HIRST PUBLISHING LTD

A Data Becker Book from First Publishing Ltd.

: P

7 % i:"h—-i e B

e

SSERGEE RIS 6~ e T

FIRST PUSLISAING 73
A Data Becker Book from First Publishing Ltd.

Y 2 e 4 77 20 1) 1 T

Tricks and Tips

for the
C-128

By Tobias Weltner, Ralf Homnig and Jens Trapp

A Data Becker Book
Published by

First Publishing Ltd
20B Horseshoe Park
Pangbourne
Berks.

Tek 07357 5244

Copyright © 1985 Data Becker GmbH
Merowingerstr. 30
4000 Dusseldorf, West Germany

Copyright © 1985 ABACUS Software, Inc.
P.O. BOX 7211
Grand Rapids, MI. 49510
Copyright © 1986 First Publishing Ltd.

20B Horseshoe Park
Horseshoe Rd

Pangbourne, Berks.
Tel: 07357 5244

This book is copyrighted. No part of this book may be reproduced, stored
in a retrleval system, or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise without the
prior written permission of First Publishing or Data Becker, GmbH.

ISBN 0 948015 531

Printed and Bound by Athenzum Press
Newcastle upon Tyne

ek Pk pd et
LI N —

[Sy

I I I) Y Y LY O Y R N IS 7, T SR . N T S N

Pt s pd it ok mh Do Pt P ok ok ok pd ok Pk ok ok ok ok b pd et ok ok
VA N,L,WNN—=OWVWRENAAUVNMPEAWN—=O

e D e
W —

@
e

TABLE OF CONTENTS

Graphics on the Commodore 128
Switching 40/80 Columns

The 40-Character screen .

The 40-Column Character Generator
1.3.1 Changing the Character Set
1.3.2 Character Editor

Moving Screen Memory

1.4.1 Working with Several Screens
The 80-Column Screen

Screen and Color RAM

Registers of the 80-Column Controller
‘The Video Display Controller (VDC)
Practical Video RAM Access

Poke Simulation

The Character Generator

Reading the Character Generator
Big Script with Strings

Printing Banners at Home

Defining Your Own Character Set
80 Column Character Editor
Working with Multiple Screens
Manipulating the VDC 8563
Manipulating Screen Format

For Monochrome Monitors Owners
The 8X16 Character Matrix

Total 16X8 Matrix Manipulation
Double-height Characters

Moving the Video RAM

Color for the 80-Column Screen
Custom Character Editor

System Routines

High-renolution Graphics

Character Generators - Again

BASIC 7.0 Graphics Commands
The Circle Command

Pie Charts

Bar Graphs

Function Plotter

First Publishing

Tricks and Tips for the C-128

First Publishing

2.5

2.6

WLWLWLWLWLLWWLWWW
— Voo R W —

4.2
4.3
4.4
4.5

4.6
4.7

Windows

25.1 How to do Windows

2.5.2 Reading Window Coordinates
253 Setting up Alternate Windows
254 Vertical Scrolling

255 The Window as an Input Line
256 PRINT AT with Windows
2.5.7 Clearing a Partial Screen
2.5.8 Securing Window Contents
259 Simulating Several Windows
Sprite Handling

2.6.1 Design in Listing

2.6.2 Comfortable Sprite Editing

Useful Programs

Error Handling

Lister A Listing Utility

OLD

A Little Music on the Side...
Real-time Clock on the C-128
Analog Clock

LLIST

Do-it-yourself Word Processing
Modified INPUT

Warning Tone

Software Protection on the C-128

Protection with Colons

Line Number Roulette

Manipulating Line-Links

Creative Control Characters: Making Gremlins
Protection with POKES

4.5.1 LIST Disabling

452 Disabling: RUN-STOP/RESTORE
453 Disabling SAVE

Disk Copy Protection

LOAD"$"

130

133
135
137
139
140
142
142
142
143
144
145

Tricks and Tips for the C-128

L
W N —

DO
abpLiv-

NNNN NNNNNN

Nello N Ne,\ N ph Wt —

90 00 00 00 00
HWN =

Self Modifying Programs
Line Insertion

Formula Entry

DATA Statement Generator

The DATASETTE

Software Control for the DATASETTE
Reading Tape Keys

Doing Unusual things with the DDR

Another Copy Protection Scheme

"LO-FI" -- The DATASETTE as a Music Box
Saving to Cassette-- Sort of

The Keyboard

Keyboard Assignment

Changing Key Assignments

HEX- Keyboard for the C-128
SHIFT, C=, ALT Key Assignments
The Auxlhary Keys

7.5.1 Using the Auxiliary Keys
Eight Additional Function Keys
Keyboard Beep

Program Pause

HELP & RUN/STOP KEY Assignment

Command Extensions

What is the CHRGET Routine?
Changing the CHRGET Routine

The "Behaviour" of the New Commands
Several Additional Commands

147
149
150
151

155
157
158
159
160
161
162

165
167
171
175
176
179
179
180
183
185
187

191
194
197
202
204

WV W
Wi —

10.1
10.2

11.
11.1
11.2

11.3

12.

13.
13.1

13.2
133

14.

Banking

Theoretical Basics

Banking with the C-128

Switching the Banks with the MMU

Autostart

Autostart from the DISK DRIVE
10.1.1 The BOOT-CALL Routine
10.1.2 Using the BOOT-CALL
Autostart by Cartridge

C-128 Memory

Important Addresses

Jump Table

11.2.1 KERNAL

112.2 Vector-Load-Table
11.2.3 KERNAL Calls

Free Memory

11.3.1 Free Zero Page Memory

11.3.2 Memory for Machine Language

Changing the Operating System

The C-64 Mode on the Commodore 128

High-speed on the C-64

13.1.1 Register 48: Processor Clock
80-Column Controller Access
Decimal Keypad on the C-64

Token Table

209
211
212
214

217
219
220
233
239

245
247
262
262
278
279
280
280
281

283

289
291
291
293
294

295

FOREWORD

We've written this book for every Commodore 128 owner who wants to
make better use of his or her machine. Whether you want to create your
own character set, use the higher computing speed (C-128 FAST mode) in
your C-64 programs, or use the ROM routines, you'll find this book full of
practical information. Some of the topics covered in this book include:
Banking and memory configurations; VIC-II chip registers; windows;
multitasking; command extensions‘; imp‘drtant memory locations; and many,
many sample progrims,

We've tested and debugged all of the BASIC programs, as well as the
BASIC loaders that match the machine language listings. An optional
companion disk is available containing all of the programs in this book. See
the ordering instructions at the end of this book for details. We used a
modified version of the LISTING CONVERTER program (found in chapter
3) to transfer the program listings from the C-128 to the computer this book
was edited with. There should be no errors as far as the listings themselves
are concerned. The text proper will describe the operation of the programs.
Before we go into the depths of the C-128, we'll just remind you of
Murphy's Laws on Programming*:
1) Once a running version of a program is ready, it'z already
obsolete.
2) All other programs cost more and take longer to run.
3) If a program is useful, odds are it can be replaced.
4) If a program is useless, it will be documented.
5) Every completed program takes up all the memory, whether
it was written that way or not.

6) The value of a program is proportionate to the time taken in
mass-producing it.

hY

— " e e o e d

First Publishing Tricks and Tips for the C-128 -

7) Program development takes so long that by the time you get
it running, you'll have to revise it to keep up with the times.

Have fun,

The Authors
Rinteln, Germany, August 1985

* Source: A. Bloch, "Why What Can Go Wrong, WILL", Goldman, 1977

First Publishing Tricks and Tips for the C-128

GRAPHICS ON THE COMMODORE 128

Graphics are an intriguing subject, particularly when we're talking about
high-resolution graphics (as opposed to the graphic symbols built into the
C-128 character set). For those who were stopped from writing
professional software for the Commodore 64 because of its 40-column
screen, this new machine offers another possibility. If you look on the back
of the computer, you'll see two jacks marked RF and VIDEO; these allow
you to connect the C-128 to a television set (RF) and a composite monitor
(such as the Commodore 1701). These two jacks give you 40 columns, as
with the C-64, but the 128 has one more jack -- an interface marked RGB!
An RGB monitor (Red Green Blue) is much more expensive when
compared to, say, the 1701, but with the RGB monitor you get better
picture quality, higher resolution and, most importantly, an 80-column
screen.

The next few pages discuss exactly what can be done with the graphics
screen. Numerous sample programs illustrate these discussions.
Remember that one major difference exists between the C-64 and C-128
graphics: the C-128 allows two completely independent screens, which
we'll discuss next.

First Publishing Tricks and Tips for the C-128

1.1 SWITCHING: 40/80 COLUMNS

Before going into any detail, we should take a look at switching between the
40-column and 80-column screens. The setting of the 40/80 DISPLAY key

on the upper section of the keyboard determines the screen mode when
powered on. After power-up, the switch is inoperative unless the reset
button is pressed. To switch modes within a program use the following

commands:
ESC+X (switches direct mode on)
PRINT CHRS$ (27)+"X" (switches mode outside program)
SYS 49194 (works like the switching from BASIC,

but also works in machine language)

1.2 THE 40-CHARACTER SCREEN

The 40 column screen is controlled by the VIC 8564 chip. The VIC 8564 is
similar to the VIC 6564 chip in the 64, but it contains an additional two
registers (more on this later). When using the 40 column mode, the screen
can be displayed on either a television or a composite monitor, but NOT on
an RGB monitor.

Video RAM and color memory use the same memory ranges as those in the
64:

First Publishing Tricks and Tips for the C-128

SCREEN RAM $0400 - S$S07FF (decimal 1024 - 2023)
COLOR RAM S$D800 - SDBFF (decimal 55296-56295)

Both ranges are in normal address space, and can be manipulated using
PERK and POKE:

10 FOR A=0 TO 255

20 POKE 1024+A,A

30 NEXT A

40

50 FOR A=0 TO 25§ '

60 X=INT(RND(1l)*16) :REM RANDOM NUMBER (COLOR)
70 POKE 55296+A,X

80 NEXT A

The statement:
POKE 1024+column+(40*1line),0-255
puts a character onto a forty-column screen; while the statement:

POKE 55296+column+(40*1line),0-15

puts a color into the matching memory location. In either statement,
column can range in value from O to 39 and 1ine can range from 0 to 24.

As in the C-64, screen memory can be moved in 1K steps, but color
memory is not relocatable.

First Publishing Tricks and Tips for the C-12¥

1.3 THE 40-COLUMN CHARACTER GENERATOR

The actual design of a character is stored in a ROM known as the character
generator. The character generator is found in memory at $D000 to $DFFF.
You can't read the character generator by normal means, since it lies in

ROM, and you can't write to it at all,

The internal divisions of the character generator look like this:

CHARACTER SET 1 (UPPER CASE and BLOCK GRAPHICS)

$D000 - $D1FF Upper case letters

$D200 - $D3FF Block characters

$D400 - $D5FF Reverse upper case letters
$D600 - $D7FF Reverse block graphics

CHARACTER SET 2 (UPPER CASE and LOWER CASE)

$D800 - $D9FF Lower case letters
$DAO00 - $DBFF Upper case letters
$DCO00 - $DDFF ~ Lower case reversed
$DEO0O - $DFFF Upper case reversed

The following short program allows you to read the character generator:

First Publishing -~ Tricks and Tips for the C-123

90 PRINT "{CLR HOME} PRINT THE CHARACTER
GENERATOR ROM"

91 PRINT : PRINT

100 REM OUTPUT CHAR GENERATOR

120

130 FOR X = 0 TO 255: REM 256 CHARACTERS

140 FOR Z = 0 TO 7: REM 8 BYTES EACH

150 AD = 53248 + X * 8 + 2

180 BANK 14: C = PEEK (AD): BANK 15

210 H

220 FOR Y = 7 T0O O STEP =~ 1: REM 8 PIXELS/BYTE

230 IFC> =2 ~“YTHENC=C -2 ~ Y:
PRINT "*";: ELSE PRINT ".";

240 NEXT Y

250

260 PRINT

270 NEXT Z

280 PRINT

290 NEXT X

300 END

The pattern of each character is stored in eight bytes; each byte is divided
into eight bits. So, one character has a matrix of 64 bits. Each of these bits
can be turned on or off. The character generator is taken directly from ROM
in 40-column mode. Therefore to make any changes to a character's
pattern, we have to copy the character generator into RAM. The ROM

character generator cannot be maved or changed, but the copled genernter
can be moved to a different memory location.

We'll begin from a cold start in BASIC. Type the following in direct mode:
POKE 56,48:POKE 58%*256,0:NEW

Any program currently in memory will be lost. To copy the character set
from the character generator to RAM, use the following:

First Publishing Tricks and Tips for the C-128

10 REM COPY CHARGEN $D000 TO $2000

20 BANK 14 : REM READ OUT CHARGEN

30 FOR X=0 TO 4095

40 POKE DEC("2000")+X,PEEK(DEC("D0OQO") +X)
50 NEXT X

60 BANK 15 : REM NORMAL CONFIG.

Here's where we see how slow BASIC is; the entire procedure takes more
than a minute! The program moves the character generator from ROM to
the RAM area near the start of BASIC.

Now the character generator is in RAM. We know this, but the computer
doesn't; you'll have to tell the computer to use the copied character set (64
fans will note that the address 53272 is the same). The memory contents of
this location determines the starting addresses of the character generator and
screen RAM. We'll skip the latter for the moment, and have a look at the
character generator itself. Here's an overview of possible starting
combinations:

SCREEN MEMORY CHARACTER SET

0000xxxx 0 xxxx000x 0
0001xxxx 1024 xxxx001x 2048
0010xxxx 2048 xxxx010x 4096
0011xxxx 3072 xxxx011x 6144
0100xxxx 4096 xxxx100x 8192
0101lxxxx 5120 xxxx101x 10240
0110xxxx 6144 xxxx110x 12288
0111xxxx 7168 xxxx111x 14336
1000xxxx 8192
1001xxxx 9216
1010xxxx 10240
1011xxxx 11264
1100xxxx 12288
1101xxxx 13312
1110xxxx 14336
1111xxxx 15360

First Publishing Tricks and Tips for the C-128

The character set can be moved in 2K increments. This has two
disadvantages: First, the character set can only be moved within the first
16K of memory. Second, the normal ROM character set is located at 6144,
but that's normal BASIC RAM. How can that be?

The VIC chip can only address 16K, which in this case is the first 16K of
memory. The address 6144 represents the offset within this 16K block.

We can determine which 16K block is involved by changing the contents of
address 56576:

16K range:

$0000 - S3FFF 0 - 16383 POKE 56576,199
$4000 - S7FFF 16384 - 32767 POKE 56576,198
$8000 - $BFFF 32768 - 49151 POKE .56576,197
$C000 - SFFFF 49152 - 65535 POKE 56576,196

When the last 16K block ($C000-$FFFF) is used (default), the character
generator resides at 49152 + 4096 = 53248 ($D000). If you check the first
table, you'll see that the normal character set (upper case/graphics) begins at

$D000. The first two bits in 56576 represent address bits 14 and 15 of the
character generator.

-t

Keep in mind that the screen memory is also moved in 16K steps. The high
byte of screen RAM has to be moved:

POKE 2619, 4+X*64

X=0-3 (matches 16 banks 0-3)

First Publishing Tricks and Tips for the C-128

To let the computer know that the new character set is at $2000, you'll have
to change the contents of 53272; here we find a substantial difference
" between the C-128 and the C-64. Where the C-64 required only a simple
POKE, here we don't have that luxury -- what you POKE will be reset by
the C-128 operating system. So, to get around this, we'll have to deal with
a byte in zero-page memory:

$O0A2C (2604) VIC TEXT SCREEN/CHAR BASE POINTER

This looks more complicated than it actually is. POKEing into 53272 on
the C-64 is equivalent to POKEing into 2604 on the C- 128. The contents of
this address automatically writes to 53272.

Switching to our new character set can be accomplished with this statement:

/

POKE 2604,PEEK(2604) AND NOT 2+4+8 OR 8

In other words, bits 1 to 3 (controlling the position of the character
generator) are cleared, and bit 3 is set. So, address 53272 gives us these

contents: xxxx100x

This statement sets the new character generator at 8192. Bear in mind that
all we've done is move the character set around; the procedure isn't
finished. Notice how odd the characters look on the screen.

D
ra L1 upLBDIIE AL MW BID U MO W TALD

1.3.1 CHANGING THE CHARACTER SET

-t

Now, type in the following BASIC program:

10 REM @ SIGN TO SQUARE

20 FOR X = 0 TO 7: REM 8 BYTES PER CHARACTER
30 READ CO

40 POKE 8192+0*8+X,CO

50 NEXT X

60 DATA 255,129,129,129,129,129,129,255

The @ sign changes before our syes to a square (see "Defining your Qwn
Characters" in the 80-column section for more information).

