
BETA BASIC NEWSLETTER No. 12

DRAWING 3-D CUBES

Back in issue 7 I provided an animation of a rotating ring, and
said that I had really wanted to animate a cube, but failed. Some time
after that, I got an excellent and well-documented contribution from
Francesco Stajano (Rome, Italy) that drew complete "skeleton" cubes
and animated them. Francesco asked if I could manage "hidden line"
removal, which would help the illusion of depth. Another possible
improvement would be to use perspective, so that parallel lines would
converge into the distance. (Francesco used an "isometric" projection
which keeps parallel lines parallel on the screen.) This prompted me
to try to reconstruct my thought processes of 1983, when I had written
such a cube-drawing program. (I had lost the tape and hadn't made a
listing - no printer!) I had already failed at this while working on
issue 7, but eventually I realised that the problem was that I knew
more than I used to! I knew that such things are supposed to involve
multiplying matrices and strange coordinate systems, which I had never
heard of in 1983. I had used a less sophisticated method.

My reconstructed reasoning went something like this: Draw a cube -
too hard! OK, draw one face of a cube - still too hard! OK, draw one
upright of a cube's skeleton - that's just a vertical line. Now
imagine that it is part of a cube rotating around a vertical axis. How
should the position of the line on the screen vary as the angle of the
cube changes? Suppose the cube is rotating anti-clockwise (seen from
above) and the line starts in the middle of the screen, on the cube
edge closest to us. Initially, the line should move quickly towards
the right, because most of its motion is across our line of sight. As
the line moves towards the right of the screen, more and more of its
motion should be "into" the screen, and its rightward movement will
slow and eventually reach zero. If the cube rotates clockwise, the
pattern is similar but mirror-imaged.

 So, successive views of the line need to be widely spaced in the
centre of the screen, and closer together towards the sides. The SINE
function fits this requirement; it changes rapidly for small angles,
but changes more and more slowly as plus or minus 9111 degrees is
approached. If you draw a vertical line at an x coordinate which
varies according to the sine of the cube's angle (and also with the
width of the cube) you get the right effect. However, the line should
also be varying in height according to how fast it is approaching or
receding. This will also be a SINE-type variation, but 90 degrees out
of phase with the x coordinate change; the height will change fastest
when the line is coming directly "out of" the screen, when the x

- 2 -

position change is slowest. COSE gives the same as SINE(angle+90
degrees) so we can use that. The height of the line will not be zero,
even when it is farthest away from us, so we need a constant, plus a
varying component. The closer the cube is to our eyes, the larger the
varying component will be. The program fragment below is for
educational purposes only; it produces the output illustrated. This
could be thought of as successive views of one upright of a cuboid.
The variable q is related to nearness of the object.

10 LET wd=50,ht=60,q=0.18
20 FOR a=0 TO 2*PI STEP .14
30 PLOT 100+wd*SINE(a),60-ht*q*COSE(a)
40 DRAW 0,ht*(1+q*2*COSE(a))
50 NEXT a

Having got this far, it isn't hard to generate a cube face from
two uprights with lines to join them. The second upright simply needs
to be drawn 90 degrees (PI/2 radians) further round the cube. The
procedure FACE does this, and al so incorporates another SINE-type
term to make, horizontal lines on the rear of the cube shorter. A
skeleton cube can now be produced by calling FACE four times with
angles 90 degrees apart. In the example below, though, I have chosen
to show just 2 faces to give a solid look to the cube. <The IF
statement in line 100 is required in order that the first 2 animation
frames show only a single cube face, as required in this case. This is
a bit inelegant, as it varies according to how many frames you use.)
For a skeleton cube, call FACE twice more with parameters of a+0.25*PI
and a+0.75*PI. Lines 10, 251 and 252 are needed only if you are using
BB 4.0 and want to FILL the cube faces. (As illustrated on the front
cover.) At this stage, if you just want to view the cubes, you can
omit lines related to animation if you like; these are 20, 30, 50,
120, 130 and 170. Animation is discussed in the next section.

 10 LET p$=STRING$(16,CHR$ BIN 10101010+CHR$ BIN 01010101)
 20 pokecd
 30 LET wx=88,wy=111,w=10,h=66
 40 LET frames=16
 50 DIM w$(frames,w*h)
 60 LET fx=128,fy=56
 70 LET wd=36,ht=48,q=.15
 80 LET f=1,st=PI/2/frames
 90 FOR a=0 TO PI/2-.01 STEP st
100 IF f>2 THEN face a+1.25*PI
110 face a+1.75*PI
120 nget a$,wx,wy,w,h
130 LET w$(f)=a$
140 CLS
150 LET f=f+1
160 NEXT a
170 anim w$,wx,wy,w,h

