(This convention ensures that when you look for "Ban*" with INSTRING
you won' t find it in "Abandoned*".) Dave wrote recently for help in
adding extra words to the existing data, preferably keeping correct
alphabetical order. I came up with the following bit of program; as an
illustration, it inserts "abalone" into the right place in a fragment
of the dictionary. The SHIFT$ function is used so that the user
doesn't have to remember to add words with a leading capital letter.
Line 110 deal with the case where the new word has to be "inserted" at
the end of the dictionary.

A faster method would be to do a "binary search" for the right
position, which is more the approach used by a human looking for a
telephone number, rather than a simple forward search from the start
of the dictionary. However, if I get too fussy, I never finish
answering my morning post!

 10 LET a$="abalone"
 20 LET a$(1)=SHIFT$(1,a$(1))
 30 LET a$(2 TO)=SHIFT$(2,a$(2 TO))
 40 LET a$=a$+"*"
 60 LET t$="Aardvark*Aback*Abandon*Abandoned*Abase*Abash*"
 70 LET p=1
 80 DO
 90 LET s=p
100 LET p=INSTRING(p,t$,"*")
110 IF p=0 THEN JOIN a$ TO t$
 EXIT IF 1
120 LET c$=t$(s TO p)
130 IF a$<c$ THEN JOIN a$ TO t$(s)
 EXIT IF 1
140 LET p=p+1
150 LOOP
160 PRINT t$

- 13 -

DISC BITS

 Unfortunately, most of this section is devoted to errors that have
somehow crept into the disc versions of Beta Basic. (Disciple/Plus D
users please remember when making new saved versions of BB 4.0 to
erase "bbc2" from the destination disc beforehand.) The first problem
applies to some OPUS and Disciple/+D versions of BB 4.0. A "fix" for a
RAMdisc SORT problem corrupted the code for normal SORTs, so that e.g.
LET a$="Fred Bloggs": SORT a$ doesn't work. If you observe this
symptom, the program below should cure it. First, load BB 4.0, then
type in the program and run it.

 10 LOAD "bbc2"CODE 32000
 20 FOR n=37808 TO 37821: REM OPUS version
 20 FOR n=37821 to 37834: REM Disciple version
 30 READ a: POKE n,a: NEXT n
 40 DATA 191,195,115,191,221,37,200,24,235,201,84,93,26,9
 50 RANDOMIZE USR 32256
 60 PRINT "Now NEW and MERGE Beta Basic's loader. RUN to
 SAVE modified version."

 The next problem applies only to some Disciple versions of BB 4.0.
Alan Purdom (Reading, Berks.) wrote to say that he could not get
FORMAT "p";n to work (or even enter). This stopped him directing
printed output to his serial printer, as the PLUS D/Disciple version
of BB, as supplied, uses the built-in parallel port. I found that 4
bytes of the FORMAT command had been corrupted somehow, in my master
copy. This can be corrected by loading BB 4.0, entering the following,
and then using the usual line 1 SAVE routine in BB's loader.

 POKE 55940,205: POKE 55941,63: POKE 55942,189: POKE 55943,11

This will allow you to use FORMAT "p";0 or FORMAT "p";1 to select
RS232 text or "binary" modes, or e. g. FORMAT "p"; 1200 to set the
baud rate. You might also have to POKE @11,1 to keep the disc system
from taking control.

 The following problem is a nasty one involving BB 3.0 and 4.0 on
the Disciple/Plus D. It arises because a "cure" for this interface's
tendency to delete invisible forms of numbers from BB programs goes
wrong with floating-point numbers. For example, 10 DATA 1.3 will have
extra bytes inserted into the line, which appear as odd characters or
keywords. I don't know how I missed this problem, but I didn't get any
immediate complaints, either! If you observe this symptom, use the
following program, in either 3.0 or 4.0, form. As usual, use the line
1 SAVE routine once the changes are made. Many apologies to those
inconvenienced by these problems. (Any user who wrote to complain has
naturally had a personal reply already.)