1.3.2 40-COLUMN CHARACTER EDITOR

Fortunately, you don't need to design your new 40-column character set by
hand: With a few small changes, you can use the 80-column character
editor (Chapter 1.16.1). First move the start of BASIC to protect your
character set from overwriting your BASIC program.. In direct mode, enter:

POKE 46,58:POKE14848,0;NEW

Then change the following lines of the 80-column character editor:

4000 BANK 14

4010 FOR X = 0 TO 4096

4020 POKE DEC("2000")+X,PEEK(DEC("D000")=X)
4030 NEXT X ‘

4050 POKE 2619,4

11

and Tips for the C.128
Flrst Publishing Tricks p

POKE 5676,199 .
2838 OKE 2604, PEEK (2604) AND NOR 2+4+8 OR

4080 BANK 15
5005 - 5045 DELETE
5065 AD=8192+8*A+Y

5070 POKE AD,W

5075 DELETE

le your
Edit the characters, then exit the program and RUN 40000 to enable y

custom character set.

1.4 MOVING SCREEN MEMORY

- but it
Screen memory normally resides in $0400 - $07FF (1024 - 2023), bu
can be relocated. Remember these two addresses:

R
2604 VIC TEXT SCREEN/CHAR BASE POINTE
2619 VIC TEXT SCREEN BASE

in 1K steps. See

in memory,
en memory anywhere 1 ! |
he eanwhile, let's get

We can move .
Chapter 1.3 for the table showing possible addresses. M

started on uses for relocating screen memory.

t

Firat Publishing Tricks and Tipa for the C.128

1.4.1 WORKING WITH SEVERAL SCREENS

As the title suggests, you have the option of using several screens at once
(called "page-flipping") in 40-column mode. We'll illustrate this using three
screens. Since these three screens will use part of normal BASIC memory,
you must move the start of BASIC so that your programs don't overwrite
the new screen memory. In direct mode, cn'tcrl the following statements:

POKE 46,40: POKE10240,0: NEW

The following BASIC program POKES a machine language program into
memory which can be used to "page flip" between three screens by using
the <F1>, <F3>, and <F5> keys.

2000 FOR X = 4864 TO 4950

2010 READ A : CS=CS+A: POKE X, A

2020 NEXT X U

2030 IF CS <> 7857 THEN PRINT CHRS(7); LIST

2040 DATA 120,169,24,141,20,3,169,19,141,21, 3,
169,0,141,0,16

2050 DATA 141,2,16,141,4,16,88,96,72,138,72,
166,213,224,4,208

2060 DATA 13,169,20,141,44,10,169,4,141,59,
10,76,80,19,224,5

2070 DATA 208,13,169,132,141,44,10,169, 32,

. 141,59,10,76,80,19,224

2080 DATA 6,208,13,169,148,141,44,10,169,
36,141,59,10,76,80,19

2090 DATA 104,170,104,76,101,250,255

Here's a listing of the machine language program that is POKEd into
memory by the above BASIC program:

First Publishing

Tricks and Tips for the C-128

1300
1301
1303
1306
1308
130B
130D
1310
1313
1316
1317

NEW IRQ:

1318
1319
131A
131B
131D
131F
1321
1323
1326
1328
132B
132E
1330

1332
1334

1337
1339
133C
133F
1341

1343

1345
1348
134A
134D
1350
1351
1352

78
AS
8D
A9
8D
A9
8D
8D
8D
58
60

48
8A
48
A6
EO
DO
A9
8D
A9
8D
4C
EO
DO

A9
8D

A9
8D
4C
EO
DO
A9
8D
A9
8D
4C
68
AR
68

18
14
13
15
00
00
02
04

D5
04
oD
14
2C
04
3B
50
05
0D

84
2C

20
3B
50
06
0D
94
2C
24
3B
50

1353 4C 65

03
03

10
10
10

OA

OA
1A

OA

OA
ia

OA

oA
1A

SEI
LDA
STA
LDA
STA
LDA
STA
8TA
STA
CLI
RTS

PHA
TXA
PHA
LDX
CPX
BNE
LDA
STA
LDA
STA

CcpX
BNE

LDA
STA

LDA
STA

CPX
BNE
LDA
STA
LDA
STA

PLA
TAX
PLA

FA JMP

#518
$0314
$513
$0315
#500
$1000
1002
$1004

$D5
#5504
$132E
#5114
$0A2C
$504
$SOA3B
$1350
#$05
$133F

#584
$0A2C

#$20

:interrupt off

:low-byte of new IRQ
:store low-byte
:high-byte of new IRQ
:store it

:Length of function keys
:F1 on

153 on

:F5 on

:interrupt again permitted
:back to BASIC

:put accu

:and X-reg

:on stack

:1load X w/ pressed key
:F17?

:no, then read next
:new starting address
:and set

.new screen at $0400
:and set it

:end F1

1F37?

:no, then read next
inew starting address
:and set

.new screen at $2000

$S0A3B:and set

$1350
#506
$1350
#9594

:end F3

:F5?

:no, then ready

.new starting address

$50A2C:and set

$524
$O0A3B
$1350

SFA65

.new screen at $2400
:and set

:end F5

:Put back old

:X-reg and
.accumulator values,
.and return normal IRQ

14

rirnt ruvusimg n
Iricks and Tips for the C-128

The principle is the same for 80-column mode (see Chapter 1.17).

1]

After RUNning the program, you have your choice of three independent
screen pages, called by F1, F3 and F5. These screens will initially be full of
strange characters -- clear the individual screens with:

PRINT CHR$ (147) (or with PRINT'{CLR/HOME}")

You can switch screens in program mode with a POKE to address 213:

POKE 213,4
POKE 213,5

(normal screeh)
(2nd screen at $2000)
POKE 213,6 (3rd screen at $2400)

Here is the memory configuration used by the routine:

SCR 1(normal)

SCR 2 SCR3
Start of screen memory $0400 $2000 $2400
End of screen memory ~ $07FF $23FF $27FF
Color RAM -- start $D800 $D800 h $D800
Color RAM - end $DBFF $DBFF SDBFF
BASIC start $2800 $2800 $2-800 =
Press F1 F3 F5

15

First Publishing Tricks and Tips for the C-128

1300 78 BEIX 1interrupt off
1301 A9 18 LDA #518 :low-byte of new IRQ

1303 8D 14 03 STA $0314 :store low-byte

1306 A9 13 LDA #$13 :high-byte of new IRQ
1308 8D 15 03 STA $0315 :store it

130B A9 00 LDA #500 :Length of function keys
130D 8D 00 10 STA $1000 :F1 on

1310 8D 02 10 STA $1002 :F3 on

1313 8D 04 10 STA $1004 :F5 on

1316 58 CLI :interrupt again permitted
1317 60 RTS :pback to BASIC

NEW IRQ:

1318 48 PHA :put accu

1319 8A TXA :and X-reg

131A 48 PHA :on stack

131B A6 D5 LDX $D5 .1oad X w/ pressed key
131D EO 04 CPX #$04 F1?

131F DO OD BNE $132E :no, then read next
1321 A9 14 LDA #5814 1new starting address
1323 8D 2C OA STA $0A2C :and set

1326 A9 04 LDA #$04 :new screen at $0400

1328 8D 3B OA STA $OA3B :and set it

132B 4C 50 1A JMP $1350 :end F1l

132E EO 05 CPX #$05 :F3?

1330 DO OD BNE $133F :no, then read next
1332 A9 84 LDA #$84 :new starting address
1334 8D 2C OA STA $0A2C :and set

1337 A9 20 LDA #$20 :new screen at $2000
1339 8D 3B OA STA #$0A3B:and set

133C 4C 50 1A JMP $1350 :end F3

133F EO 06 CPX #$06 :F5?

1341 DO OD BNE $1350 :no, then ready

1343 A9 94 LDA #5$94 :new starting address
1345 8D 2C OA STA #S0A2C:and set

1348 A9 24 LDA #$24 :new screen at $2400

134A 8D 3B OA STA $0A3B :and set
134D 4C 50 1A JMP $1350 :end F5

1350 68 PLA :Put back old
1351 AA TAX :X-reg and
1352 68 PLA .accumulator values,

1353 4C 65 FA JMP SFA65 :and return normal IRQ

14

rirst rublisning

Tricks and Tips for the C-12§

The principle is the same for 80-column mode (sec Chapter 1.17),

After RUNning the program, you have your choice of three independent
screen pages, called by F1, F3 and F5. These screens will initially be full of
strange characters -- clear the individual screens with:

PRINT CHRS$ (147) (or with PRINT'{CLR/HOME}")

You can switch screens in program mode with a POKE to address 213:

POKE 213,4 (normal screen)

POKE 213,5 (2nd screen at $2000)

POKE 213,6 (3rd screen at $2400)

Here is the memory configuration used by the routine:

SCR 1(normal) SCR2

SCR 3
Start of screen memory $0400 $2000 $2400
End of screen memory ~ $07FF $23FF $27FF L
Color RAM -- start $D800 $D800 $D800
Color RAM -- end $DBFF $DBFF $DBFF
BASIC start $2800 $2800 $2800
Press F1 F3 F5

15

First Publismng LIILRS @uu ssps ave = —

1.5 THE 80-COLUMN SCREEN

The C-128 isn't just for games. To make it a more practical machine, it has
80-column capability, thanks to a special graphic processor c.allec? thc? VDC
8563 (Video Display Controller). We should mention that this chip displays
80 columns only on a RGB monitor. We'll talk about that later,

1.6. SCREEN AND COLOR RAM

Now we enter completely new territory. While screen and color RAM for

40-column mode is in normal RAM, and can be controlled by PEEKing and

POKEing, 80-column video RAM is outside of normal RAM, and can't be

changed using normal PEEKs and POKEs! Don't panic yet -- the next

i -column video
couple of pages show how we can gain control of 80-colum

controller. On the next page is a list of registers for the 80-column

controller; we'll cover each register in detail.

16

- T e ewssw sessw ASpO BUS LUT LeL1LO0

1.7 REGISTERS OF THE 80-COLUMN CONTROLLER

00 READ: Status, LP,VBlank,-,-,-,-,-
WRITE: Bits 0-5 of desired register

01 Characters per line

02 Shift screen window (horizontal/character-wise)

03 Shift screen window (horizontal/pixel-wise)

04 Vertical synchronization

05 Vertical total

06 Lines per screen page

07 Shift screen window (vertical/line-wise)

08 Interface mode

09 Matrix register -- vertical

10 Cursor mode -- begin scan

11l End scan

12 Screen memory start address -- HI

13 LO of 12

14 Cursor position -- HI

15 LO of 14

16 Light pen vertical

17 Light pen horizontal

18 Channel address HI

19 LO of 18

20 Addribute-RAM start address -- HI

21 LO of 20

22 Matrix register/display horizontal

23 Matrix display vertical

24 Smooth-scroll vertical

25 Smooth-scroll horizontal

26 Color

27 Address shifting

28 Character generator basic address -- HI

29 Underline-Cursor-Scan-Line

30 Repeat register

31 Channel, byte read/write in video RAM

32 Block start address -- HI

33 LO of 32

34 Start of screen representation

35 End of screen representation

36 refresh-rate

17

First Publishing 'Iricks 8nd 11pPs IUF ue L-is0

1.8 THE VIDEO DISPLAY CONTROLLER (VDC)

We'll now cover the functions of the individual registers using examples.

These registers are indirectly addressed. That means that only registers 0
and 1 can be accessed. If you want to see the contents of register 26, you'd

type this in:

A=DEC ("D600")
POKE A,26:PRINT PEEK (A+1)

The register number is written into register 0 ($D600); register 1 ($D601)
acts as the channel for writing to or reading from the desired register:

10 INPUT"REGISTER";R

20 INPUT"VALUE";V

30 POKE DEC("D600"),R
40 POKE DEC("D601),V

Access to the Video RAM

As already mentioned, the VDC video has 16K of RAM outside of the
normal address range. To access the VDC video RAM, use the following

method:

10 BA = DEC("D600")

110 INPUT "ADDRESS OF THE VIDEO RAM";V
120 INPUT "VALUE";W

130 HO = INT(V/256): LO= V- (256*HI)
140 POKE BA, 18: POKE BA+1l, HI

150 POKE BA, 19: POKE BA+l, LO

160 POKE BA, 31: POKE BA+l, W

1R

LLICKS duU LIPS 10r tae C-128

170 WAIT BA, 32
180 POKE BA, 30: POKE BA+l1, 1

Program explanation:

100 Store the base address of the VDC in BA

110 Prompt for desired video RAM address (V)

120 Prompt for value you want written into video RAM (W)
130 Separate V into low and high bytes

140 Put high byte desired address into register 18

150 Put low byte into register 19

160 Byte value into register 31

170 Wait command until we reach memory address BA

180 Register 30 filled with 1 (character output)

Here is the video RAM layout on power-up:

$0000 - $07FF Screen refresh memory (SCR-RAM)
(dec. 0-2047)

$0800 - $OFFF Attribute RAM (e.g. color memory)
(dec. 2048-4095)

$1000 - $1FFF free
(dec. 4096 - 8191)

$2000 - $3FFF character generator
(dec. 8192-16385)

19

CIIdL F unidinng ALILAD AU B IPT SUE suv Y amw

Now we'll try to write to video RAM. Start the above BASIC program and
input O as the desired address; then enter a value between 0 and 255. A

character should appear in the upper left-hand comer of the 80-column
screen - the character displayed depends upon the value you enter.

To tell you the truth, this method of accessing video RAM is pretty
unreliable, but you can repeatedly write to this RAM (as long as it's within
bounds!). On the other hand, this isn't a method for a serious programmer.

We'll give you another method in the next section.

1.9 PRACTICAL VIDEO RAM ACCESS

What does the operating system do when a key is pressed while in
80-column mode? It seems to work perfectly. Well, let's explore how the
operating system treats characters in this mode. Of particular interest is a

ROM routine which you can easily call yourself. Here it is:
SYS 49155, CHARACTER, COLOR

CHARACTER =char #(0-255)
COLOR =char. color (0-16)

Unlike the previous BASIC routine, this routine always works. Plus, this

routine works for both the 40- and 80-column screens. This means that it's
possible to program for both screens at once (or two separate monitors).

20

A REDC A WML

‘I'ricks and Tips for the C-128

Once the novelty of the above routine wears off, you may wonder how to
put these characters on different lines of the screen. The position of the

character is read from memory locations 224 and 225 (current cursor

position). If you want a character in a specific place, you'll have to play
around a bit with these memory locations:

10 AD = CLMN + PEEK(238)* LINE

20 S1 = PEEK (224): S2 = PEEK(225)
30 HI = (AD/256): LO = AD- (256*HI)
40 POKE 244, LO: POKE 225, HI

50 SYS 49155, CHARACTER, COLOR

60 POKE 224, S1: POKE 225, S2

70 END

CLMN:0-79 (0-39)
LINE :0-24

238 Maximum length of screen
224 Cursor position -- LOW

225 = Cursor position -- HIGH
49155 Start address -- ROM routine

1.10 POKE SIMULATION

This machine language routine does away with all the compromises of the
previous techniques; we call it a "modified POKE command". Basically,
it's a pseudo-POKE for 80-column video RAM.

1800 48 PHA :Get char from stack
1801 8A TXA :low byte address
1802 48 PHA :placed on stack
1803 98 TYA :high byte address
1804 48 PHA :put on stack

1805 A9 02 LDA #502

21

Kirst rubphlsning ITICKS ana 11ps I0r ine L-140

1807 8D 28 OA STA $0A28 :set cursor flag

180A A2 12 LDX #$12 :VDC register 18
180C 68 PLA :get high byte back
180D 20 1B 1C JSR $181B :set register

1810 EB8 INX :VDC register 19
1811 68 PLA :get back low byte

1812 20 1B 1C JSR $181B :set register

1815 A2 1F LDX #$1F :VDC register 31

1817 68 PLA :get back character
1818 4C 1B 1C JMP $181B 1set register -- roady

181B 8E 00 D6 STX $D600 :register O

181E 2C 00 D6 BIT $D600 :bit 7 set?

1821 10 FB BPL $1CBE :no -- then test again
1823 8D 01 D6 STA $D601 :give value in D601

For those of you who don't program in machine language, here is the
BASIC loader.

5 REM 1.10A

10 FOR X = 6144 TO 6182

20 READ A: CS = CS + A: POKE X,A

30 NEXT X

40 IF CS < > 3411 THEN PRINT CHRS (7);: LIST
50 DATA 72,138,72,152,72,169,2,141,40,10,162,18
60 DATA 104,32,27,24,232,104,32,27,24,162,31,104
70 DATA 76,27,24,142,0,214,44,0,214,16,251,141
80 DATA 1,214,96

Now you have an extended POKE command at your disposal, which uses

the following format:

SYS DEC ("1800"),CHR,LO,HI

22

s saUL 8 GLLSLLE

Iricks and Tips for the C-128

CHR = character/byte-value (0-255)

LO ' =low byte of desired address
HI = high byte of desired address
Try this:

10 INPUT "ADDRESS";AD
20 HI=INT(AD/256) : LO=AD- (256%*HI)
30 SYS DEC("1800"),3,L0,HI

Given an address of 0; immediately a "C" (3 = screen code C) appears at the
HOME area of the 80-column screen. Restart the routine, and input a value

of 2048 -- now the "C" is in cyan; you've written it to artribute RAM
(2048-3047).