- 3 -

200 DEF PROC face a
210 PLOT fx+wd*SINE(a)*(1+q*COSE(a)),fy-ht*q*COSE(a)
220 DRAW 0,ht*(1+2*q*COSE(a))
230 DRAW TO fx+wd*SINE(a+(PI/2))*(1+q*COSE(a+(PI/2))),fy
 +ht*(1+q*COSE(a+(PI/2)))
240 DRAW 0,-ht*(1+2*q*COSE(a+(PI/2)))
250 DRAW TO fx+wd*SINE(a)*(1+q*COSE(a)),fy-ht*q*COSE(a)
251 LET xx=SINE(a+(PI/2))*wd+fx,yy=fy+ht*(1+q*COSE(a+(PI
 /2)))
252 FILL USING p$;xx-4,yy-15
260 END PROC

IMPROVED ANIMATION

Having managed to draw some nice cubes, I at first tried the
animation routine from issue 7, but found some disadvantages. The
screen mapping means that POKE loads data like LOAD "" SCREEN$, with
lines scrambled; this makes vertical lines look momentarily ragged.
Also, cubes do not fit conveniently into screen "thirds" and so waste
memory, and 1, wanted to maximize the number of animation frames. Next
I tried GET and PLOT (string), which are more flexible, but too slow.
Basically this is because PLOT (string) works through a general-
purpose printing routine that will handle pixel positioning and any
CSIZE. A specialised routine would be simpler and much faster.

I wrote such a routine in assembly language; it handles copying of
screen information into strings, and vice versa, in only 28 bytes. The
procedures NGET and PUT modify the routine to suit the required
direction of movement, and specify the top left-hand corner of the
screen area (in pixel coordinates), its width (in characters) and
length (in pixels). To keep things simple, no checking for valid
values is done - add this to the procedures if you like. The machine
code is poked into the UDG area, but could be placed elsewhere. As
written, NGET and PUT need the code location to be in the variable ad,
as set up by the POKECD procedure. NGET places the specified part of
the screen memory into a designated string; PUT returns such an area
to the screen. Note the similarity of the two procedures.

300 DEF PROC nget REF a$,x,y,w,h
310 DIM a$(w*h)
320 DPOKE ad+1,LENGTH (0,"a$")
 POKE ad+4,x
 POKE ad+5,y
 POKE ad+10,h
 POKE ad+13,w
330 POKE ad+16,0
 POKE ad+19,0
340 RANDOMIZE USR ad
 END PROC

400 DEF PROC put a$,x,y,w,h
420 DPOKE ad+1,LENGTH(0,"a$")
 POKE ad+4,x
 POKE ad+5,y
 POKE ad+10,h
 POKE ad+13,w
430 POKE ad+16,235
 POKE ad+19,235
440 RANDOMIZE USR ad
 END PROC

- 4 -

The procedure ANIM takes a whole array of strings and animates them,
assuming that each string is a complete animation frame. ANIM needs to
know where to put the animation - and the dimensions of the animated
area. You can also specify the speed of animation with the final
optional parameter. Animation continues until you press a key. To
maximize the speed, the PUT procedure is called just once; this will
alter the machine code suitably. After that, it is only necessary to
vary the location of the source data to be put on the screen, as each
frame is used. When used with the 16-frame cube example, an
impressively smooth 24 frames per second are produced. (One advantage
of a cube is that it has 4-fold symmetry - you only have to store
views of 90 degrees of rotation, and show them 4 times, to imitate a
full rotation. The ring in issue 7 was even better - it had 32-fold
symmetry!)

500 DEF PROC anim REF f$,x,y,w,h,t
510 DEFAULT t=1
520 put f$(1),x,y,w,h
530 LET f=LENGTH(1,"f$")-1
540 LET e=LENGTH(2,"f$")
550 FOR n=1 TO 0
 NEXT n
560 LET b=LENGTH(0,"f$")
570 DO UNTIL INKEY$<>""
580 FOR n=0 TO f
590 DPOKE ad+1,b+n*e
600 RANDOMIZE USR ad
610 PAUSE t
620 NEXT n
630 LOOP
640 END PROC
700 DEF PROC pokecd
710 LET ad=USR "a"
720 IF PEEK ad<>17 THEN
 RESTORE 730
 FOR n=ad TO ad+27
 READ a
 POKE n,a
 NEXT n
730 DATA 17,0,0,1,0,0,205,170,34,6,0,197,1,0,0,229,0,237,
 176,0,225,205,0,232,193,16,240,201
740 END PROC

Here is the assembly-language version for those who may be

interested - it should fill out the rest of this page, too!