 10 FOR n=50236 TO 50251
 20 READ a: POKE n,a: NEXT n
 30 FOR n=50287 TO 50302: REM BB 3.0 version
 30 FOR n=50461 TO 50476: REM BB 4.0 version
 40 READ a: POKE n,a: NEXT n
 50 FOR n=64239 TO 64242
 60 READ a: POKE n,a: NEXT n
 70 POKE 50192,48
 80 DATA 205,111,196: REM BB 3.0 version
 80 DATA 205,29,197: REM BB 4.0 version
 85 DATA 48,249,205,182,24,40,195,229,223,205,155,44,225

- 14 -

 90 DATA 35,126,205,27,45,208,254,46,200,230,223,254,69,200,
 55,201
 100 DATA 223,205,1,196

 Lou Oliver (Perth) had troubles with an auto-running BB program on
his PLUS D. As soon as the first BB command was hit, a "Nonsense in
Basic" report stopped the program. Auto-running programs can be a
problem on various systems; they tend to turn Beta Basic off. One
solution can be to turn BB on again using RANDOMIZE USR 58419; on
other systems, making the first line of the program a non-functional
BB command (e.g. 10 ELSE) will be sufficient.

 Lou also discovered a slightly roundabout way of saving program
"slicers" to disc (not implemented for the Disciple/+D) using BB
4.0+D. He writes:

"First, the procedure, program lines or set of variables is SAVE!d to
RAM disc in the normal way, but using a filename which MUST end with a
"$" sign. Then it's just a case of using LIST and INPUT as you would
with a normal array file. To get the data back into the program use
MERGE!."

PRINTERS AND THE PLUS THREE

 Stephen Folly (Harmondsworth, Middx.) is using BB 3.0 on the PLUS
3 in 48K mode. The normal LPRINT will not work with full-size
printers. However, Stephen's procedure below makes this possible. He
writes:

"The variable p$ is the string to be printed. The variable flag is to
determine whether characters with ASCII codes above 127 are to be sent
to the printer or changed into normal characters (ASCII below 128).
This is rather like the +3 command FORMAT LPRINT "E" or "U". If this
value is zero, or not included, then the string will be converted
using SHIFT$ with a value of 7. Then we enter the loop to print the
characters. The DO..WHILE loop prevents characters being sent while
the printer is off line. Then OUT the character, take the STROBE bit
in port 8189 high, then low again. This routine will only work if you
have not used OUT 32765,48 to disable paging routines."

 1000 DEF PROC printer p$,flag
 LOCAL x
 DEFAULT p$=CHR$ 13,flag=0
 IF flag=0 THEN
 LET p$=SHIFT$(p$,7)
 1010 FOR x=1 TO LEN p$
 DO WHILE AND(IN 4093,1)
 LOOP
 OUT 4093,CODE p$(x)
 OUT 8189,20
 OUT 8189,4
 NEXT x
 END PROC

- 15 -

READERS' LETTERS

Dear Andy.
NL 10 received and the fractal program was very interesting... Please
tell us how the fractal fern works. Why should five data statements
make such a thing and how are different shapes made? I know it can't
be trial and error.

Mike Eida. Crawley. Sussex

 Like I said, I don't really have the expertise to explain that
program properly. It wasn't my technique. But I did mean to give some
more background. Simple shapes can be built up by a combination of
calculation and trial and error - try fiddling with the data
statements I gave - but this is rather laborious, and I haven't done
much along such lines. The BYTE article I dredged the idea from showed
complex colour pictures that had been reduced to a few hundred or
thousand bytes, by calculating something equivalent to the DATA
statements in the fractals program. This is compression of over 10,000
to 1 compared to the conventional memory requirement. I would have
guessed that was impossible, but I suppose coding a fern in 29 numbers
is pretty amazing too. For a while I grew very excited about the great
games graphics this would open up - then I read that the compression
of the images takes about 100 hours, and the expansion about 39
minutes, even on a very fast micro! In the future, though, custom
hardware should allow multiple frames per second to be decoded -
allowing complex full-colour animation to be stored very compactly, or
transmitted easily. But don't expect this next year!