One byte of attribute RAM is conﬁgurcd as follows:

BIT O brightness
BIT1 blue

BIT 2 green
BIT3 red

BIT 4 blink

BIT S underline

BIT 6 reverse video
BIT 7 2nd character set

The use of the first four bits is obvious: combining these bits results in the

16 available colors. Setting bit 4 causes the corresponding character to
blink rapidly.

23

BRGETI DI F LI SR G 5 iebise Lt e e o

r;

First Publishing

Tricks and Tips for the C-128

1807
180A
180C
180D
1810
1811

lgi2
1815

1817
1818

8D
A2
68
20
E8
68

20
A2

68

28
12

1B

oA

1C

$0a28
#512

$181B

:set

cursor flag
register 18
high byte back
register
register 19
back low byte

rogister
register 31

back character
register -- ready

iregister 0O

:bit

7 set?

:no -- then test again
:give value in D601

For those of you who don't program in machine language, here is the

6144 TO 6182

CS + A:

POKE X, A

IF €S <€ > 3411 THEN PRINT CHRS (7);: L.IST
DATA 72,138,72,152,72,169,2,141,40,10,162,18
DATA 104,32,27,24,232,104,32,27,24,162,31,104
DATA 76,27,24,142,0,214,44,0,214,16,251,141

BASIC loader.
5 REM 1.10A
10 FOR X =
20 READ A: CS
30 NEXT X
40
50
60
70
80 DATA 1,214,96

Now you have an extended POKE command at your disposal, which uses

the following format:

SYS DEC ("1800"),CHR,LO,HI

22

kirst Publishing

Tricks and Tips for the C-128

CHR = character/byte-value (0-255)

LO = low byte of desired address
HI = high byte of desired address
Try this:

10 INPUT "ADDRESS";AD
20 HI=INT(AD/256) : LO=AD- (256*HI)
30 Sys DEC("1800"), 3, L0, HI

Given an address of 0; immediately a "C" (3 = screen code C) appears at the
HOME area of the 80-column screen. Restart the routine, and input a value
of 2048 -- now the "C" is in cyan; you've written it to artribute RAM

(2048-3047).

One byte of attribute RAM is configuted as follows:

BITO

BIT 1
BIT 2

BIT 3
. BIT 4
 BITS
BIT 6
BIT 7

brightness
blue
green

red

blink

underline
reverse video
2nd character set

v

The use of the first four bits is obvious: combining these bits results in the

16 available colors. Setting bit 4 causes the corresponding character to

blink rapidly.

PG

IR v 7 M AL TR e

-
SIPEL

LR - L1¥S

f;';!:r\. T

First Publishing Tricks and Tips for the C-128

Just for fun, put this new line into the program we just typed in:

'

30 SYs DEC("1800"),270+2"3+2"4,LO,HI

Now when you input 2048 for AD, the first character on screen blinks pink
(light red)! You can also put characters into reverse video or underscore
them by setting bit 6 or bit 5 (respectively). Bit 7 lets you change character
sets, just as <SHIFT/C=> does. On the 80-column screen it's possible to
have BOTH character sets onscreen at the same time, unlike in 40-column
mode. This means that you have 512 characters to work with!

1.11 THE CHARACTER GENERATOR

Having 512 characters at your finger tips may seem like a lot, but for special
purposes (games, math characters, special alphabets, etc.), the in-house
character set just isn't enough. So, you have to go in and design the
missing characters on your own. This is somewhat easier to do in
80-column mode, since the character generator is already in RAM, and can
be changed from there without having to copy it from ROM or moving the
start of BASIC.

24

First Publishing Telehs and Tips for the C.128

1.12 READING THE CHARACTER GENERATOR

Now we'll read out the character generator from video RAM:

20 BA 8192

30 A = DEC ("D600"): B =24 + 1

40 FOR X = 0 TO 7

50 AD = BA + X + 8 * W: IF AD > 16383 THEN END
60 HI = INT (AD / 256): LO = AD - (256 * HI)

70 POKE A,18: POKE B,HI

80 POKE A,19: POKE B,LO

90 POKE A,31: CH = PEEK (B)

100 FOR ¥ = 7 TO O STEP - 1

110 IFCH> =2 "Y THEN CH =CH - 2 ~ Y:
PRINT "*";: ELSE PRINT ".";

120 NEXT ¥
130 PRINT

140 NEXT X
150 W=WH+ 1
160 GOTO 40

Variables used:

BA :Base of character generator

A :Base of VDC

AD :Current address in character ‘generator
HI :High byte of AD

LO :Low byte of AD

CH :Read-out value of character line

w :Counter

RUNning the program causes all the characters to be displayed in an
enlargeq matrix on the screen. You'll note that eight spaces follow every

A

First Pub“shing ITICKS a0a 11pS 1Ur e w10 FSNTE-TH S TYVITE TETYTTSS chevers uieane sepu Sua teew o eew

1.13 BIG SCRIPT WITH STRI
character. Also note that the 80-column character generator of the C-128 is S NGS

quite different from those of the VIC-20, or even the C-64.

Here is another useful program using the "Character Generator". There's

You see, every character is made up of 16 bytes, as opposed to the eight i)))
nothing stopping us from making enlarged characters. Try this program.

bytes of the VIC or 64. Contrary to the way it sounds, there is no waste

here; normal circumstances give eight bytes per character unused. These

"empty bytes" serve a specific purpose -- the VDC 8563 can produce 10 2$ = "*": GOSUB 60000: PRINT Z$: END
S) . 60000 2z = ASC (2$): 2Z$ = "": 1IF Z AND 128

character matrices in either 8 X 8 or 16 X 8 format; see the figure below. THEN X = 2 AND 127 OR 64: GOTO 60040

60010 IF NOT Z AND 64 THEN X = Z: GOTO 60040

60020 IF Z AND 32 THEN X = Z AND 95: GOTO 60040
60030 X = Z AND 63

60040 L$ = "": US = ""
¥Dooo) @ ¢ 32000 60050 FOR W = 0 TO 7
$spoos| a $2008 60060 L$ = LS + CHRS (157)
60070 U$ = US + CHR$ (145)
$D010| B A $2010 60080 = NEXT W
60090 D$ = CHR$S (17)
I 60100 REM CHARACTER GENERATOR SELECTION
60110 A = DEC ("D600"): B =24 + 1
D B 60120 -

60130 FOR 2 = 0 TO 7: REM 8 BYTES

E 60140 AD = 8192 + X * 16 + 2
60150 HI = INT (AD / 256): LO = AD - (256 * HI)
60160 1

60170 POKE A,18: POKE B,HI
60180 POKE A,19: POKE B,LO
60190 POKE A,31: C = PEEK (B)

ROM RAM of VDC 60200 .
60210 FOR Y =7 TO O STEP - 1: REM 8 PIXEL
LINES/CHARACTER
60220 IFC> =2 "~YTHENC =C - 2 ~ Y: ZES =

. ZES + "*".ELSE ZE$ = ZES$S + "{SPACE}"
60230 NEXT Y

! 60240 2$ = 2$ + ZE$ + LS + DS$: ZES = v
60250 NEXT 2

! 60260 2$ = LEFTS (2$, LEN (2S) - 9) + US
60270 RETURN

27
26

First Publishing Tricks and Tips for the C-128 kirst Fublishing LFICKS and 11Ps I0F Ine L-120

200 IF NOT AC AND 64 THEN CO = AC: GOTO 230
1.14 PRINTING BANNERS AT HOME 210 IF AC AND 32 THEN CO = AC AND 95: GOTO 230
220 CO = AC AND 63
230 REM ** CHAR CODES **
240 BANK 14

Now that we have enlarged characters on the screen, we might as well print 328 ggl?pj\ - OpggK7(53248 . (8 CO) + B
them to the printer. This program will let you print banners and posters of 270 NEXT A
any length. You have a choice of sizes from 8 to 80 times larger than ggg I?ANK 15
normal: 300 REM ** CHAR ROTATE **
310 FOR A = 0 TO 7
10 S8 m Vwnp I8 = N 320 K(A) =0
20 REM BANNER-PRINTER 330 NEXT A
30 : 340 FOR A = 0 TO 7
40 PRINT "{CLR HOME)} {RVS ON} BANNER-PRINTER {RVS 350 FOR B = 7 TO O STEP - 1
OFF}" . 360 W =2 "B
50 PRINT "{CRSR DOWN) {CRSR DOWN}THIS PROGRAM 370 IF CH(A) >= W THEN CH(A) = CH(A) - W: K(7 -
DEMONSTRATES THE " B) = K(7 - B) +2 ~ A
60 PRINT " {CRSR DOWN}USE OF THE PRINTER FOR 380 NEXT B, A
VERTICAL PRINTING" 390 :
70 PRINT " {CRSR DOWN} {CRSR DOWN}TO PRINT A | 400 REM ** CHAR OUTPUT **
LETTER, " 410 FOR I = 0 TO 7
80 PRINT "{CRSR DOWN}TYPE IN SIZE AND THEN HIT 420 Q$ = ""
'RETURN' ." 430 FOR J = 7 TO O STEP -1
85 PRINT : PRINT TAB(7)"{CRSR DOWN} {CRSR 440 WI = K(I) AND 2 ~ J
DOWN} {CRSR DOWN}HIT ANY KEY TO CONTINUE" 450 IF WI THEN FOR U = 1 TO HO: Q$ = Q$ + S$:
90 GET KEY A$ NEXT U: GOTO 470
100 OPEN 4,4 460 FOR U = 1 TO HO: Q$ = Q% + LS: NEXT U
110 PRINT " {CLR HOME} {RVS ON} SIDEWAYS-PRINTER 470 NEXT J
{RVS OFF}" 480 REM ** DELETE UNNECESSARY BEGINNING SPACES **
120 PRINT "{CRSR DOWN}{CRSR DOWN) ENTER SIZE: 490 LX = LEN (Q$) -1
{CRSR DOWN} {CRSR DOWN}" 500 IF RIGHTS (Q%,1) = " " THEN Q$ = LEFTS
130 INPUT " {CRSR DOWN} {CRSR DOWN }HEIGHT (1-10) (Q$, LX) : GOTO 490
" ; HO ' 510 FOR U = 1 TO BR
140 INPUT "WIDTH (1-...)":BR 520 PRINT# 4,Q$
150 PRINT "AT COLON-TYPE LETTER TO PRINT" 530 NEXT U
155 PRINT "HIT [RETURN] TO STOP" | 540 NEXT I
160 PRINT " ",': POKE 208,0: GET KEY As:PRINT As,‘ ! 550 GOTO 160
165 IF AS = CHR$ (13) THEN END
170 :
180 AC = ASC (AS)
190 IF AC AND 128 THEN CO = AC AND 127 OR 64:
GOTO 230

28 29

First Publishing Tricks and Tips for the C-128

1.15 DEFINING YOUR OWN CHARACTER SETS

Now we'll redefine the built-in character set using our pseudo POKE
program from Chapter 1.10. To help you, we've supplied the following
program. '

Normally, every character is built within an 8 X 8 matrix. A good monitor
will allow you to see these individual points. The "A" character looks like
this when enlarged:

76543210

JExLLL0
LoxERX]

KX, KX 2
22322]
KX xR 4
KX XD
KR XX B

This is what you get when you run the character generator reading program.
You have this same matrix in which to design each of your own characters
(if you want still more, read on). Every line of a character consumes one
byte of memory, and each pixel within a byte is equal to one bit. Each bit
shows a point when it is set (1).

RUN the following program, which turns the "@" sign into a square:

10 A = DEC("D600"): B= A+l

20 BA 8192: ZE= O

30 FOR X = 0 TO 7

40 AD BA + X + (B8*ZE)

50 HI INT (AD/256) : LO = AD - (HI*256)

30

First Publishing T'ricks and Tips for the C-128

-

60 READ CH

70 SYS ("DEC1800"),CH,LO,HI
80 NEXT X
90 END

100 DATA 255,129,129,129,129,129,129,255

Now for an explanation of what happens:

10 As=base if VDC, B=register 1

20 BA=base of char. generator, ZE= character to be altered
(A=1, B=2, etc.)

30 change 8 bytes

40 byte address=base of char. gen+byte number+8*char. number

50 AD converted into low byte/high byte format

60 read new byte values

70 modified POKE routine POKEs value into video RAM
100 DATA for square:

76543210

XEKXKKXKQ 255 (24T+2°6+245+27442°3+24242~1+20)
XL, *1 129 (2747+2°0)

XL *2 129 (277+2~0)

X *3 129 (2747+2~0)

oL, x4 129 (277+2~0)

X *5 129 (227+2°0)

X *6 129 (27742°0)

XxkKKXXKK] 255 (27T+276+2°5+42°4+27342°24241+20)

Now, change line 100 to this

100 DATA 60,66,157,161,161,157,66,60
or this:

100 DATA 66,157,161,161,161,161,157,66

and press the "@" key.

LT TR ST I T

First Publishing Tricks and Tips for the C-128

1.16 80:COLUMN CHARACTER EDITOR

You could redefine the entire character set by hand, and POKE it into
memory. You don't need to, though; use this program instead.

1 ZN = 5100

2 MA = 7

3 DIM D (MA),WS$ (MA

10 DS = ... "

20 REM CHARACTER-EDITOR (80-COLUMN-CHARSET)
30 FOR Y =0 TO 7: D(Y) = 0: NEXT Y

31 PRINT "{CLR HOME} {RVS ON) {WHT}80~-COLUMN
CHARSET EDITOR-EDIT CHARACTER {RVS OFF}"

32 ME =.1

40 PRINT

50 PRINT "ENTER CHARACTER TO EDIT, THEN
'RETURN' =-->";: GET KEY C$

55 PRINT C#1 PRINT

60 AC = ASC (C3)

70 IF AC AND 128 THEN CO = AC AND 127: GOTO 110
80 IF NOT AC AND 64 THEN CO = AC: GOTO 110

90 IF AC AND 32 THEN CO = AC AND 95: GOTO 110

100 CO = AC AND 63

110 AD = 53248 + CO * 8

120 C$ - e

130 :

140 PRINT "{CRSR DOWN} {RVS ON} {GRN} ORIGINAL
{RVS OFF} {RVS ON}{L GRN} USER
{RVS OFF}™

150 BANK 14
160 FOR X = 0 TO MA

170 CZ = PEEK (AD + X): IF X > 7 THEN CZ = 0
180 FOR Y = 7 TO 0 'STEP -1
190 IF CZ > = 2 ~ Y THEN C$ = CS$ +" {WHT}*{GRN}"

. Cz =CZ -2 ~Y: ELSECS$ =C$ + "."
200 NEXT Y
210 PRINT "{GRN}";CS$;X; TAB(16);"{L GRN}";:
PRINT USING "##";X;
211 PRINT TAB(19);D$

17

First Publishing Tricks and Tips for the C-128

220
230
231

232
240
260
270
271
280
290
300
301
302
310
311

320
330

340
350
351

360
370
380

390
400
1000
1010
1020
1030

1031
1032
1039
1040
1050
1060
1070

C$ - NN

NEXT X

PRINT " {RVS ON} {GRN} {RVS OFF}
{RVS ON}{L GRN} {RVS OFF}™

BANK 15

REM EDITOR-ROUTINE -
PRINT " (WHT}";

OPEN 1,0

FOR Y = 0 TO MA

CHAR ,16,7 + Y

PRINT " ->";

WINDOW 19,7 + Y,27,7 + Y,MF
POKE 244,1: INPUT# 1,WS(Y)
WS(Y) = LEFTS (WS$S(Y),8)
WINDOW 0,0,39,24: REM 0,0,79,24 FOR 80
COLUMN

FOR X = 1 TO 8

IF MIDS (WS (Y),X,1) = "*" THEN D(Y) = D(Y)
+ 2 ~ (8 - X)

NEXT X

NEXT Y

CLOSE 1

CHAR ,0,22: PRINT "CORRECTIONS (Y/N) ?2";:
GET KEY AS

IF AS = "Y" THEN MF = 0: FOR Y = 0 TO 7:
D(Y) = 0: NEXT Y: GOTO 260

PRINT : PRINT "USE CHARACTER (Y/N) ?2";:
GET KEY AS

IF AS$ = "N" THEN 30

REM USE CHARACTER

PRINT "{CLR HOME} (CRSR DOWN} {CRSR DOWN}";
ZN = ZN + 10

PRINT ZN;"DATA ";CO;",";

FOR X = 0 TO MA: PRINT D(X);"{CRSR
LEFT},";: NEXT X

PRINT "{CRSR LEFT} "

PRINT ZN + 10;"DATA -1"

PRINT : PRINT "GOTO 30"

PRINT " {HOME}";

FOR Y = 842 TC 845: POKE Y,13: NEXT Y
POKE 208, 4

END

33

£
lirst Publishing

Tricks and Tips for the C-128

5000
5005
5010
5015
5020
5025
5030

5035
5040
5045
5046
5050
5055
5060
5065
5070
5075
5080
5085
5110
5120
5130

Variables:

REM BASIC-LOADER CHARACTER DEFINITION

FOR X = 6144 TO 6182

READ A

CS =CS +A

POKE X,A

NEXT X

IF CS < > 3411 THEN PRINT CHR$ (7): LIST
5035 — 5050: END

DATA 72,138,72,152,72,169,2,141,40,10,162,18
DATA 104,32,27,24, 232 104, 32 27,24, 162 31
DATA 104,76,27,24,142,0,214, 44 0 214 16 251
DATA 141,1, 214 96
READ A: IF A =
FOR Y = 0 TO 7
READ W

AD = 8192 + 16 * A + Y

HI = INT (AD / 256): LO = AD - (256 * HI)
SYS. DEC ("1800"),W,LO,HI

NEXT Y
GOTO 5050
DATA 1,0,0
DATA 1,0,0
DATA -1

~ 1 THEN END

ZN: first line number of DATA statements
MA: matrix 8*MA+1
D(x): DATA used to calculate character

w$
Cs:

AC:
CO:
CZ:
CS:

(x): given character line

character to be changed

ASCII code of C$

screen code of ASCII character
read-out ROM data

checksum

First Publishing Tricks and ‘11ps 1or ire C-128

Program description:

Don't 16t the size of this program throw you off; for a well-equipped
character editor, it's really a very short program! Be sure to SAVE the
program before running it.