 LD DE,string addr ;POKED
 LD BC,coordinates ;POKED
 CALL PIXEL-ADDRESS ;Call ROM to get screen address in HL
 LD B,length ;POKED

NXSCAN: PUSH BC
 LD BC,width ;POKED
 PUSH HL ;save screen address
 NOP or EX DE,HL ;POKED to suit direction of transfer
 LDIR ;Copy BC bytes from HL to DE
 NOP or EX DE,HL ;POKED to suit direction of transfer
 POP HL ;restore screen address
 CALL NEXT-DOWN ;Call BB to modify HL for next scan
 POP BC ;fetch length count in B
 DJNZ NXSCAN ;decrement B and LOOP WHILE B<>0
 RET

- 5 -

PROC ARROW - drawing arrowed lines

The next two procedures are based on ideas from Robert Dickson
(London). I have re-written them to save space. PROC arrow is like
DRAW TO but the line finishes with an arrow-head; the size of this can
be altered by the third parameter of the procedure. Lines 130 and 140
find the x and y movement involved in drawing the lines, then the bit
of nastiness in line 150 uses that data to calculate the angle of the
line. The two arrow "barbs" can then be drawn at a suitable
inclination to this line. The procedure would be useful in annotating
diagrams.

 10 arrow 100,100
 20 PLOT 255,0
 arrow 105,100
 30 PLOT 128,170
 arrow 102,105

100 DEF PROC arrow x,y,hs
110 DEFAULT hs=10
120 LOCAL xd,yd,an
130 LET xd=x-PEEK 23677+xos
140 LET yd=y-PEEK 23678+yos
150 LET an=PI*(xd<0)+PI/2-ATN (yd/(xd+.001))
160 DRAW TO x,y
170 PLOT x-hs*SINE(an+.5),y-hs*COSE(an+.5)
180 DRAW TO x,y
190 PLOT x-hs*SINE(an-.5),y-hs*COSE(an-.5)
200 DRAW TO x,y
210 END PROC

PROC DOTDRAW - drawing dotted lines

This procedure is like DRAW TO, but the 1ines are drawn dotted.
The third parameter determines how widely spaced the dots are; 1 gives
a solid line, 4 gives fairly widely-spaced dots. The method used is to
calculate the total x and y distances to be moved, and then add a part
of these distances at each of a suitable number of PLOT steps. The
most obvious application is to enable different lines to be told apart
in diagrams, without the problems of using colour (such as attribute
clash and difficulties with printer dumping).

 10 DO
 20 dotdraw RNDM(255),RNDM(175),3
 30 LOOP
100 DEF PROC dotdraw p,q,s
110 DEFAULT s=2
120 LOCAL x,y,xd,yd,d,f,a,b,c
130 LET x=PEEK 23677,y=PEEK 23678
140 LET xd=p-x,yd=q-y
150 LET d=SQR (xd*xd+yd*yd)
160 LET c=INT (d+.5)
170 LET a=s*xd/d,b=s*yd/d
180 FOR f=1 TO c-s STEP s
190 LET x=x+a,y=y+b
200 PLOT x,y
210 NEXT f
220 PLOT p,q
230 END PROC

- 6 -

'PLAY' TO 'BEEP" CONVERTER PROGRAM

Reader Martin Cleaver (Cuffley, Herts.) has sent me a very
professional program that converts PLAY commands into BB 4.0's
interrupt-driven BEEP! commands. Most PLAY options are covered. It is
unfortunately too long to publish here, but I can send a listing or a
tape copy (if you send a tape) to anyone interested. Stamps or postal
reply coupons to cover return postage would be appreciated.

Martin's program threw up (yech!) some interesting points. An
example he enclosed did not play all 3 channels exactly
simultaneously, because each channel was set going by a large BEEP!
command on a separate line. By the time the last BEEP! was
encountered, the first channel was already playing. The solution in
cases like this is to precede the main BEEP! lines with e.g.:

9000 BEEP !0,30!0,30!0,30

This will set each channel to give a 0.6 second pause, allowing
time for the rest of the BEEP! statements to be processed and put in
the interrupt queue before any sound is produced.

Another problem was that KEYIN of the converted program lines

sometimes failed for no obvious reason. I eventually discovered that a
preceding EDIT (numeric variable) command left part of the computer's
workspace untidy due to use of the ROM STR$ routine. (This particular
routine seems to cause lots of problems!) Later on, the untidy
workspace confuses KEYIN. The solution is to specifically clear the
workspace; this can be done using RANDOMIZE USR 5808 before the KEYIN
statement.

USING USING

I couldn't resist that title! Subscriber Robert Dickson (London)
pointed out that Beta Basic's PRINT USING can look slightly inelegant
when used with numbers less than 0.1. For example, if you use these
lines:

10 FOR n=0 TO .12 STEP .02
20 PRINT USING "#.##";n;" ";
30 NEXT n

You get: 0.00 .02 .04 .06 .08 0.10 0.12

This happens because BB uses the ROM print-a-number routine as a first
step in producing a formatted string, and this routine does not use a
leading zero with some values. The easy solution is to change the
USING string to "0.##" (or "#0.##" or "##0.##" etc.) which will
provide the missing zero.