 I think some readers may be a bit intimidated by complicated
articles in the Newsletter. They should always remember that programs
written by someone else, who perhaps sweated over the thing for weeks,
are generally harder to understand than one's own efforts. Many
programs include neat "tricks" or methods that are non-obvious unless
they are the kind you are used to. Besides, sometimes I include things
I have stumbled across elsewhere that struck me as interesting, even
if I didn't understand them very well - like the fern!

 Some contributions require a knowledge of the internal structure
of a BASIC program, or of machine code, for full understanding.
However, I always hope that such stuff will be useful in any case.
After all, most assembly-language programmers (often called whizz-
kids, until they get old like me) are quite happy to call a handy ROM
routine, as long as they know what it does. How it does it doesn't
matter very much.

Dear Andy.

I was trying to check a BB 3.0 program after altering an array with
the following command: ALTER a$ TO "!a$". For some reason the program
did not work properly! I had to perform other corrections to the
program, like:

 IF !a$(5,I)="a" OR !a$(5,I)="A"...

won't work. Also, after LET !a$(I)="", the string !a$(I) stayed
intact! Is this a bug. or is it intentional? LET !a$(I)=" " worked! BB
4.0 users should also be warned that there is a difference between
!A$() and !a$() - unlike normal arrays.

- 16 -
Is there any way to PEEK a location to know if the program is running
on a 48K Spectrum or a 128K machine? I would like to be able to use a
line like the following:

 IF PEEK (version)=128 THEN LOAD !"PICT"SCREEN$

so that a program could run on both machines, having special features
on the 128K one.

I am having difficulties arranging for a "customized" version of BB
4.0, like I have for BB 3.0, with LIST FORMAT, CSIZE, DEF KEYs
arranged to my liking, including lowering RAMTOP to accomodate a
Hebrew character set... Am I doing something wrong?

A few questions about RAM disc arrays: With memory arrays there is a
big difference in access speed if they are declared early on before
other variables. Is this similar for RAM disk arrays?

I again must congratulate you on an excellent program. You have again
improved a computer to the best of its capabilities!

Daniel Ben-Sefer, Degania B, Israel

Using ALTER on array commands in a BB 3.0 program may well not produce
a usable BB 4.0 RAM disc version. This is because (see p13, BB 4.0
manual) references to RAM disc arrays must be at the start of an
expression, because of restrictions imposed by the ROM expression
evaluator. What is an expression? Well, to the computer, anything that
evaluates into a number or a string is an expression. so your example
is seen as a single expression (not two with an OR in the middle) and
breaks the rules. You need to use e.g.:

 LET t$=!a$(5, I): IF t$="a" OR t$="A" THEN...

The inconsistency you mention between normal and RAM disc arrays when
a null string assignment is made is my mistake. Assembly language
programmers always have to be careful when dealing with zero lengths,
because e.g. a block move of zero bytes will work on 64K bytes
instead. I made sure not to do anything when a null string assignment
was made, but I should have "padded" the destination string to all
spaces, as you point out.

You can tell a 48K Spectrum from later versions by peeking the ROM.
(PEEK always works on the 48K-mode part of the ROM in 128K machines,
but this is not an exact match for the original 48K ROM.) PEEK 76 will
give 2 only on a 48K Spectrum. A related problem is to detect what
mode a 128K Spectrum is running in; Charles Buszard (Chorleywood,
Herts.) has suggested PEEK 23681. This gives 91 in Spectrum 48K mode
after a reset (or in a real 48K machine) or zero in 128K mode, Whether
or not BB 3.0 or BB 4.0 are resident. (This is the most-significant
byte of the printer buffer address - in 48K mode, try POKE 23681,64:
LPRINT "qwertyuiop".) The only possible problem is that PEEK 23681
remains zero if you go into 48K mode via the SPECTRUM command.

You shouldn't have any problems making a customized BB 4.0. You didn't
say exactly what you did, so I can't really help.

Just as with memory variables, RAM disc arrays declared first will be
found fastest. This probably won't be very significant unless you have
quite a few RAM disc files.

BB NEWSLETTER, 24 WYCHE AVE., KINGS HEATH, BIRMINGHAM B14 6LD