Once started, the generator will ask for the first character that you want
changed; just press the desired key. Two 8 X 8 character matrices will
appear; the left matrix will contain the original character, while the right
matrix is for you to do your "paperwork". Asterisks ("*") represent set
points, and periods (".") stand for no point.

When you've finished modifying each line, press the <RETURN> key.
Once the character is done, you have the option of going in to make
corrections. If you wish to do so, press "Y", and make your corrections.
If everything is right, just press KRETURN>.

Assuming that the finished character is to your satisfaction, the character
editor figures out the DATA statements for you. Once all the characters are
changed, stop the program with the <RUN/STOP> key, and type in:

DELETE -5000.

The editor/generator is deleted, leaving you with a BASIC loader starting at
line 5000 (you might want to change the numbering now, using the
RENUMBER command). This loader goes into your program, changing
only the characters you wished to change -- the other characters appear as
normal.

35

First Publishing

Tricks and Tips for the C-128

50-120

140 - 232

260 - 351

360 - 400

1000 - 1039

{

1040 - 1070

5000 - 5085

Commodore-specific screen code is stored in C$ (very
different from the ASCII code).

Screen musk is designed. The memory configuration is
switched with BANK 14, by which the ROM character

set at $D000 can be read. Finally, a character is read out
bit-by-bit, and the bits are set. After reading ROM,
configuration switches back to BANK 15.

Editor routine: Screen is opened for data, using INPUT
without question mark. Every input line of the user
matrix is defined in a window.

Prompts: Any corrections? If so, MF will be set to 0, the
window will remain uncleared. D(Y) will be cleared.

DATA line of the last charactet will be printed out in
CHAR. CODE, NUMBERS format. Last DATA

statement will be -1.

Keyboard buffer fills with <RETURN>s, and line is
rewritten. For more information on how this works, see
Chapter 5.

Start of the BASIC loader being produced, with the
modified POKE implemented in lines 5005-5045. This
section also contains a read loop for the character DATA
still to be added.

UA

First Publishing Tricks and Tips for the C-128

1.17 WORKING WITH MULTIPLE SCREENS
Video RAM layout:

$0000 - $07FF
$0800 - $OFFF

$1000 - $1FFF
$2000 - $3FFF

scresn RAM (dee. 0 - 2047)
color RAM, etc. (dec. 2048 - 4095)
free (4096 - 8191)

character generator (8192 - 16385)

Notice the memory from $1000 to $1FFF. This 4K in the middle of video
RAM is unused. You can make good use of this area -- 4K is equal to
2*2K, and you can see that the screen memory ($0000-$07FF) is 2K in
size. This free area gives us space to store two additional screen "pages” in
addition to normal one displayed on the monitor. There are a number of
uses for this. For example, you can have an invisible screen on which
graphics are drawn, while you work on the visible screen, and flip back and
forth between screens. Or, one screen can have a program listing, the

second a disk directory, and the third the program run of the listing on the
first screen.

Implementation:

The screen memory is normally found at $0000 in video RAM, but this
isn't a hard and fast rule. Registers 12 and 13 of the VDC contain the high

and low byte of screen memory's starting address. Three addresses must
be changed to move screen memory:

VDC register 12:
VDC register 13:

high byte of the new starting address
low byte of the new starting address

37

i i - » First Publishin Tricks and Tips for the C-128
First Publishing Tricks and Tips for the C-128 g

1B11 8D 02 10 STA $1002 :F3 cleared
1B17 60 RTS :ready

f

Let's say we want to move the start of screen memory from $0000 to New Interrupt

$1000. The high byte of this address is 16 (1*4096/256): ' 1B18 48 PHA :save accumulator
1B19 8a TXA
10 A=DEC("D600") :B=A+1 1B1A 48 PHA :save X register
20 HI=16:L0=0 1B1B A5 D5 LDA $D5 iread keyboard
30 POKE A,12:POKE B,HI 1B1Db c9 58 CMP #45B 1ne key? fThen ge
40 POKE A, 13/1POKE B,LO 1B1F FO 3A BEQ $1C5F :to normal IRQ routine
50 POKE 2606,HI 1B21 A2 OC LDX #$0C :VDC register 12
1B23 C9 04 CMP #$04 :F12?
)) .. . 1B25 FO OD BEQ $1C38 :yes -- then goto $1C38
The screen will be filled with garbage; this is normal. Clear the screen with 1827 C9 05 CMP $505 :F34
PRINT CHR$(147). Now you can use this screen as you normally would. 113%9 E‘g 82 BEQ iécgb tyes -- thenhgoto $1C3D
. . . 1B2B C CMP 0 :F5? No -- then
When you want to return to your old screen, change line 20 to this: 1B2D DO 2C BNE $1CS5F :goto normal IRQ routine
1B2F A9 00 LDA #$00 :screen at $0000
1B31 4C 3E 1B JMP $1B3E :set register
20 HI=0:LO=0 | 1B34 A9 10 LDA #$10 :screen at $1000
1B36 4C 3E 1B JMP $11B3E :set register
- 1B39 A9 18 LDA #S518 :screen at $1800
Now we're back where we started (although the cursor may not be visible, 1B3B 4C 3E 1B JMP $1B3E :set register
1 be able to) 1B3E BE 00 D6 STX $D600 :desired register in REG 0
you type) 1B41 2C 00 D6 BIT $D600 :bit 7 set?
1B44 10 FB BPL $1C45 :wait. Write value
The machine language program below uses all of the free video memory to 1B46 8D 01 D6 STA $D601 :in video RAM into REG 1
) he i t, and starts immediately after 1B49 8D 2E OA STA $D601 :set pointer in zeropage
glvc you thrcc SCI‘CCHS. It usest € lntCI'I'UP 3 > 1ch A2 00 LDX #$OD SVDC registel‘.‘ 13
execution: ' 1B4E A9 00 LDA #8500 :low byte =0

1B50 BE 00 D6 STX $D600 :set register
1B53 2C 00 D6 BIT $D600 :bit 7 set?

TR, » 1B56 10 FB BPL $1C57' :wait. Write byte
alization: l
Initi 1B58 8D 01 D6 STA $D601 :in video RAM into REG 1
1B0OO 78 SEI . :ignore interrupt : 1B5B 68 PLA :return X register
1B01 A9 1C LDA #S1C L 1B5C AA TAX
1BO3 A0 18 LDY #$18 . 1B5D 68 PLA :return accumulator
1B0S 8D 15 03 STA $0315 :change interrupt pntr (19) 1B5E 4C 65 FA JMP $FA65 :back to IRQ routine
D 14 03 STA $0314 :change interrupt pntr (hi) ! '
}ggg 28 CLI :leave interrupt FOR BASIC programmers here is the BASIC loader.

1BOC a9 00 LDA #3500
1BOE 8D 00 10 STA $1000 :Fl1 cleared

38 | 39

First Publishing ITICKS HUU LIP3 sus suv ~ eov

10 FOR X = 6912 TO 7008
20 READ A: CS = CS + A: POKE X,A
EXT X
28 ?F cS < > 9318 THEN PRINT CHR$ (7);: LIST
SYS 6912
gg bATA 120,169,27,160,24,141,21,3,140,20,3,88
60 DATA 169,0,141,0,16,141,2,16,141,4,16,96
70 DATA 72,138,72,165,213,201,88,240,58,162,12,201
80 DATA 4,240,13,201,5,240,14,201,6,208,44,169
90 DATA O,76,62,27,169,16,76,62,27,169,24,76
100 DATA 62,27,142,0,214,44,0,214,16,251,141,1
110 DATA 214,141,46,10,162,13,169,0,142,0,214,44
120 DATA 0,214,16,251,141,1,214,104,170,104,76,101
130 DATA 250

RUNning the initialization program causes our IRQ vector (Interrupt
Request vector) in the second half of the routine to be added to the normal
IRQ routine (the IRQ is what the computer executes every 1/60 second).
This routine then gives you three separate 80 column screens to work with.
You can shift screens in program mode (by pressing F1, F3 or F5; be sure
to clear each new screen before use), or in direct mode (POKE 213,4;
POKE 213,5; or POKE 213,6, respectively).

1.18 MANIPULATING THE VDC 8563

Here's another feature of the new 80-column display controller. To show
you that we're not praising this chip too much, there is a demonstrati?n
program below which will show you just how versatile the VDC 8563 is.
At this point, you may want to review the VDC register listing in Chapter

1.7.

40

When we manipulate the display controller, the entire normal screen
representation is put on the stack. In your experiments, you should
remember a complete recovery of the VDC controller is often possible only
by switching the computer offi By, the same token, you won't cause any
internal damage from playing with the registers.

Moving the Screen Windows

Those of you who owned VIC-20s in "the old days" remember that the
entire screen could be moved around. This effect is accomplished on the
80-column C-128 using the VDC registers 2 and 7:

L oad

02 Shifts screen window horizontally & character-wise
07 Shifts screen window vertically & line-wise
Let's iry it out:

10 REM MOVING THE SCREEN WINDOW
20 A=DEC("D600") :B=A+1

30 FOR X=0 TO 255

40 POKE A,2:POKE B, X

50 POKE A, 7:POKE B, X

60 NEXT X

70 END

This listing will make the screen wander diagonally. You can return it to
normal by pressing <RUN-STOP/RESTORE>.

41

FIrSU UG LITICKS ana 11ps 10r tne L-1.s

Simulating an explosion may be more to your tastes. The quality of a game
>ften depends on its realism; try this program out. We leave the sound
xffects to your discretion.

10 REM EXPLOSIONS SIMULATION
15 A = DEC ("D600"): B =A + 1
20 FOR X = 0 TO 50

30 Y = INT (RND (1) * 2)
40 2 » INT (RND (1) * 2)
S0 POKE A,2: POKE B,Y

60 POKE A,7: POKE B,Z

70 NEXT X '

80 POKE POKE B, 102

A,2:
90 POKE A,7: POKE B,32

+ 101
+ 31

1.19 MANIPULATING SCREEN FORMAT

You're presently in 80-column mode which, as the name implies, has 80
characters per line, and 25 lines per screen page. Let's say that we want to
change this format for now. This is a relatively easy task, using VDC
registers 1 and 6:

01 Characters per line (default 80)
06 Lines per screen page (default 80)

NOTE: You can't get any more than 80 columns. Our goal, here, is to
increase the number of lines on the screen using this formula:

(new number of columns) * (new number of lines) = 2000

42

kirst Publishing Tricks and Tips for the C-125

If the total is greater or less than 2000, we may run into trouble. Try this,
using 30 lines * 62 characters:

10 REM NEW SCREEN FORMAT 62 * 30

20 A=DEC ("D600") : B=A+1

30 POKE A,1:POKE B, 62

40 POKE A, 6:POKE B, 30
50 END

All this program does is change the screen format to 30 X 62. You can
design any format in principle with this program. Perhaps you can make
use of this in games simulating a mineshaft, or deep well, or having a sprite
move offscreen.

1.20 FOR MONOCHROME MONITOR OWNERS

+
(

If you're the lucky owner of a "green screen” (or amber, or whatever), you
obviously can't take advantage of the C-128's colors. At best, you get two
shades of monitor color. What do you need that 2K of attribute RAM for?

It's there for screen development, but in the case of monochrome output,
it's just collecting dust, so to speak. If we want to use that RAM, we

consult VDC register 25:

25 Smooth Scroll horizontal
Bit 6 of this register declares whether attribute RAM is on or not:
10 REM DEACTIVATING ATTRIBUTE RAM

20 A=DEC ("D600") :B=A+1
30 POKE A,25:POKE B,PEEK(B) AND NOT 64

43

First Publishing Tricks and Tips for the C-128

This brief routine switches off attribute RAM ($0800 - $0FFF), and turns it
over to you to use for screen memory. Naturally, this routine can also be
used by RGB monitor owners who wish to do without color.

The Curtain Falls

Normally, the screen window sits within a prescribed border. These edges
can be adjusted by VDC registers 34 and 35:

34 Start of screen representation
35 End of screen representation

Rather than go into lengthly explanations, here's a demo program:

10 A = DEC ("D600"): B =2 + 1
20 INPUT X,Y

30 ,POKE A,34: POKE B,X

40 ‘POKE A,35: POKE B,X - Y

60 GOTO 20

The left and right borders can also be moved without disturbing screen
contents. Try this:

10 A = DEC ("D600"): B = A + 1
20 FOR X = 0 TO 40

30 POKE A,34: POKE B,46 - X

40 POKE A,35: POKE B,46 + X

50 FOR T = 1 TO 10: NEXT T

60 NEXT X

First Publishing Tricks and Tips for tie C-128

1.21 THE 8x16 CHARACTER MATRYY

You played around with custom characters a few pages ago; you'll recll
that each character is built into an 8 X 8 matrix:

76543210

Now that you've had some experience in character design, you may not
want to be limited to the 8 X 8 matrix; it's too small to make a spaceship
character, and much too large for a small character. In the paragraphs to
follow, we'll show you how to change the size of the character matrix itself,

Let's peek into the registers that control matrix size (registers 22 and 23):

22 Matrix display (horizontal)
23 Matrix display (vertical)

45

First Publishing

Tricks and Tips for the C-128

Relative Changing of the Matrix

Each register lists how many pixels are in a character matrix; default of both

registers is eight, governed by the first four bits of register 22 and the first

five bits of register 23.

10
20
30
40
50
60

70
71

80
90

A = DEC ("D600"): B =A +1

FOR X = 0 TO 8

POKE A,22: POKE B, PEEK (B) AND NOT 7 OR X
FOR T = 1 TO 100: NEXT T

NEXT X

FOR X = 0 TO 8

POKE A,23: POKE B,X

FOR T = 1 TO 100: NEXT 7

NEXT X

END

Here's a neat little arrangement for game use:

10
20
30
40
50
60
70

A = DEC ("D600"): B =A +1
R X =0TO 8
ggKE A,22:T POKE B, PEEK (B) AND NOT 7 OR X
POKE A,23: POKE B,X
FOR T = 1 TO 200: NEXT T
NEXT X
END

This is only a relative size change, and leaves us with an 8 X 8 matrix, most

of which simply goes unused.

14

rirst rupusning L FICKS ana fips I1or e L-1.8

1.22 TOTAL 16X8 MATRIX MANIPULATION

Let's try developing a 16X8 matrix. In other words, we'll create an

8-column matrix of 16 lines. We'll find the needed numbers at registers 4
and 9 of the VDC:

04 Vertical synchronization
09 Vertical matrix register

Reglster 9 declares the number of lines in a character. ‘To raise the matrix to

16 points, we'll have to double the amount in register 9, and change the
synchronization in 04:

10 REM 16 * 8 MATRIX
20 A=DEC("D600") :B=A+1
30 POKE 228,16

40 READ X

50 IF X=-1 THEN END
60 READ Y

70 POKEA, X:POKEB, Y
80 GgoTo 20 ¢

80 :

100 DATA 9,15

110 DATA 6,17

120 DATA 23,15

130 DATA 4,19

140 DATA 7,19

150 DATA -1

After starting the program, the screen looks funny; there's a big space
between the screen lines, but the characters are still clear. That space is due

to the enlarged matrix; the space is the additional 8 pixels (see Chapter
1.12).