Unfortunately, this method does not work with negative numbers in
the same range, because the minus sign replaces the leading zero. You
could try something like this for line 20:

20 PRINT "-" AND n<0;" " AND n>=0; USING "0.##";ABS n

If n is negative, a leading minus is printed, otherwise a space 1S
printed; the formatted number follows. A possible disadvantage is that
the minus sign is always in the first column, whatever the form of the
USING string.

- 7 -

SUPER-FAST DRAW AND PLOT

The fundamental idea of this section suggested itself just after I
had written BB 4.0's faster DRAW command. This is up to 2.5 times
faster than the normal DRAW, but in most real applications the speed-
up is much more modest, because the speed of the program is limited by
other factors, such as executing loops, or calculating the next line
to draw. However, if a whole sequence of drawing instructions in a
convenient form (for a computer) were to be given as data to a
specialised graphics command, a very large increase in speed could be
expected. (And in fact, I had already done program conversions on
games that used something similar in special "scene description
languages".) I considered adding a DRAW (string) command to BB 4.0,
with the graphics instructions coded somehow into the string, but
never got round to it. More recently, I've incorporated some of these
ideas into the following set of procedures. They will work with either
BB 3.0 or BB 4.0, and handle PLOT, DRAW and DRAW TO. The actual speed-
up compared to normal Basic doing the same thing will depend very much
on what you are doing; the examples given here will be speeded up 2 or
3 times. If you do lots of PLOTs or short DRAWs the speed increase
could be much greater.

Five procedures are given below. POKECD sets up the required
machine code in the UDG area, but the code could be placed elsewhere
if references to USR "a" (the start of the UDG area) are altered. The
DATA statements should add up to 8388. I have not provided a formal
way to do this, but something simple like:
 LET t=0: DO: READ a: LET t=t+a: LOOP followed by PRINT t when you run
out of data, will work satisfactorily. The procedure automatically
modifies the code if it decides that BB 4.0 is resident, by assuming
that version number (PEEK 47272) will always be less than 10 for BB
4.0 (I will ensure that this is true!) and always 10 or more for BB
3.0. (If you have an earlier version of BB 3.0, please return it for
replacement.)

NPLOT, NDRAW and NDRAWTO provide equivalents of the normal
graphics commands. They add characters to the string A$ (which
normally starts as a null string) to code for the graphic command
requested, and also perform the actual operation, so that you can see
what is being coded into the string. PLOT and DRAW TO are easy to code
- CHR$ 1 and CHR$ 2 code for the commands, followed by the x and y
coordinates. DRAW can involve negative numbers and is slightly more
complex. The method chosen makes the job of the machine code easier.
An advantage of using CHR$ 0 or CHR$ 255 to give the sign of the DRAW
parameter is that we can avoid the need for a specific code for DRAW
itself; anything starting with either character is a DRAW command.

The procedure SDRAW (for String DRAW) takes one of these coded
strings as a parameter and executes the desired sequence of PLOT and
DRAW commands much faster than would otherwise be possible.

Obviously there is no point in using these procedures if you only
want to draw something once, but after the string has been created, it
can be used many times to give fascinating fast-moving displays. SDRAW
can be preceded by INK, PAPER or OVER commands to give variety. The
position of the patterns can be altered by changing XOS and YOS;
however, XRG and YRG have no effect, in order to keep the speed as
high as possible.

- 8 -

Lines 10-180 are demo lines which create patterns such as those
illustrated below. (If you can't be bothered to type in the
procedures, you can still create these patterns, much more slowly, by
altering all the NPLOT and NDRAW commands in lines 50 and 60 to PLOT
and DRAW, and copying lines 40-70 to replace line 140.)

 10 OVER 1
 20 pokecd
 30 LET a$=""
 40 FOR n=74 TO 140 STEP 2
 50 nplot n,n
 60 ndraw 255-n*2,0
 ndraw 0,175-n*2
 ndraw -255+n*2,0
 ndraw 0,-175+n*2-SGN (-174+n*2)
 70 NEXT n
 80 CLS
 90 DO
100 FOR f=0 TO 24
110 LET xos=-f*4
120 FOR n=0 TO 6
130 LET xos=xos+f
140 sdraw a$
150 NEXT n
160 PAUSE 150
 CLS
170 NEXT f
180 LOOP

400 DEF PROC sdraw a$
 DPOKE USR "a"+1,LENGTH(0,"a$")
 DRAW 0,0
 LET z=USR USR "a"
 END PROC

410 DEF PROC ndraw x,y
 DRAW x,y
 IF x<-.5 THEN LET t$=CHR$ 255+CHR$ (256+x)
 ELSE LET t$=CHR$ 0+CHR$ x
420 IF y<-.5 THEN LET t$=t$+CHR$ 255+CHR$ (256+y)
 ELSE LET t$=t$+CHR$ 0+CHR$ y
430 JOIN t$ TO a$
 END PROC

440 DEF PROC nplot x,y
 PLOT x,y
 LET t$=CHR$ 1+CHR$ x+CHR$ y
 JOIN t$ TO a$
 END PROC

- 9 -

450 DEF PROC ndrawto x,y
 DRAW TO x,y
 LET t$=CHR$ 2+CHR$ x+CHR$ y
 JOIN t$ T0 a$
 END PROC

500 DEF PROC pokecd
510 IF PEEK USR "a"<>33 THEN
 RESTORE 520
 FOR n=USR "a" TO USR "a"+72
 READ a
 POKE n,a
 NEXT n
520 DATA 33,0,0,126,95,35,86,35,70,35,60,254,2,56,29,229,2
 45,175,95,75,205,187,42,80,205,187,42,241,32,5,205
530 DATA 79,220,24,29,254,3,32,28,205
540 DATA 28,189,24,20,126,35,229,245,175,75,205,187,42,241
 ,88,75,87,175,205,187,42,205
550 DATA 183,36,225,24,192,225,33,88,39,217,201
560 IF PEEK 47272<10 THEN
 DPOKE USR "a"+31,63096
 POKE USR "a"+40,164
 DPOKE USR "a"+62,48610
570 END PROC

A completely different and rather pretty effect can be obtained by

altering lines 40 to 70 to:

40 FOR a=0 TO 2*PI-0.01 STEP PI/16
50 nplot 128,87
60 ndraw 86*SINE(a),86*COSE(a)
70 NEXT a

Try altering the 16 in line 40 to other values.

- 10 -

PRINTERS - two types of output.

From time to time in this publication I have referred to sending
output to a printer via "t" or "b" type channels. This should make
sense to Interface 1 or Opus Discovery users, but for those unfamiliar
with the idea I should have explained it. With an Interface 1, "t" and
"b" channels send output to the RS232 port; on the Opus Discovery,
they send output to the parallel port. The distinction between "t" and
"b" is not related to the physical port, but to how the channel treats
printed characters. Interfaces which do not use the terms "t" and "b"
will generally provide something equivalent.

"B" stands for "binary" and any characters (from CHR$ 0 to CHR$
255) printed to a "b" channel should be sent unchanged. This is what
we want for sending control codes or bit-image data for printer dumps.
We do not want keyword expansion, automatic pagination, extra line
feeds or line length control, all of which could cause havoc. Provided
our printer does a line feed after receiving a carriage return, "b"
type channels are usable for sending normal text like "Hello World",
though "t" would be more common. Where a "t" (for "Text") channel is
really needed is in LLISTing. This is because Basic programs are
stored in tokenised form; for example, COPY is stored as CHRS 255. To
make a listing look sensible, a "t" channel will convert CHRS 255 to
the characters (space), C, 0, P and Y and send them to the printer.
This would be disastrous in a screen dump, where CHR$ 255 (binary
11111111) would represent a vertical line, to be sent unchanged. A "t"
channel will also "filter out" Spectrum Basic colour control codes,
such as INK, PAPER or INVERSE, as they will not be understood by the
printer. TAB, AT and the print comma may be translated into a suitable
sequence of spaces, depending on the interface. Carriage return may be
translated into carriage return/line feed, perhaps as an option.

When an interface allows streams to be OPENed to "b" or "t"
channels, switching between the two should be easy. However, many
systems instead alter the "p" channel, which is the original ZX
Printer channel. (This was "t" type in the way it handled characters.)
An advantage with this method is that OPEN is not used; just LPRINT or
LLIST and the printer should work. The 128K versions of the Spectrum
make such an alteration, diverting LPRINT and LLIST to a "t" type
RS232 channel. (This is flawed; any colour control codes are not
handled correctly.) EPROM-based interfaces usually detect use of the
old ZX printer code via hardware, and then alter the "p" channel.

Beta Basic needs control of the "p" channel if new keywords are to
be LLISTed correctly through the channel, but this could cause
problems if you want to send to control codes or printer dumps by the
same route. Most interfaces provide some means of selecting "t" or "b"
type output, whatever they call them. You may make a special POKE, or
print a certain character, that tells your interface not to print
keywords. Beta Basic will not understand such methods, and will still
print e.g. CHR$ 130 as (space), P, R, 0, C. In other words, you are
stuck with "t" type output. For this reason you might want to take
control of the "p" channel away from Beta Basic. If you use: DPOKE
DPEEK(23631)+15,2548 then the "p" channel will try to use the ZX
Printer routine, which will cause some EPROM-based interfaces to re-
initialise without BB in the way. You can use PRINT DPEEK(61081) to
find the address BB is sending printer output to after expanding
keywords; you might find this value is better than 2548. To restore
"p" channel control to BB, DPOKE with 64423, instead of 2548.

- 11 -

PROC SEARCH - searching memory

This contribution is from Iain Rendall (Edinburqh), apart from
lines 100 to 170, which I include as an alternative method of using
the procedure. Iain writes:

"PROC search... comes up with all occurrences in a given area of
memory of a given pattern of bytes. By default I have it searching the
ROM. Simple but I have found it useful as INSTRING is so rapid. All
occurrences give the decimal and hex addresses."