First Publishing Tricks and Tips for the C-128

Type PRINT CHR$(27)+"R" in direct mode; this reverses the screen
contents, and lets you see the scope of the character expansion. This project
gives you 17 lines of 80 characters, with a 16 X 8 matrix. Let's figure out
the total resolution:

PRINT 17*80*(16*8)

This gives you 174,080 pixels!! Since the video RAM is limited to 16K,
these points can't be easily set (e.g., bit-mapping).

Program Explanation:

10 A=VDC,B=REG 01

20 Bottom window border is set to keep cursor from scrolling
offscreen.

30 VDC loaded with new value.

60 Read DATA

70 Switch character size from 8 to 16 pixels.

80 Limit to 17 lines per screen.

90 16 X 8 pixels per character.

100 20 lines (+ border) instead of 40.

110 Bring up screen contents in proper format.

48

First Publishing ’ ' Tricks and Tips for the C-128

1.23 DOUBLE-HEIGHT CHARACTERS

So, what can we do with that 16X8 matrix? We can create double-height
characters, and this next program lets you do just that.

10 REM POKE-ROUT

20 FOR X = 6144 TO 6182

30 READ A: CS = CS + A: POKE X,A

40 NEXT X

50 IF CS < > 3411 THEN PRINT "DATA-ERROR": END
60 DATA 72,138,72,152,72,169,2,141,40,10,162,18
70 DATA 104,32,27,24,232,104,32,27,24,162,31,104
80 DATA 76,27,24,142,0,214,44,0,214,16,251

85 DATA 141,1,214,96

90 REM COPY

100 FOR W = 0 TO 255: REM 256 CHARS

110 FOR K = 0 TO 7: REM 8 LINES EACH

120 AD = 53248 + W * 8 + K

130 BANK 14: K(K) = PEEK (AD): BANK 15

140 NEXT K

150 FOR K = 0 TO 15: REM 15 LINE SET

160 AD 8192 + W * 16 + K

170 HI INT (AD / 256): LO = AD - (256 * HI)
180 SYS DEC ("1800"),K(INT (K / 2)),LO,HI
190 NEXT K

200 NEXT W

This routine is SLOW in BASIC. For impatient readers, we'll give you a
machine code listing:

0BOO A2 03 LDX #$03 :Read loop

0BO2 BD 41 0B LDA 0B41,X :Load starting address
0BO5 95 FA STA $FA,X :into free zero page
OB0O7 DEX :Everything read in?
0B0O8 10 F8 BPL $O0BO2 :No -- continue

0BOA A2 01 LDX #501 :Set bank

OBOC BE 00 FF STX SFFOO :configuration

OBOF A0 00 LDY #$00 :to O+vector

First Publishing

Tricks and Tips for the C-128

0B11
0B13
0B14
0Bleé
0Bl9
OB1B

0B1D
0B20
0B22
0B24
0B26
0B27
0B29
0B2B
OB2E
0B30
0B32
0B34
0B36
0B38
OB3A
0B3C
OB3E
0B40
0B41
0B46
0B47
0B48
0B49
0B4A
OB4B
0B4D
0OB50
0BS2
0BS3
0B56
0B57
0B58
OBSB
0B5D
OB5SE
0B61
OB64

Bl
48
A2
8E
A6
A4
20
E6
DO
E6
68
A6
A4
20
E6
DO
E6
E6
DO
E6
A4
CoO
90
60
00
48
8A
48
98
48
A9
8D
A2
68
20
ES8
68
20
A2
68
4C
8E
2C

FA

00
00
FC
FD
46
FC
02
FD

FC
FD
46
FC
02
FD
FA
02
FB
FB
EO
CA

»]¢]

02
28
12

61
61
1F
61

00
00

FF

0B

OB

0o

oA

0B

OB

0B
D6
D6

LDa
PHA
LDX
§TX
LbX
LDY
JSR
INC
BNE
INC
PLA
LDX
LDY
JSR
INC
BNE
INC
INC
BNE
INC
LDY
CcpYy
BCC
RTS

(SFA) , Y

#$00
$FFO00
S$FC
SFD
$0B46
SFC
S0B26
SFD

SFC
$FD
$0B46
SFC
$0B34
$FD
SFA
$0B3A
SFB
SFB
#SEO
$0BOA

20 00

PHA
TXA
PHA
TYA
PHA
LDA
STA
LDX
PLA
JSR
INX
PLA
JSR
LDX
PLA
JMP
STX
BIT

#502
$0A28
#512

$0B61
$0B61
#S1F

SOB61

$D600
$D600

:Read in start address
:Get it

:Set bank
iconfiguration

:Low video RAM address
:High video RAM address
:POKE subroutine
:Low=Low+1

:Low greater than 0
:Low=0:High=High+1
:Get High ROM

:Low video RAM address
:High video RAM address
:POKE subroutine
:Low=Low+1

:Low greater than 0
:Low=0:High=High+1
:Low ROM=Low ROM+1
:Still >0? NO--

:High ROM=High ROM+1
:Load

:Reached end of ROM
:yet? NO--go on
tReturn to BASIC

1Pntr starting addreus
:Get character

:Get low byte

:Get high byte

:Set cursor flag
:VDC REG 18

:Set low byte of
:register

:VDC REG 19

:Set high byte

:0f register

:VDC REG 31
:Character

:Register set, ready
:Desired register given
:Bit 7 set?

First Publishing

“ricks and Tips for the C-123

0B67 10 FB

OB69 8D 01 D6 STA $D601
OB6C 60

BPL $0B64 :NO--then wait

:for given value

RTS :Return

There is, of course, a matching BASIC‘loader:

5000
5010
3020
5030
5040
5050
5060
5070
5080
5090
5100
5110
5120
5130

FOR X

READ
NEXT

IF CS <> 13689 THEN PRINT CHRS (7);:

DATA
DATA
DATA

" DATA

DATA
DATA
DATA
DATA
DATA
DATA

= 2816 TO 2924
A: CS =CS + A:
X

POKE X, A

LIST
162,3,189,65,11,149,250,202,16,248,162,l
142,0,255,160,0,177,250,72,162,0,142,0
255,166,252,164,253,32,70,11,230,252,208,2
230,253,104,166,252,164,253,32,70,11,230,252
208,2,230,253,230,250,208,2,230,251,164,251
192,224,144,202,96,0,208,0,32,0,72,138
72,152,72,169,2,1417h0,10,162,18,104,32
97,11,232,104,32,97,11,162,31,104,76,97
11,142,0,214,44,0,214,16,251,141,1,214

96

Defining the 16X8 Matrix

Let's continue by defining some 16X8 characters. This procedure has

already been covered in the chapter on "Designing your own Characters".

Make the following corrections in the 80 column character editor program:

2 MA=15
5055 FOR Y=0 TO 15

FIFST Fupisning Tricks and Tips for the C-128

1.24 MOVING THE VIDEO RAM

Video RAM is divided into four sections:

¢ $0000 2K Screen memory
$0800 2K Attribute RAM
$1000 Free
$2000 8K Character generator

You'll find the purpose of the free 4K ($1000) in Chapterl.17; for the
moment, we're talking about the other three areas. It's possible to move
attribute RAM and screen RAM in 256-byte steps, while the character
generator can only be moved 8K at a time. Here are the VDC's registers for
controlling this:

12 Hlgh byte of screen memory

13 LOw byte of screen memory
20 Hlgh byte - auribute RAM

21 LOw byte - attribute RAM
28 Hlgh byte - character generator (bits 5-7)

Moving Attribute RAM

The program below moves attribute RAM into any area of video RAM.
Please note that you are limited to 256-byte steps.

First Publishing “ricks and Tips for the C-128

10 REM ATTRIBUTE RAM SHIFTER

20 INPUT "NEW STARTING ADDRESS";ADS

25 AD=DEC (ADS)

30 IF AD/256=INT(AD/256) THEN 40:ELSE PRINT
"256K STEPS!":GOTO 20

40 HI=INT(AD/256) : LO=AD- (256*HI)

50 A=DEC ("D600") : B=A+]

60 POKE A, 20:POKE B,HI

70 POKE A, 21:POKE B, LO

80 POKE 2607,HI

The value at line 80 is a special number; it's not enough to simply change
the VDC registers or they will remain unchanged. At the same time, a
specified address in zero page will be loaded with the high-byte of the new
starting address:

2606 :Hlgh byte of screen RAM

2607 :Hlgh byte of attribute RAM

Try the address "1000"; attribute RAM is moved to the free area. Type a
few different characters on the screen and see what you get. Now, run the

attribute RAM shifter routine again, and specify "800" as a starting address.
The charucters tuke on normal color uguin,

You can actually use this technique in page-flipping routines (i.e., set up a
different color memory on each screen page, and switch back and forth).
We suggest the addresses between "1000" and "}800" as the most suitable.

Just to show you what happens when you enter an illegal address, run the
attribute RAM shifter program again, and enter "0000", which will put
attribute RAM in the same radge as screen RAM. The result: every
character has its own color and shape!

53

First Publishing Tricks and Yips for the U-123

Or enter "2000", which puts us in the character generator; certain characters
lose their normal appearance.

Moving Screen RAM

'*his function is analogous to moving atiribute RAM, You'll find the
important addresses in the preceding sections.

We believe that shifting screen RAM is a useful extra, since it allows you to
perform the page-flipping trick (see Chapter 1.17).

1.25 COLOR FOR THE 80-COLUMN SCREEN

Color? You bet! 80-column mode gives you a choice of 16 character
colors, by using <CTRL 1-8> and <C= 1-8>. For now, though, we'll
concern ourselves with changing the border and background colors. There

too we have 16 colors to choose from, but we'll have to POKE the colors
in. In 40-column mode addresses 53280 and 53281 are used; 80-column

mode utilizes register 26 of the VDC for background. Here's what you do
to change register 26:

POKE DEC("D600"),26:POKE DEC("D601"),X [X=COLOR]

You could use color control characters within a PRINT statement, but it's
not the best method. POKEing the color into address 241 is a better
method:

54

rirst rupusing ITICKS ana 11ps I0r e C-12s

POKE 241,X [X=COLOR NUMBER FROM 0 TO 15]
Look for a moment at the last 4 bits of a byte in attribute RAM:

BIT 4: blinking

BIT5: underscoted
BIT 6: reverse video '

BIT 7: 2nd character set

It was once quite difficult to get these functions; the only way you could
attain some of these functions was by your own programming efforts.

Two methods of accessing the second character set are to press <C=> and
SHIFT simultaneously, or to use a PRINT character string. These other

functions still aren't very simple to get at, but programming them has gotten
a lot easier!

POKE 241,PEEK(241) OR 274:PRINT"THIS LINE BLINKS!"
POKE 241,PEEK(241) OR 2"5:PRINT "UNDERSCORED!"

Here's a sample program:

10 PRINT "THIS MATTER IS “;

20 POKE 241,PEEK(241)0R 2”5

30 PRINT"IMPORTANT";

40 POKE 241,PEEK(241) AND NOT 2°5
50 PRINT"!"

60 END

55

- cems & senraswasssagy

A1IVAD Al 1I1Yd 1Vl LUT LVLi40

The word IMPORTANT will blink if you replace 2”5 with 2”°4. Using
"275+274" instead of 2”5 alone will simultaneously underline AND blink
the word. Naturally, 276 will bring up reverse video, and 247 will call the
second character set.

1.26 CUSTOM CHARACTER GENERATOR

Earlier in this section, we explained the design of the character generator
used by the 80-column controller. You'll also remember our mentioning
that each character has a 16 X 8 matrix, We have already used these 16
bytes in 16 X 8 definition. We'd like to take that a step further.

Let's assume that you start with a normal 8 X 8 matrix. Only 8 bytes are
used in character definition, with the remaining 8 bytes hiding somewhere
in the background. The machine language routine below (we call it
"Swapper") trades off one set of 8 bytes for the other set. This means that
you can design another character set, and switch off between "standard" and
your own custom characters.

0B0OO A9 00 LDA #5500 :Store first low byte
0B02 85 4C STA $4C :pointer

0B04 A9 20 LDA #$20 :Store first high byte
0OBO6 85 4D STA $4D :pointer

0B0O8 AS 08 LDA #508 :Store second low byte
0BOA 85 43 STA #S4E :pointer

0BOC A9 20 LDA #520 :Store second high byte
OBOE 85 4F STA $4F :pointer

0B10 AQ 07 LDY #3507 :8 bytes

0B12 98 TYA

0B13 48 . PHA :on stack

0B14 A5 4C LDA $4C :Low byte of first pointer

56

ASALEND $8ANE BT AVAE SML T Bew

0B16
0B18
OB1B
0B1C
OB1E
0B20
0B23
0B25
0B27
0B2a
0B2B
0B2D
0B2F
0B32
0B34
OB36
0B38
0B3A
OB3C
OB3E
O0B3F
0B40
0B41
0B43
0B45
0B47
0B49
OB4B
0B4D
OB4F
0B51
0B53
0BS5S
0B57
0B59
O0B5B
0B5D
OBSF
0B61
0B64
0B65
0B66
0B67

Ab
20
48
AS
A6
20
A6
A4
20
68
A6
A4
20
E6
DO
E6
E6
DO
E6
68
A8
88
10
A5
C9
BO
AS
65
85
AS
65
85
A9
65
85
AS
65
85
4C
60
48
8A
48

4D
8C 0B

4E
4F
8C OB
4C
4D
65 OB

4E
4qF
65 OB
4C
02
4D
4E
02

CF
4F
40
1B
08
4C
4c
00
4D
4D
08
4E
4E
00
4F
4F
10 OB

LDX
JSR
PHA
LDA
LDX
JSR
LDX
LDY
JSR
PLA
LDX
LDY
JSR
INC
BNE
INC
INC
BNE
INC
PLA
TAY
DEY
BPL
LDA
CMP
BCS
LDA
ADC
STA
LDA
ADC
STA
LDA
ADC
STA
LDA
ADC
STA
JMP
RTS
PHA
TXA
PHA

$4D :Hi-byte of first pointer
$0B8C :PEEK subroutine

:Put char. on stack
S4E :Lo-byte of second pointer
$4F :Hi-byte of second pointer
$0B8C :PEEK subroutine
$4C :Low byte of first pointer
$4D :Hi-byte of first pointer
$0B65 :POKE subroutine

:Read character
$4E :Lo-byte of second pointer
S4F :Hi-byte of second pointer
$0B65 :POKE subroutine
s4¢C iLow hbyte l=Low byte 1+1]
$OB3E :Still >07?
$4D :NO--High 1=High 1+1
$S4E :Low byte 2=Low byte 2+1
SOB3E :Still >07
$4F :NO--High 2=High 2+1

:Back to read-in value
$50B12 :Copy more
$4F :Hi-byte of second point.:
#540 :reached $4000 yet?
$0B64 :YES-~-ready
#508 :Low=Low+ 8 char. bytes
$4C :added
$4C :Store some more
#$00 tadd O
$4D :add carry
$4D :Store some more
#508 :Low2=Low2+8 char. bytes
$S4E iadded
S4E :Store some more
#$00 :add 0
S4F :add carry
$4F :Store some more
$0B10 :Loop

:Go back to BASIC

:Hold char.

:Get low byte

.57

First Publishing Tricks and Tips for the C-128 FIrst ruplisning LICKRS aBu 2ipd 2Us tae o amu

8323 22 ggi :Get high byte Here's the matching BASIC loader.

OB6A A9 02 LDA #$02

OB6C 8D 28 OA STA $OA28 :Set cursor flag 5000 FOR X = 2B16 TO 2385

OB6F A2 12 LDX #$12 :VDC REG 18 5010 READ A: CS = CS + A: POKE X,A

0B71 68 PLA :Put back high byte 2020 NEXT X

0B72 20 80 OB JSR $OB80 :Set register 5030 IF CS <> 17057 THEN PRINT CHR$ (7);: LIST
OB75 EB8 INX :VDC REG 19 5040 DATA 169,0,133,76,169,32,133,77,169,8,133,78
0B76 68 PLA :Get low-byte 5050 DATA 169,32,133,79,160,7,152,72,165,76,166,77
0B77 20 80 OB JSR $0B80 :Set register 5060 DATA 32,140,11,72,165,78,166,79,32,140,11,166
0B7A A2 1F LDX #S$1F :VDC REG 31 5070 DATA 76,164,77,32,101,11,104,166,78,164,79,32
OB7C 68 PLA :Get byte 5080 DATA 101,11,230,76,208,2,230,77,230,78,208,2
OB7D 4C 80 OB JMP $0B80 :Ready; set register 5090 DATA 230,79,104,168,136,16,207,165,79,201,64,176
0B80 8E 00 D6 STX SD600 :REG set 5100 DATA 27,169,8,101,76,133,76,169,0,101,77,133
gggg ig gg D6 g;z ggggg fa:ited . - 5110 DATA 77,169,8,101,78,133,78,169,0,101,79,133
0B88 8D 01 D6 STA SDEOL Value gisgg enougn: 5120 DATA 79,76,16,11,96,72,138,72,152,72,169,2

OB8B 60 RTS ;Ready 5130 DATA 141,40,10,162,18,104,32,128,11,232,104,32
0BSC 48 PHA .Get low byte 5140 DATA 128,11,162,31,104,76,128,11,142,0,214,44
OB8D 8A TXA 5150 DATA 0,214,16,251,141,1,214,96,72,138,72,162
OBSE 48 PHA :Get high byte 5160 DATA 18,104,32,128,11,232,104,32,128,11,162,31
OBBF A2 12 LDX #8512 {REG 18 VDC 5170 DATA 142,0,214,44,0,214,16,251,173,1,214,133
OB91 68 PLA :High byte in accumulator 5180 DATA 254,96 { '

8822 Zg 80 OB JSR $0BB80 :Set register

B95 E INX :REG 19 VDC

0B96 68 PLA :Low byte in accumulator RUNning the routine by typing SYS DEC("0B00") tumns the screen black,

0B97 20 80 OB JSR $0B80 :Set register
OBO9A A2 1F LDX #S1F :REG 31 VDC
OB9C BE 00 D6 STX $D600 :Set register
OB9F 2C 00 D6 BIT $D600 :Wait

after which the cursor reappears.

The character generator will be switched in the normal manner. The second

0BA2 10 FB BPL OBSF :Long enough?

OBA4 AD 01 D6 LDA $D601 :Read value from video RAM set of eight bytes per character would normally read null. So, switching the
OBA7 85 FE STA $FE :Put on | : : . N
OBAS 60 RTS 'Ready character gives you spaces to define. You can call back the original

character set by calling the routine again. Now load the character editor
Chapter 1.16; you can produce new characters to your heart's content. One
small change will have to be made in the BASIC program, though, at line
5065:

5065 AD=8192+16*A+Y+8

58 59

FIFSU I UDISNING Tricks and Tips for the C-128

Now start the loader. Swap your character generators with the routine, and
gotoit. You can also have two self-defined character sets, rather than one

"standard" and one "custom" (for games, etc.).

1.27 SYSTEM ROUTINES

Maybe you've been looking for special routines to use with 80-column
mode, like instant access to video RAM, or controller initialization. Well,
the built-in ROM routines for the 40-column screen aren't limited to that
mode (the operating system works on both screens). It's pbssible, then, to
use the built-in ROM routines in 80-column mode through programming.

Now, on to the routines themselves. Each routine has two addresses; the
first is the jump table for the editor, while the second is the starting address

of the routine proper. Which address you use is up to you,

{

Screen Initialization

The following routine initializes the screen, somewhat akin to using
<RUN-STOP/RESTORE>:

SYS 49152/SYS 49275

60

First Publishing Tricks and Tips for the C-128

Color Output of a Character

This was mentioned in Chapter 1.9, in connection with the 80-#alumn
screen. The routine simply prints a character of a specified color on the

screen, with the position depending on the contents of locations 224 and
225:

SYS 49155, CHAR, COLOR
SYS 52276,CHAR, COLOR

CHAR: (0-255) Character in screen code (A=1,B=2,etc.)
COLOR:(0-15) Color the character should be (O=black,l1=white, etc.)
80-column mode also allows values from O to 255. The

additional 4 bits have these meanings:

BIT 4: Blinking

BIT S Underscore

BIT 6: Reverse video
BIT 7. 2nd character set

ASCII Output

The preceding subsection mentioned the "screen code". This code is
Commodore-specific, and NOT standard; but you can get ASCII output like
this:

SYS 49164, ASCII code
SYS 50989, ASCII code
PRINT CHRS (ASCII code)

61

rirst yuonsning Tricks and Tips for the C-128

Conversely, you can find out the ASCII code by typing:
PRINT ASC("K")

which would give us the ASCII code number for K.

PRINT AT Simulation

Basically, this routine lets you format things on screen (called PRINT AT in
some BASIC versions). Here is a command which works in conjunction
with the machine language call CHAR:

SYS 49176,A,column, row:PRINT...
SYS 52330,A,column, row:PRINT...

You could conceivably use this to display a command line onscreen (with
warnings and system status addressed to the user). You see this a lot on
professional software; now you can have it in a user-friendly atmonphere,

If you want to see just where the PRINT AT command has written an item,
check these locations:

10 REM PRINT AT WITH RETURN

20 SP=PEEK (236) :REM CURRENT COLUMN STORED
30 ZE=PEEK (235) :REM CURRENT ROW STORED

40

50 SYS 49176,0,5,10:PRINT"COMMAND LINE"
60 :

70 SYS 49176,0,SP,ZE:REM BACK AGAIN

80 PRINT"BACK THERE"

90 END

62

First Publishing Tricks and Tips for the C-17,

All this routine needs to do is get the current cursor position {rom the
operating system.
Definition of Character Sets

This routine is for the 80-column mode only. If, by some chance, you
don't like your custom character set, or it doesn't work very well, this
routine copies the original character set into the VDC's video RAM.

SYS 49191 / SYS 52748

40/80-Column Toggling -

We've mentioned this little trick before:

SYS 49194 / SYS 52526
P
For more information on these routines, please see Chapter 11.2: The
Kernal.

First Publishing Tricks and Tips for the C-128

1.28 HIGH-RESOLUTION GRAPHICS

The C-128 has a new BASIC (BASIC 7.0), with a host of graphic
commands to make hi-res programming easier. Trouble is, the hi-res

commands only operate in 40-column mode. We don't understand why
you can't use them in 80-column mode; the doubled resolution (640*200
pixels) would come in handy.

The following pages will show you how to do 80-column hi-res graphics,
and how to use this in your programs. If you're without an RGB monitor,
you'll have to amuse yourself with standard graphic commands.

Bit-Map Mode
Those of you former C-64 and VIC-20 owners probably remember
"bit-map mode" in high-resolution programming: Essentially, it switches

the screen from normal to high-resolution mode. Video RAM is no longer

divided into screen memory, attribute RAM and the character generator,
The computer works bit-for-bit with video RAM. In other words, for every

set (on) bit, a point is written to the screen.
Our 80-column screen would give us a resolution along the lines of:
16000 BYTES * 8 BITS = 128,000 SCREEN POINTS

--which you can have either set or unset.

64

ITICKS #0OU RIPS UL LUE L -120

First Publishing

i 1

Switching on the bit-map mode is accomplished by registers 20 and 25:

20 Attribute RAM starting address (HIGH)
25 Bit 7: Hi-Res On/Off

Let's turn the bit-map on with this little program:

10 A=DEC ("DE00M) tBeA+l
20 POKE A,20:POKE B,0
30 POKE A,25:POKE B, I28

Immediately, the screen is a jumble of points and lines. There is method to
this madness, though: every bit in the 16K of video RAM has been
switched ON. Using the modified Poke routine from Chapter 1.10, try this:

SYS DEC("1800"),128,0,0

That turns one point on at the upper left-hand corner of the screen. Now
that you have the principle, here's a program that draws a sine wave on the
screen. The PLOT routine works faster than some machine code routines; it
manages this through a) the modified POKE (see "POKE Simulation"), b)
the modified PEEK, und ¢) ERASE (cleuring the graphic screen),

Type this program in first and start it; it's the graphics initialization routine.

10 FOR X = 6144 TO 6182

200 READ A : CS = CS + A : POKE X, A

30 NEXT X

40 IF CS <> 3411 THEN PRINT "DATA ERROR IN 40"
50 DATA 72, 138,72,152,72,169,2,141,40,10,162,18
60 DATA 104,32,27,24,232,104,32,27,24,162,31,104
70 DATA 76,27,24,142,0,214,44,0,214,16,251,141
80 DATA 1,214,96

65

rFirst rubhismng

Tricks and Tips for the C-128

85

90

100
110
120
130
140
150
160
165
170
180

190
200

210
220
230
240
250

Cs =0

FOR X = 6656 TO 6697

READ A: CS = CS + A: POKE X,A

NEXT X

IF CS <> 4356 THEN PRINT "DATA ERROR IN 120"
DATA 72,138,72,162,18,104,32,30,26,232,104,32
DATA 30,26,162,31,142,0,214,44,0,214,16,251
DATA 173,1,214,133,254,96,142,0,214,44,0,214
DATA 16,251,141,1,214,96

Cs =20

FOR X = 6400 TO 6453

READ A: CS = CS + A: POKE X,A

NEXT X

IP €8 <» 6426 THEN PRINT "DATA ERROR IN 200"
DATA 162,64,169,0,160,0,133,254,72,138,72,162
DATA 18,165,254,32,42,25,232,152,32,42,25,162
DATA 31,169,0,32,42,25,104,170,104, 200,208
DATA 228,230,254,202,208,223,96,142,0,214,44
DATA 0,214,16,251,141,1,214,96

And now for the sine wave:

10
20
30
40
50

60

70

80

110
120
130
140
150
170
180
190
200
210
220

REM 80 COL SINE WAVE PLOT PROGRAM

A = DEC ("D600"): B = A + 1

REM PLOT:SYS DEC("1800"),BYTE, LO,HI

REM ERASE:SYS DEC("1900")

REM PEEK:SYS DEC("1A00"),LO,HI:
PRINT PEEK (254);

POKE A,25: POKE B,128: POKE A,20: POKE B,0
SYS DEC ("1900")

FOR X = 0 TO 639

Y = INT (SIN (X / 10) * 100) + 100

GOSUB 170

NEXT X

END

REM PLOT

AN = 80 * Y

Zl = INT (X / 8)

AD AN + Z1: HI =INT (AD/256):LO =AD-256 * HI
SYsS DEC ("1A00"),LO,HI
PE PEEK (254) OR 2 ~ (7 - (X - Z1 * 8))

66

First Publishing

"-icks and Tips for the C-128

230 SYsS
240 RETURN

DEC

("1800"),PE,LO,HI

The modified POKE has been described previously. Here is the ERASE
routine:

1900
1902
1904
1906

1908
1909

1902
190B
190D
190F
1912
1913
1914
1917
1919
191B
191E
191F
1920
1921
1922
1924
1926
1927
1929
192a
192D
1930
1932
1935

A2
A9
AQ
85

48
8A

48
A2
A5
20
E8
98
20
A2
AS
20
68
AA
68
cs8
DO
E6
65
DO
60
8E
2C
10
80
60

40
00
00
FE

12
FE
2A

2A
1F
00
22

E4
FE

DF

00
00
FB
01

19

19

19

D6
D6

D6

LDX
LDA
LDY
STA

PHA
TXA

PHA
LDX
LDA
JSR
INX
TYA
JSR
LDX
LDA
JSR
PLA
TAX
PLA
INY
BNE
INC
DEX
BNE
RTS
STX
BIT
BPL
STA
RTS

#$40
#300
#$00
SFE

#512
SFE
$192A

$192A
#S1F
#500
$192A

$1908
SFE

$1908

$D600!
$D600
$192D
$SD601

:Clear 64 pages
:from $0000

:Store high byte
land retrieve

:Retrieve pages

:VDC REG 18

:Load high-byte

:Set register

:VDC REG 19

:Low byte into accumulator
:Set register

:VDC REG 31

:Write 0 into video RAM
:Set register

:Get high byte

:in X-register

:Get pages

:Loop

:High=High+1
:Page=Page-1

:Still >0? Keep going.
tReturn to BASIC

:5et register

tWait

:Waited long enough?
:Value given

:Return

These graphic commands aren't exactly the fastest. It won't be long,

though, before someone brings out an 80-column graphic extension.

67

First Publishing

Tricks and Tips for the C-128

1.29

CHARACTER GENERATORS -- AGAIN

We close with a short program that will perform a headstand -- literally. We
suggest that you review the POKE routine ($1800) and PEEK routine
($1A00) in the previous chapters.

Here's one for the normal 8 X 8 matrix:

10
20
30
40
50
60
70
80
90

FOR X = 0 TO 511

FOR X2 = 0 TO 3

Al =8199+8*X-X2: Hl= INT(A1/256): Ll= Al-256*H1
sYs DEC ("1A00"),L1,H1

Wl = PREEK (DEC ("FE"))

A2 =8192+8*X+X2: H2 =INT(A2/256): L2 =A2-256*H2
SYS DEC ("1A00"),L2,H2

W2 = PEEK (DEC ("FE"))

SYS DEC ("1800"),W2,L1,H1

100 SYS DEC ("1800"),W1l,L2,H2
110 NEXT X2

120 NEXT X

And one for the 16 X 8 matrix (you must have previously defined a 16X8
matrix to see the results of this program):

10
20
30
40
50
60
70
80
90

FOR X = 0 TO 511

FOR X2 = 0 TO 7

Al =8207+16*X-X2: H1=INT (A1/256) :L1=A1-256*H1
sYys DEC ("1a00"),L1,H1

Wl = PEEK (DEC ("FE"))

A2=8192+16*X+X2: H2=INT (A2/256) : L2=A2-256*H2
Sys DEC ("1A00"),L2,H2

W2 = PEEK (DEC ("FE"))

sYs DEC ("1800"),w2,L1,Hl

100 SYS DEC ("1800"),Wl,L2,H2
110 NEXT X2
120 NEXT X

68

st

ruvnsmng

‘I'ricks and Tips for the C-1.4

a0 8

o . MR DO O A,
oot RS et Wn\ﬂam Ty

e e e g - g

TR TE TR TV IYENTTITIES IriCKSs anua 11ps tor the C-1.238

BASIC 7.0 GRAPHICS COMMANDS

2.1 THE CIRCLE COMMAND

CIRCLE is one of the most versatile commands in BASIC 7.0. As its name
suggests, it can draw circles. But it can also draw lines, triangles,
rectangles, ellipses and other geometric shapes. The command uses the
following format:

CIRCLE clr,x,y,Xr,xy,sa,ea,r,1i
These parameters are defined as follows::

clr Number of color memory (0-3)

x,y Coordinates for center point
Xr Radlius in x-direction

yr Radius in y-direction
sa Starting angle of the circle

ea End angle of the circle
r Angle for rotation
i Angle for drawn circle segments

To draw a circle use the first four parameters; the rest are for finer details, as
we shall soon see. The first value gives color memory; the next two

indicate midpoint coordinates; and the next, the radius.

71

ishi i i he C-128
First Publishing Tricks and Tips for the

Drawing an ellipse requires the previous coordinates, plus the Y-register

radius (if unequal to the X-register radius):
CIRCLE 0,160,100,10,30

If you wish to turn the ellipse at the midpoint, you'll have to change the last
value. For example:

CIRCLE 0,160,100,10,30,0,360,45

These parameters give the number of degrees drawn of the ellipse/circle.
The sixth and seventh values tell at which angles the circle/ellipse begins

and ends. We can get a half-circle by doing this:
CIRCLE 0,160,100,30,30,0,180

How can we get squares out of this command? The last parameter performs

that function, using these numbers:

0-44 Circle (higher the number, the "rounder")
45 Octagon
60 Hexagon
75 Pentagon
90 Square & Rectangle
91-119 Unequal rectangle
120 Equilateral triangle
121-179 Triangle (higher the value, the more unequal)
180-255 Lines

el

First Publishing Tricks and Tips for the C-128

2.2 PIE CHARTS

BASIC 7.0's graphic commands offer a lot to the user. One of the htile
extensions of the CIRCLE command that we've written is a fascinating one:
PIE CHARTS., You can imagine how useful this program can be for
calculation programs, statistics and the like. Naturally, our routine isn't as

good as something "store-bought”; we'll leave it to you to improve it....

Now on to the program. One problem that cropped up was the fact that the
color memory in hi-res mode isn't the same size as the graphic memory.
So, we had to color in an entire7 field with 8 X 8 points. We could have
used multicolor mode instead, but then we would have ended up with a pie
with sharp edges.

These problems only occur in every other segment. You can turn segment
colors off altogether (delete 340-390) to avoid some of these difficulties.