 10 DO
 20 INPUT "Number of search bytes? ";n
 30 FOR k=1 TO n
 40 INPUT "Byte "+STR$ k+"? ";x
 POKE USR "a"+k-1,x
 50 NEXT k
 60 CLS
 LET s$=MEMORY$()(USR "a" TO USR "a"+k-2)
 70 search s$
 80 LOOP

 100 DO
 110 LET s$=""
 INPUT a$
 120 FOR n=1 TO LEN a$ STEP 2
 130 LET s$=s$+CHR$ (DEC(a$(n TO n+1)))
 140 NEXT n
 150 CLS
 160 search s$
 170 LOOP

1000 DEF PROC search s$,start,final
1010 DEFAULT start=1,final=16384
1020 DO
1040 LET p=INSTRING(1,MEMORY$()(start TO final),s$),q=start+p-1
1050 EXIT IF p=0
1060 PRINT q,HEX$(q)
 LET start=q+1
1070 LOOP
1080 END PROC

The alternative calling routine at line 100 might be more suitable
for hexadecimal-oriented users. It allows you to enter e.g. "CD0116".
(= CALL 1601H = CALL Channel-Open.) I used something similar very
frequently while I was writing BB. (Note: The "£" (accept anything)
character is 23 in hex.)

MASTERFILE ADD-ONS FOR THE PLUS THREE

Regular contributor Robert Dickson (12 Coppelia Road, Blackheath,
London SE3 9DB) has converted Masterfile (48/128) so that it will work
with the Plus 3's printer interface, avoiding the need to buy
Masterfile Plus Three. He will sell you the converter program for
£3.00 if you provide a disc. Robert also sells a program to convert
Masterfile data to Tasword +3 format; the cost is £2.50. You supply
the disc. He has a 48K Spectrum, Interface 1, Microdrives, books etc.
for sale - write to him about that. No reasonable offer refused, he
says! Anyone know where he can get an ON/OFF switch for the Plus 3?

- 12 -

PROC PMENU - deluxe pull-down menu
PROC KTM - pausing a program and giving a message

These two procedures are from Martin Cleaver (Cuffley. Herts.). We

have seen menu control programs before, and I have several unpublished
contributions on the theme. It is clear that many users are interested
in the subject. This version incorporates some new ideas, and is well
explained by the author. (An advantage, in something of this length.)
Now, over to Martin:

 Syntax:
 PMENU choice <,dataline><,max len><,no of options><,row><,col>

This calls the procedure and if no dataline is given it endeavours

to calculate from which line the procedure was called. This is done by
looking on the GOSUB/PROC/DO-loop stack for the address of the calling
line and setting dataline to this value. Of course, this is not
possible if the procedure was called as a direct command and in this
case, default for dataline is 1.

The line addressed by variable dataline is RESTOREd and if either
the maximum width or the number of options are not given then the
program reads through the data calculating these until it finds the
terminator CHR$ 255. (I have used this system of using a terminator of
CHR$ 255 instead of the more conventional way of checking that
ITEM()=0 so as to allow multiple entries into data statements. e.g.:

110 DATA "circle",square,pentagon,hexagon
120 DATA "change ink colour","change paper colour",CHR$ 255

If a dataline of 120 was used then only those items in line 120 would
be used, but if 110 was used instead then not only would the items in
line 110 be used, but those of 120 as well.) [BB allows you to omit
quotes from strings in data statements if you use READ LINE. except
where keywords would be created. Pity I didn't suppress "tokenization"
in DATA statements, as I did for REMs! Ed.] String variable d$ is then
dimensioned as the length of the longest data item (max) and then the
dataline is restored again. This time the program goes through the
data items again and shoves the whole lot in variable a$ together with
a number or letter corresponding later to that option. (The first
letter is capitalised and extra quotes removed with VAL$.)

Next, the window coords are calculated and window 10 defined to
cover them. Then the area underneath the window is stored in p$ and n$
(pixel data and attributes respectively). The screen is then dulled
(i.e. any bright signals removed) and the window opened together with
a "frame" to give some impression of depth. This is then filled with
the options (a$).

At this point a loop is programmed to accept keypresses to move
the colour bar to the required option. This can be done in 2 ways; use
up/down cursors or press the letter/number next to the required
option. The bar will then move to that particular option, any other
keys (except enter) will move the bar until it reaches the bottom when
it will return to the top of the menu. Pressing enter will choose the
option pointed by the bar, this option number will be passed back
through by the REF. The screen is then restored to what it was before
the procedure was called.