10 REM PIE CHARTS

20 | GRAPHIC 0,1

30 INPUT "SEGMENT SI1ZE",N

35 IF N = 0 THEN END

40 DIM A(N) -

45 DIM P (N)

50 DIM TS$ (N)

60 FOR I =1 TO N

70 PRINT I". SEGMENT"

80 INPUT "VALUE";A(I)

90 P =P + A(I)

100 INPUT "TEXT ";TS(I)

110 NEXT I

120 INPUT "ANY CHANGES (Y/N) ";AS
130 IF LEFTS$ (AS,1) = "Y" THEN BEGIN
140 FOR I =1 TO N

150 PRINT I". "T$(I),A(I)

71

First Publishing

Tricks and Tips for the C-128

160
170
180
190
200
210
220
230
240
250
260

270
280

290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460

470
480

490
500
510
520
525
530
540
550
555
556

NEXT I
INPUT "SEGMENT NUMBER "; T
P =P - A(I)

INPUT "VALUE";A(I)

P =P + A(I)

INPUT "TEXT ";TS$(I)

GOTO 120

BEND

REM DRAW PIE CHART
GRAPHIC 1,1

COLOR 1,1
CIRCLE ,160,100,80
G =20

FORI =1 TO N

P(I) = A(I) / P * 100

G =G + P(I)

CIRCLE ,160,100,80,0,0,80,G * 3.6
IF I/ 2< > INT (I / 2) THEN 520
REM DRAW SEGMENTS

COLOR 1,I / 2 + .5

CIRCLE ,160,100,80,0,0,40,G * 3.6-P(I) * 1.8
X = RDOT (0)

Y = RDOT (1)

PAINT ,X + 2,Y + 1

NEXT I

REM TEXT PRINT
G=20

FOR I =1 TO N
G =G + P(I)

COLOR 1,I / 2 + .5

CIRCLE ,160,100,80,0,89,90,G * 3.6-P(I) * 1.8
COLOR 1,1

X = RDOT (0) / 8

Y RDOT (1) / 8

IF X < 16 THEN X = X - LEN (T$(I))

CHAR ,X,Y,T$ (I)+STRS (INT (10*P(I) + .5) / 10)
NEXT I '

CHAR ,14,24,"'SPACE' TO CONT."

GET KEY AS

GRAPHIC 0

PRINT "{RVS ON}N{RVS OFF}EW PIE CHART"
PRINT "{RVS ON}O{RVS OFF}LD PIE CHART"
PRINT "'SPACE' TO END"

74

First Publishing

L

Tricks and Tips for the C-12§

560 GET KEY AS
570 IF AS$ = »n» THEN ROUN -~
580 IF AS$ = wgw THEN 120

The input of different portions results with absolute values and not

Percentages; every portion can include a text string of your choice (as long
as it's not too large a string).

2.3 BAR GRAPHS

Let's go on to another graphic aid for calculation programs: Bar graphs.
Our programs are limited to § "blocks" per character block (it loses
something on the 40- character screen). Block length is up to you; and the
highest value would be 100 (as in percent). You'll note that we've taken

great advantage of the vertical resolution (you'll find the calculations in line
280).

10 REM BAR GRAPHS

20 GRAPHIC 0

30 SCNCLR

40 DIM A(8)

50 DIM F (8)

60 INPUT "GRAPH NAME";U$
70 U§ = n "ot US

80 FOR I = LEN (US) TO 39
90 US$ = U$ + » »

100 NEXT I
110 INPUT "NUMBER OF BARS (1-8)";D

120 IF D <1 O0R D > 8 THEN 110
130 FOR I =1 TO D

140 PRINT "BAR #"I

150 INPUT "HOW MUCH" ;A (1)

160 IF A(I) > MAX THEN MAX = A(I)

170 INPUT "COLOR (1-16)";F (1)

180 IF F(I) < 1 OR F(I) > 16 THEN 170

-1

ishi i i - g First Publishin Tricks d Ti for the C-12
First Publishing Tricks and Tips for the C-128 irst Pu g icks and Tips for il

130 NEXT I

200 PRINT "USE THIS DATA?"
210 GET KEY AS

220 IF A$ = "N" THEN RUN
230 GRAPHIC 1

2.4 FUNCTION PLOTTER

510 SCNCLR , Who hasn't wished for smooth arcs? Maximum - minimum curve
250 COLCOR 1,1 representations? The endless mysteries of-a tangent? This program is a
%sg gggRI’ 2’ 2’ gg’ l])‘ complete curve plotter. It takes your input, and plots it
_ _ MAX * 170 -
338 ééiéR_llgeI) A/ 10 REM FUNCTION PLOTTER
300 BOX ,1I * 38 - 24,A(I),I * 38,190,0,1 20 GRAPHIC 0,1
310 DRAW ,I*38-24,A(I) TO I*38-18,A(I)-6 TO I*38 30 DEF FN Y(X) = COS (X)
+ 6 AQI)—G TO I*38 + 6,184 TO I*38,190 . 40 INPUT "BEGINNING FUNCTION RANGE ";A
4 " ",
I *x 38 + 6,A(I) - 6 50 INPUT "ENDING FUNCTION RANGE ;E

320 DRAW ,I * 38,A(I) TO ! , 60 IF A = > E THEN 40
330 NEXT I 70 INPUT "REQISTER X-VALUE ";Al
340 GET ¥2Y0A$; 80 INPUT "REGISTER Y-VALUE ";E1
328 gggggR | 90 IF A1 = > E1 THEN 70
370 PRINT " (O) OLD GRAPH" : 128 22==(?E1 §)A{)320
380 PRINT " (N) NEW GRAPH" 120 GRAPHIC 1,1
390 PRINT " (X) EXIT" ! _ A
200 GET KEY AS 130 FOR I = 0 TO 319
410 IF AS = "X" THEN END . 148 A= ?og S Al) / s2 199

F AS = "O" THEN GRAPHIC 1: GOTO 340 15 X = - (FN Y(7) -) S
338 ip AS = "N" THEN RUN . 160 IF X = < 199 AND X = > 0 THEN DRAW 1,1,¥
440 , GOTO 370 ' 170 NEXT I

180 GET KEY AS
190 GRAPHIC O

After RUNning the program, it prompts you for four values: the range in
which the function will begin and end (be sure it's only as big as your
screen); the X-register (-5 to 9); and the Y-register (O to 9).

| If you wish to explore other functions, change line 30. To geta sine wave,
do this:

(30 DEF FN Y(X)= SIN(X)

TA . 7

First Publishing Tricks and Tips for the C-128

This will not calculate in degrees, but in radians (360 degrees are exactly 2 *
PI radians). Two ground rules: X- value must be no less than 0 and no

more than 3.1415; and the Y-value can only be between -1 and 1.

2.5 WINDOWS

Windows are the newest buzzword in computerese. No new computer, no
new BASIC, is without this feature; and the C-128 is no exception.
Unfortunately, you only get one window on the C-128; but it is possible to
get multiple windows with a little finagling.

2.5.1 HOW TO DO WINDOWS

You've learned from)"our handbook that a window can be set up in direct
mode; no problem there, but how do you find it? The borders of the
window can be found by moving the cursor around. The simplest method
to get out of the window space is to use <RUN-STOP/RESTORE>, which
dumps the window. These methods have the disadvantage of stopping a
running program. We have an answer. Isn't a window just a small screen,
and a screen an enlarged window? Well, we could conceivably draw the

window to fit the screen:

WINDOW 0,0,79,24 (80-col. screen)
WINDOW 0,0,39,24 (40-col. screen)

78

First Publishing Tricks and Tips for the C-123

2.5.2 READING WINDOW COORDINATES

You have already heard of the command RWINDOW. You can determine
the row (RWINDOW(0)), column (RWINDOW(1)) and character modc
(RWINDOW(2)). If you want complete coordinates, you'll need to handle
the matter a bit differently. Zero page memory has four extra bytes in which

the coordinates for the current window are stored; these are addresses
228-231:

10 WINDOW 1,11,20,22

20 PRINT "BOTTOM BORDER:";PEEK(228)
30 PRINT "TOP BORDER: " ;PEEK (229)
40 PRINT "LEFT BORDER: " ;PEEK (230)
50 PRINT "RIGHT BORDER:";PEEK(231)

To experiment with this program, hit RUN-STOP/RESTORE and change
the window parameters.

2.5.3 SETTING UP ALTERNATE WINDOWS

i ¢

We mentioned earlier that the screen can only have one window, as
indicated by locations 228 ($E4) to 231 ($E7). Here are the default values:

228 (SEA4) 124

229 ($SES) : 0

230 (SE®6) : 0

231 (SE7) :79 (80-col. mode)
:39 (40-col. mode)

79

First Publishing Tricks and Tips for the C-128

Now, if you type in WINDOW 1,2,3,14 -- those values will change to:

228 (SE4) :14
229 ($E5) & 2
230 (SES6)

231 (SE7) : 3

(regardless of screen size)

You can manage machine language programming of windows, just by
altering 228 to 231 decimal. POKE 228,10, for example, sets the bottom at
10.

A word of warning: You will run into problems if you try making
windows larger than the screen.

2.5.4 VERTICAL SCROLLING

The WINDOW command allows you to produce vertical scrolling without
hassles, The program looks like this:

10 INPUT "TEXT";AS

20 INPUT"SPEED":G

30 WINDOW 10,10,10,20
40 FOR I=1TO LEN(AS)
50 PRINT MIDS$(AS,I,1)
60 FOR T=1 TO G

70 NEXT T

80 NEXT I

90 GOTO 40

80

First Publishing Tricks and Tips for the C-123

{ t

The window width is reduced to one, so the characters scroll beneath one
another. Unfortunately, this system doesn't work with an pre-established
window.

2.5.5 THIE WINDOW AS INPUT LINE

This program makes it easy to limit the user's access to the cursor keys, and
keep the user in the confines of an input line.

5 REM F = 39 (40 COL.) F = 79 (80 COL.)
10 REM INPUT LINE
20 PRINT CHRS$(27);"M":REM scrolling stopped
40 PRINT"NAME?";
50 OPEN 1,0

60 WINDOW PEEK (236),PEEK(235),F,PEEK(235), 1
70 INPUTH#I1,AH

80 CLOSE 1

90 WINDOW 0,0,F,24

NOTE: The constant F (lines 60 & 90) should be replaced with 39 (40-col.
screen) or 79 (80-col.).

Address 236 has the present column, and 235 the current line.

First Publishing Tricks and Tips for the C-128

2.5.6 PRINT AT WITH WINDOWS

!

Many books and magazines have written about simulating PRINT AT on
the C-64. The C-128 has a command called CHAR, used to simulate
PRINT AT. But this isn't always the best method -- for example, you can't
control the length of the output. Also, there might be control characters in
the string to be printed. If you use the WINDOW, you'll come out ahead:
5 REM F = 39 (40 COL.) F = 79 (80 COL.)

10 REM PRINT AT WITH WINDOWS

20 INPUT"ROW";RW

30 INPUT"COLUMN";CL

40 INPUT"LENGTH";LN

50 F=PEEK(231)

55 PRINT CHRS(27);"M":REM SCROLLING STOPPED

60 WINDOW CL,RW,CL+LN, LINE

65 PRINT"HELLO"
70 WINDOW 0,0,F,24

The variable F again represents the screen width. The system automatically
figures the mode out at line 50.

2.5.7 CLEARING A PARTIAL SCREEN
One part of the WINDOW command we haven't touched on is its ability to
clear window contents. You have your choice of two methods:

A. 10 WINDOW 10,10,20,20:PRINT" (CLR/HOME) "
B. 10 WINDOW 10,10,20,20,1

82

First Publishing Tricks and Tips for the C

The uses are clear for this. We may want to erase the window, so that we
can use the screen for other things. On the other hand, you may want to
justclear the lower half of the 40-column screen:

10 WINDOW O, 12, 39, 24, 1
20 WINDOW O, O, 39, 24¢(, 0)

You can, of course, use these commands in direct mode. Just type it in one
line, separating the two commands with a colon (:).

2.5.8 SECURING WINDOW CONTENTS

Let's say you're in the middle of a word processing program. You've filled
the entire screen, and now you want to save the text. You go to the main

menu, which appears in a screen window. Good software will still retain
the text under the window, and even let you go back to the text, erasing the

window. The WINDOW command on the 128 doesn't do this.

Now, once the window 1is cleared, the contents are lost forever. What to

do? We can make the window simulate a 40-column screen:

10 REM SAVE SCREEN WHILE USING WINDOWS
20 GRAPHIC 0,1

30 REM WRITE SOMETHING ON SCREEN

40 FOR I = 1024 TO 2024

50 POKE I,J

60 J=J + 1

70 IF J > 255 THEN J = 0

80 NEXT I

90 X1 = 5: REM DEFINE WINDOW

83

First Publishing Tricks and Tips for the C-128
100 X2 = 12
110 X3 = 35
120 X4 = 22

125 REM SAVE CONTENTS UNDER WINDOW
130 GOSUB 60000

140 REM USE WINDOW

150 WINDOW X1,X2,X3,X4,1

160 INPUT "TEXT";AS

170 REM RETURN SCREEN TO NORMAL
180 WINDOW 0,0,39,24,0

190 GOSUB 60090: REM RECALL INFO
200 GET KEY BS

210 GRAPHIC 0,1

220 END

60000 REM SAVE SCREEN UNDER WINDOW
60010 DIM X(350)

60020 FOR I = X2 TO X4

60030 FOR J = X1 TO X3

60040 X(2) = PEEK (I * 40 + J + 1024)
60050 2 = 2 + 1

60060 NEXT J

60070 NEXT I

60080 RETURN

60090 REM RECALL SCREEN

60100 Z = 0

60110 FOR I X2 TO X4

60120 FOR J = X1 TO X3

60130 POKE I * 40 + J + 1024,X(2)
60140 2 =2 + 1

60150 NEXT J

60160 NEXT I

60170 RETURN

The interesting part of this program starts at line 60000. Line 60010 defines
an array called X(). The array size is dependent on the size of the windows.
If you use this routine in your own programs, make sure no other arrays or
variables exist with this name. If you give the coordinates for one window,
you can put this value directly in the loop instead of using variables. If you

use several windows you should use vanables.

84

First Publishing

Tricks and Tips for the C-128

Like all BASIC programs, this one has a small disadvantage: It's too slow.

Here's a second version, in machine language:

1400
1402
1403
1405
1407
1409
140B
140D
140F
1410
1412
1414
1415
1416
1418
141A
141C
141F
1420
1422
1424
1426
1428
142a
142C
1428
1430
1432
1433
1436
1438
143A
143C
143E
1440
1441
1443
1445
1448

AS
18
ES5
85
E6
A9
85
A2
8A
E4
FO
E8
18
69
90
E6
4C
18
65
90
E6
85
85
AS
69
85
AQ
Cc8
AD
DO
Bl
91
C4
DO
ES8
E4
90
AD
DO

E7

Fé6
FF
FF
04
FC
00

E5
0B

28
Fé6
FC
10

E6
02
FC
FB
FD
FC
F7
FE
FF

6B
1A
FB
FD
FF
F2

E4
14
6B
04

14

14

14

LDA
CLC
SBC
STA
INC
LDA
STA
LDX
TXA
CPX
BEQ
INX
CLC
ADC
BCC
INC
JMP
CLC
ADC
BCC
INC
STA
STA
Lba
ADC
STA
LDY
INY
LDA
BNE

SE7

$SE6

SFF
SFF
#504
SFC
#S00

SE5
$141F

#528
$1410
S$FC
$1410

SE6
$1426
SFC
SFB
SFD
SFC

#S11
SFE

#SFF

$146B
$1452

:Right window border

:Minus left border
:=length of window
tLength=length+l
:Screen start
:store

:SE5 = 1st window line?
:YES--then $141F

:Next line
:Still not all
:Raize high-byte pointer

:Window start - low

:Raise high-byte by 1
:Store low-byte

:in $FB and $FD
:High-byte

:17 there

:and in high-byte of the
:2nd counter

:Read or write?
:Write

LDA(SFB),Y :Char. on screen
STA(SFD),Y :Store

CpY
BNE
INX
CpX
BCC
LDA
BNE

SFF
$1432

SE4

$1459
$146B
$144E

:Y-reg = length?
:UNEQUAL--continue

:X-reg = bottom edge?
:smaller

:Written or read?
:Written, read next

85

First rublishing ‘Iricks and Tips for the C-128 First Publishing Tricks and Tips for the C-124

144A EE 6B 14 INC $146B 180 REM ROUTINE SAVE WINDOW

144D 60 RTS :Back to BASIC 190 FOR I = 5120 TO 5227

144E CE 6B 14 DEC $146B 200 READ A

1451 60 RTS :Return to BASIC 210 S =S + A

1452 B1 FD LDA(SFD),Y :Char. from memory 220 POKE I,A

1454 91 FB STA(SFB),Y :written to screen 230 NEXT I

1456 4C 3C 14 JMP $143C 240 IF S < > 16107 THEN BEGIN

1459 A5 FB LDA S$FB :Low-byte in accumulator 250 PRINT "?ERROR IN DATA"

145B 18 CLC 260 END

145C 69 28 ADC #$28 :Next line 270 BEND

145E°90 04 BCC $1464 :No overflow 280, GOTO 10

1460 E6 FC INC &rc iRaise high-byte by 1 290 DATA 165,231,24,229,230,133,255,230

1462 E6 FE INC SFE :Raise high-byte of 2nd 300 DATA 255,169,4,133,252,162,0,138
counter by 1 310 DATA 228,229,240,11,232,24,105,40

1464 85 FB STA SFB :Low-byte in 1lst counter 320 DATA 144,246,230,252,76,16,20,24

1466 85 FD STA S$FD :Low-byte in 2nd counter 330 DATA 101,230,144,2,230,252,133,251

1468 4C 30 14 JMP $1430 340 DATA 133,253,165,252,105,17,133,254

146B 00 BRK :Byte for read (0) 350 DATA 160,255,200,173,107,20,208,26
or write (1) 360 DATA 177,251,145,253,196,255,208,242

370 DATA 228,228,232,144,20,173,107,20

Here's the BASIC loader for the window saving routine. A sample 328 g‘:gi 38?’92:?’]3: ég;:igé?géi?g%}gg

program has been included with the BASIC loader to demonstrate the speed 400 DATA 20,165,251,24,105,40,144,4

of the routine 410 DATA 230,252,230,254,133,251,133,253

420 DATA 76,48,20,0

0 GOTO 180 '
10 REM TEST PROGRAM

20 GRAPHIC 0 The routine itself begins at line 180. The first section contains the sample
30 FOR I = 1024 TO 2023 program. The window in which you to read and write text must always be
40 POKE I,A) .