- 13 -

Back to The Editor again: I have modified this procedure at line
3040, because Martin's method of finding the address of the line that
called PMENU was slightly flawed; it only worked if the Basic program
started at a particular place. I have said something about how the
procedure stack works before (issue 5, p.14) but I've never explained
the format of its contents. Now I'd better! For speed, it is desirable
to store the address of the calling line, not its actual line number;
however, this address might change if a new channel or Microdrive
buffer is created. Therefore, BB stacks the difference between PROG
(the start of the Basic program - system variable 23635) and the
line's address. The value 16384 is added to this to help show that the
value is a procedure return address. Line 3040 reverses this process
to obtain the real line address from the value on the top of the
stack. Line 3060 can then read the line number from the Basic program.
("Underneath" each coded line address (e.g. at DPEEK(23613)+3) is a
return statement number. These are one greater than the statement
number of the procedure call.)

My monitor doesn't show BRIGHT, and I thought that storing the
entire attribute file (768 bytes) in n$ so that the screen could be
"dulled" and then restored was quite a high memory overhead. So for my
own use, I wanted to remove this feature. This can be done by deleting
lines 3355, 3365 and 3605, and adding ";1" to the end of line 3350 so
that the GET string will contain attributes as well as pixel data. I
added line 1 before doing my screen dump in order to show the "pull-
down" nature of the PROC. Now, over to Martin again:

PROC KTM (Key Terminated Message) is an improvement of PROC KEY
(issue 7). It accepts an optional (non-compulsory) message after the
calling command, e.g.:

KTM or
KTM "Press any key to load"

If no message is supplied then the default is "Press any key to
continue". It uses an "alternative" way of making B$ exactly 32
characters long, as opposed to using DIM. INPUT "" clears the lower
screen.

 1 CSIZE 4,8
 LIST 3469
 10 Pmenu c
 DATA "press any key to continue",end,CHR$ 255
 15 DATA "play tune",compose tune,rearrange tune,transfer tu
 ne,"save tune","load tune","verify tune",CHR$ 255
 20 KTM
 30 Pmenu c,15
 40 ON c
 KTM "play tune"
 KTM "compose"
 KTM
 KTM "transfer tune.Are you sure?"
 KTM "any key to save tune (a)bort"

1000 DEF PROC KTM B$
 DEFAULT B$="PRESS ANY KEY TO CONTINUE"
 LET B$=SHIFT$(1,(B$+STRING$(ABS (32-LEN B$)," "))(TO
 32))
 DO
 PRINT #0;AT 1,0; PAPER 6; INK 9;B$
 LET B$=B$(32)+B$(TO 31)
 LOOP UNTIL INKEY$<>""
 INPUT ""
 END PROC

- 14 -

3000 DEF PROC Pmenu REF choice,dataline,options,max,row,col
3010 LOCAL key,dep,number,wid,x,y,n,b$,d$,n$,p$,a$
3020 DEFAULT row=0,col=0,dataline=-1,max=0,options=0
3030 IF dataline>0 AND dataline<10000 THEN GO TO 3070
3040 LET n=DPEEK(DPEEK(23613)+2)+DPEEK(23635)-16384
3050 IF n>65535 THEN LET dataline=1
 GO TO 3070
3060 LET dataline=PEEK (n)*256+PEEK (n+1)
3070 RESTORE dataline
3080 LET a$="",number=1,n$="0"
3090 IF max<>0 AND options<>0 THEN STOP
 GO TO 3170
3100 DO
3110 READ LINE b$
3120 IF b$(1)=CHR$ 34 THEN LET b$=VAL$ b$
3130 EXIT IF INSTRING(1,b$,"CHR$ 255")
3140 IF LEN b$>max THEN LET max=LEN b$
3150 LET options=options+1
3160 LOOP
3170 LET col=INT (col/8)*8
3180 IF options=0 OR max>28 THEN STOP
 GO TO 3620
3190 DIM d$(max)
3200 RESTORE dataline
3210 DO
3220 READ LINE b$
3230 EXIT IF INSTRING(1,b$,"CHR$ 255")
3240 IF b$(1)=CHR$ 34 THEN LET b$=VAL$ b$
3250 LET b$(1)=SHIFT$(1,b$(1))
3260 LET d$()=b$
3270 IF number>9 THEN LET n$=CHR$ (55+number)
 ELSE LET n$=STR$ number
3280 LET a$=a$+n$+" "+d$+CHR$ 13
3290 LET number=number+1
3300 LOOP
3310 DEFAULT row=0,col=INT ((31-max)/16)*8
3320 LET x=col+8,y=167-(row*8)
 LET wid=max*8+16,dep=options*8
3330 IF (y-dep)<0 OR x+wid>255 THEN STOP
 GO TO 3610
3340 WINDOW 10;x,y,wid,dep
3350 GET p$,x-1,y,max+3,options+1
3355 LET n$=MEMORY$() (22528 TO 23296)
3360 WINDOW 10
3365 ALTER TO BRIGHT 0
3370 INK 0
3380 LET x=x-1
3390 PLOT x,y
 DRAW 0,-dep
3400 DRAW wid,0
 PLOT x+1,y-dep-1
3410 DRAW wid,0
 DRAW 0,dep
3420 PLOT x+2,y-dep-2
 DRAW wid,0
 DRAW 0,dep
3430 PAPER 5
3440 BRIGHT 1
3450 CSIZE 8
3460 OVER 2
3470 CLS 10

- 15 -

3480 PRINT a$(TO LEN a$-1)
3490 LET choice=1
3500 DO
3510 PRINT AT choice-1,0; PAPER 2; INK 7;STRING$(max+2," ")
3520 GET key
3530 PRINT OVER 1;AT choice-1,0;STRING$(max+2," ")
3540 EXIT IF key=214
3550 IF key<=options THEN LET choice=key-1
3560 IF key=212 THEN LET choice=choice*(choice>1)-1
 ELSE
 LET choice=choice*(choice<options)+1
3570 IF choice=-1 OR key=0 THEN LET choice=1
3580 LOOP
3590 BRIGHT 0
3600 PLOT OVER 0;x,y;p$
3605 POKE 22528,n$
3610 WINDOW 0
3620 END PROC

The Editor again: The use of STOP followed by GO TO when some problem
is found, as used above, allows a simple CONTINUE to make the program
GOTO somewhere useful, like a line to give WINDOW 0: END PROC. The
dump below uses shading for colour.

PROC PRINTAR - printing numeric arrays neatly

This contribution from Francesco Stajano (Rome, Italy) is used to
neatly tabulate 1 or 2-dimensional numeric arrays, in a specified
format. The default format prints each number with a decimal point; my
example over-rides that, since all the numbers in my array a() are
integers. Remember you can change CSIZE if the array is too wide for
the screen. The procedure will work to a printer if you alter PRINT to
LPRINT, or use PRINT #(stream) and vary the stream number.

 10 DIM a(12,6)
 20 FOR i=1 TO 12
 FOR j=1 TO 6
 LET a(i,j)=i*l0+j
 NEXT j
 NEXT i
 30 printar a(),"####"

 100 DEF PROC printar REF q(),u$
 DEFAULT u$="##.#"
 LOCAL i,j
 FOR i=1 TO LENGTH(1,"q()")
 FOR j=1 TO LENGTH(2,"q()")
 PRINT USING u$=q(i,j);" ";
 NEXT j
 PRINT
 NEXT i
 END PROC

- 16 -

READERS' LETTERS

Dear Sir,

I must admit I subscribed to the BETA BASIC NEWSLETTER with the
misconception that it would be full of useless rubbish. Boy was I
wrong. The Newsletter is excellent. It's just the kind of thing I've
been looking for. I saw in Newsletter 5 a routine to turn programs
into Tasword files which I found fascinating. Is there a similar
routine to reverse the process? I port Jupiter Ace software to the
Spectrum and then store it on Microdrive. I would find it useful to be
able to hold these programs as Tasword files but also to extract them
from those files at a latter date.

Ian Jones, Pallion, Sunderland, Tyne & Wear

I think probably many people have the same idea of the Newsletter's
contents as you used to have, but never had a chance to change their
minds! It would be possible to convert Tasword files back into Basic
programs, but it is probably easier to keep a copy in both program and
document forms. FORTH programs would be harder, in any case, since I
don't know anything about how such programs are stored.

Dear Andy,

...Why the hell is the display file so stupidly laid out? I can
understand having lines of 32 bytes to make an horizontal line, which
is "what the electron beam in the television needs", but why, then did
they mess up the pixel lines?...

Francesco Stajano, Rome, Italy

As a programmer, I had always thought this was intended to simplify
PRINT; since each pixel line in a character is 256 bytes below the
previous one, you just need to increment the most significant byte of
the screen address in machine code to find the location of the next
place to put character data. If the next pixel line were 32 bytes
lower instead, you would need to protect a register, load it with 32,
add it to the address, and then restore the register, which is slower.
But I learned recently from hardware designer Bruce Gordon that a more
important advantage is that there is a simple relationship between
each screen address and the corresponding attribute location. Both
locations have to be read in quick succession by the display
circuitry; this is a lot easier if the less significant byte of each
screen address is the same as that of its related attribute.

-*-*-*- SUBSCRIPTIONS -*-*-*-

They are ALL due! So no more fascinating Newsletters unless you send
me some money! To smooth out fluctuations in subscription income and
encourage the hesitant, I have decided to change to 3-issue
subscriptions. The price will be £3.00 (U.K.), £3.50 (Europe) or £4.00
(anywhere else - Air Mail). This covers some increased costs since
issue 1. This is a good time to pass comment on the Newsletter's
contents - if you want changes, please say so, and I will try to
oblige. Also, PLEASE SEND IN YOUR CONTRIBUTIONS! All items will be
gratefully received!

BB NEWSLETTER, 24 WYCHE AVE., KINGS HEATH, BIRMINGHAM B14 6LO