50 A=A+1 active.

60 IF A > 255 THEN A = 0
70 NEXT I

80 WINDOW 10,10,20,20

90 SYS 5120

100 PRINT "{CLR HOME}™"

110 GET KEY A$

120 PRINT AS;)

130 IF AS < > CHRS$ (13) THEN 110

140 SYS 5120 ’
150 WINDOW 0,0,39,24

160 GRAPHIC 0

170 END

86 87

First Publishing Tricks and Tips for the C-128

2.5.9 SIMULATING SEVERAL WINDOWS

We can simulate a number of windows with the help of the BASIC program

in Chapter 2.5.8: ‘
10 REM SAVE WINDOW CONTENTS
15 DIM X(40,30)
20 GRAPHIC 0,1
30 REM FILL SCREEN WITH TEXT
40 FOR I = 1024 TO 2024
50 POKE I,J
60 J=J+ 1
70 IF J > 255 THEN J = 0
80 NEXT I
85 REM PUT 40 WINDOWS ON SCREEN
90 FOR K = 0 TO 39
100 X1 INT (RND (1) * 25) + 5

110, X2 INT (RND (1) * 14) + 3
115 REM SAVE CONTENTS UNDER WINDOW
120 GOSUB 60000

130 WINDOW X1,X2,X1 + 4,X2 + 3

140 FOR W =1 TO 20: REM PRINT #'S IN WINDOW
150 PRINT CHRS (K + 48);

160 NEXT W

165 NEXT K

170 REM TAKE OFF WINDOWS ON SCREEN
180 FOR K = 39 TO O STEP - 1

190 X1l = X(K,29)

200 X2 = X(K,30)

210 WINDOW X1,X2,X1 + 4,X2 + 3

215 REM REPLACE CONTENTS

220 GOSUB 60090

230 NEXT K

240 GET KEY AS

250 GRAPHIC 0,1

260 END

60000 REM MEMORIZE CONTENTS UNDER WINDOW
60010 Zz = 0

60020 FOR I = X2 TO X2 + 3

88

First Publishing Tricks and Tips for the C-128

60030 FOR J = X1 TO X1 + 4

60040 X(K,Z) = PEEK (I * 40 + J + 1024)
60050 2 = 2 + 1 -

60060 NEXT J
60070 NEXT I
60074 X (K,29)
60076 X (K, 30)
60080 RETURN
60090 REM RECALL CONTENTS

60100 z = 0

60110 FOR I = X2 TO X2 + 3

60120 FOR J = X1 TO X1 + 4

60130 POKE I * 40 + J + 1024,X(K, 2)
60140 z = 2 + 1

60150 NEXT J

60160 NEXT I

60170 RETURN

X1
X2

First, a screen is displayed, then 40 windows are produced, then the
windows are cleared. The final result is the starting screen.

This program shows you how to use multiple windows. Using multiple

windows in your own programs entails writing individual routines for each
window.

The program works with 40 windows, the largest number possible in
C-128 variable memory. The array X() uses 40 * 1004 bytes (40 refers to

the number of windows, of course). If you use fewer in your program,
decrease the number proportionately.

It's possible to extend a window over the entire screen. This would require
1000 bytes for screen contents, and four for window coordinates, resulting
in 1004. Again, a smaller window requires a smaller number.

RO

B — AaILA3 auu SIPd UL LUE U-1.40

2.6 SPRITE HANDLING

Another indicator of BASIC 7.0's versatility is its sprite handling
communds. The sprite generating and editing features make sprite work
very easy (as opposed to the C-64, where sprite handling is made very
difficult with BASIC 2.0).

It goes without saying that games make up the majority of sprite
applications. You can also use sprites instead of regular characters (see
Chapter 3.5). The next program was designed for just that; it copies the
character of your choice into the sprite editor, where you can make your
own lettering (eight sprites are available).

5 REM 2.6A

10 REM CHAR. COPIER TO SPRITE
20 INPUT "WHICH SPRITE";S
30 IF S <1 OR S > 8 THEN 20
40 INPUT "COL (0-13) ";2z
50 IF Z < 0 OR 2 > 13 THEN 40
60 INPUT "ROW (0-2) ",y
70 IF Y < 0 OR Y > 2 THEN 60
80 REM ERASE SPRITE
90 FOR I = 0 TO 62
100 BS$ = BS$S + CHRS (0)
110 NEXT I
120 SPRSAV BS, S

130 IF 2 = 0 AND Y = 0 THEN 170
140 FORI =1 TO Z * 3 + Y
150 AS$ = A$ + CHRS (0)

160 NEXT 1 -

170 INPUT "INPUT CHAR. CODE ";C
180 FOR I =C * 8 TOC * 8 + 7
190 A =0

200 FOR J =0 TO 7

210 BANK 14

220 F = PEEK (53248 + I)

%0

First Publishing Tricks a2nd Tips for the C-128

230 IF (FAND 2 ~,J) =2 ~JTHENA =2+ 2 ~ J
240 NEXT J

250 A$ = A$ + CHRS$ (A) + CHRS (0) + CHRS (0)
260 NEXT I

270 SPRSAV AS,S

280 REM SPRITE IMAGE GENERATOR

290 POKE B42,48 + 8

300 POKE 843,13

310 POKE 208,2

320 SPRDEF

You need to enter the screen code of the character you want. After you've
done that, the system copies the character into the SPRDEF mode, where
you have sprite commands at your fingertips. Then again, there isn't a
whole lot you can do with a character built within an 8X8 matrix; the
majority of the sprite field is left unused. The second program doubles the
size of the sprites, allowing you to use multicolor mode, and, for instance,
make a sprite with a shadow trailing behind it.

10 REM DOUBLE SIZE CHAR COPY TO SPRITE
20 INPUT "WHICH SPRITE";T

30 IF T < 1 OR T > 8 THEN 20
40 INPUT "COL. (0~5) ";z

50 IF Z < 0 OR Z > 5 THEN 40
60 INPUT "ROW (0-1) ";vY
70 IF Y < 0 OR Y > 1 THEN 60
80 REM SPRITE ERASE

30 FOR I = 0 TO 62

100 BS$ = B$S + CHRS (0)

110 NEXT I

120 SPRSAV BS,T

130 IF Z = 0 AND Y = 0 THEN 170
140 FOR I =1 TO Z * 3 + Y -
150 AS = AS$ + CHRS$ (0)

160 NEXT I

170 INPUT "INPUT CHAR CODE "; S
175 REM CHAR COPIER

180 FOR I =S * 8 TOS * 8 + 7
190 A(0) =0

91

rusL rususing

Tricks and Tips for the C-128

200
210
220
230
240
250

260
270
280
290
300
310
320
330
340

350
360

A(l) =0

FOR J =0 TO 3

FOR Q = 0 TO 1

BANK 14

F = PEEK (53248 + I)

IF (F AND 2 ~ (J + Q * 3)) =2 ~ (J + Q * 3)
THEN A(Q) =A(Q) + 2 ~ (J * 2) + 2 ~ (J * 2+1)
NEXT Q

NEXT J

AS = AS + CHRS (A(1l)) + CHRS (A(O)) +CHRS$ (0)

A$ = A$ + CHRS$ (A(l)) + CHRS (A(0)) +CHRS (0)
NEXT I

SPRSAV AS,T

REM ACTIVATE SPRITE IMAGE GENERATOR
POKE 842,48 + T

POKE 843,13

POKE 208,2
SPRQEF

2.6.1 DESIGN IN LISTING

One thing is a little puzzling about sprites: where are the sprite contents
going to be stored? We've designed the two following programs to fix that
problem. The first program reads DATA statements to form a sprite. That
is, there's no DATA per se, but rather strings, they are faster and simpler
for the computer to handle, and changes are easily made on these sprites.

Like most of the BASIC listings, this one, too, is slow; but it beats buying a
program.

10
20
30
40
50

REM DESIGN IMAGE LISTING 1
INPUT "HOW MANY SPRITES";S
POKE 53296,1 REM SET FAST MODE

FOR T = 1 TO S: PRINT "READING IN SPRITE #"T
AS = nn

92

First Publishing

Tricks and Tips for the C-124

60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
1000
1010

1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220

As you can see from the listing, a set bit in a sprite is shown as an asterisk,

FOR G = 0 TO 20
READ BS$
IF LEN (B$) < 24 THEN BS$ = B$ + ".":
FOR I = 0 TO 2
A =20
FOR J = 0 TO 7
IF MIDS (BS,I*8+J+1,1) ="*" THEN A =A+2"~(7-J)
NEXT J
AS = AS + CHRS (A)
NEXT I
NEXT G
SPRSAV AS,T
SPRITE T,1,T,1,1,1,0
MOVSPR T,T * 10#T
NEXT T
POKE 53296,0
REM 012345678901234567890123
DATA * ok ok ok ok k ok ok %k
DATA Kk hkkk ok kkkk
DATA _**‘k**‘k

GOTO 80

-t

DATA .. **x%*x

DATA L Rk Kk kK

DATA*%%kxx

DATA LJRAR kA kkkkhkkx

DATA (K kkkkkhk kK Kkhk Kk kX
DATA khkkhkkhhkkhkkkkkkkk
DATA AhkAkKkAAKKAkAkhkhkkhkkhkkk
DATA LR R R SR EEEE SN S &R
DATA %k ok ok ok ok ok ok ok kok ok ok ok ok ok
DATA hkkkhkkhkkhkkhkkhkkhkkx
DATA SRRk kkkkkhkkkkhkk Kk
DATA L ERER AR kAR K KKK

DATA*X*x%%kxx

DATA ... ***%*x

DATA .. .**x*k%kx%xx%

DATA . *kxk*x
DATA **x*xkkkx*
DATA **kk* k%%
REM 012345678901234567890123

and an unset bit a period.

a3

e

rIrst Fupnsning

Tricks and Tips for the C-128

While the data is being read in, the clock frequency is doubled (FAST)
which increases execution time, but turns off the 40-column screen. When

the routine finishes, the screen returns to normal, and a sprite is displayed

on the screen.

Not every program uses this method of reading sprites as DATA statements,

so we wrote the second program in this chapter, which automnatically cranks
out DATA statements.

10 REM DESIGN IMAGE LISTING 2
20 INPUT "HOW MANY SPRITES";S

30 FOR T =1 TO S

40 FOR G = 0 TO 62 STEP 3

50 B$ = "

60 FOR I =0 TO 2

70 FOR J =7 TO 0 STEP - 1

80 IF (PEEK(3820+G+I+T*64) AND 2~J) = 2~J THEN
BS = B$ + "*": ELSE B$ = B$ + "."

90 NEXT J
100 NEXT 1

110 PRINT STR$ (10000 + G + 100 * T);" DATA";

120 PRINT "GOTO 170{(CRSR UP ' o ,ES
REn geaoTo 170 } {CRSR UP}{CRSR UP}";:

130 POKE 842,13

140 POKE 843,13

150 POKE 208,2

160 END

170 NEXT G

180 NEXT T

190 REM DATA AT 10100-

Once the routine is done, remove the old DATA lines with the DELETE
command.

94

First Publishing Tricks and Tips for the C-12¢

2.6.2 COMFORTABLE SPRITE EDITING

After defining a sprite, you might like to alter it. For example, you've
designed a spaceship, and you discover that it wasn't that great a design.
Instead of redoing it completely, just run it through this program. Ah, but
there's more -- it can also expand the sprite in two axis AND rotate the

sprite.

10 REM *****xxxk*xxxx** SPRITE-HANDLING
20 DIM B(600)

30 DIM A(62)

40 REM % k ok kk kk k ok kkkkkxk IVENU

50 INPUT "COLOR 1";F

60 INPUT "COLOR 2";D

70 INPUT "COLOR 3"E

80 SPRCOLOR D,E

90 PRINT "1 : VERTICAL MIRROR"

100 PRINT "2 : HORIZONTAL MIRROR"

110 PRINT "3 : ROTATE 180 DEG."

120 PRINT "4 : DISPLAY SPRITE"

130 PRINT "5 : INVERT"

140 PRINT "6 : ROTATE 90 DEG."

150 PRINT "7 : ROTATE 270 DEG."

160 INPUT "COMMAND";B

165 IF B = 0 THEN END

170 IF B < 1 OR B > 7 THEN GOTO 10

180 INPUT "SPRITE-NUMBER ";$S

190 IF S <1 OR S > 9 THEN GOTO 180
200 IF B<5 THEN INPUT"MULTICOLOR (ON=1/0FF=0) ";M
210 : ELSE M =0

220 POKE 53296,1

230 TIF B > 3 THEN 270

240 FOR I = 0 TO 62

250 A(I) = PEEK (3520 + S % 64 + I)

260 NEXT I

270 ON B GOSUB 360,430,560,420,600,830,650
280 REM **xx*** SPRITE VERTICAL MIRROR
290 POKE 53296,0

95

First Publishing

Tricks and Tips for the C-128

300
310

320
330
340

350
360
370
380
390
400
410
420
430
440
450
460
470
480
490

500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690

700

GRAPHIC 0,1

SPRITE S,1,F,1,1,1,M

MOVSPR S, 100,100

GET KEY A8

SPRITE S, 0

GOTO 90

REM ***xx*x*x*xx*x*x YVERTICAL MIRROR
FOR I = Q0 TO 60 STEP 3

FOR J = 0 TO 2

POKE 3520 + S * 64 + I + J,A(60 - I + J)
NEXT J

NEXT I

RETURN

REM *x*x*x*x*x%*x** HORIZONTAL MIRROR

FOR I = 0 TO 60 STEP 3
FOR J = 0 TO 2
W=20

FOR X = M TO 7 STEP M + 1

IF (A(I+2-J) AND 27X) =2"X THEN W = W+2"~(7-X)
IF M =1 AND (A(I +2-J) AND 2~ (X-1)) = 2~(X-1)
THEN W = W+2~(7-(X-1))

NEXT X

A(I + 2 - J) =W
POKE 3820 + 8 * 64 +
NEXT J

NEXT I

RETURN

REM ****xxx%x*x*x ROTATE 180 DEG.
GOSUB 360

B =2

GOTO 240

REM *X**xkkxxkxx*k*xx* TNVERT
FOR I = 0 TO 62

POKE3520+S*64+I, 255AND (-PEEK (3520+S*64+1)-1)
NEXT I

I + J,A(F + 2 = J)

RETURN

REM ***x%xx*x*x ROTATE 270 DEG.
FOR I = 0 TO 20

FOR J = 0 TO 2

FOR G = 0 TO 7

B((I*3+J)*8+7-G) =
AND 27G) /2°G
NEXT G

(PEEK (3520+S*64+I*3+J)

96

) First Publishing i

¢ Tricks and Tips for the C-128

710
720

730
740

750
760
770
780

790
800
810
820
830
840
850
860

POKE 3520 + S * 64 + I * 3 + J,0

FOR G
IF B(I * 192 + J + (7 - G)

POKE 3520+S*64+I+(20-J)*3,

PEEK (3520+S*64+I+(20-J)*3)
NEXT G

NEXT J -

NEXT I

RETURN

REM *#*x*x*xx*xxxx*x ROTATE 90 DEG.
GOSUB 650

B = 2

GOTO 240

* 24) = 0 THEN 790

OR 2"G

During the recalculation, the 40-character screen flickers a lot, which tells us

1.

that the "high speed" mode (FAST) is on again. The system will return to

normal when the program is finished, and the new sprite is displayed on the
screen. Pressing any key will return you to the menu.

Here's a quick rundown of the functions:

Mirroring
The sprite will be turned upside-down. The point DATA will

not be inverted.

Mirroring by axis.

Hard to describe; splits inverted sprite.

Turn 180 Degrees
Self-explanatory.

97

kirst Publishing Tricks and Tips for the C-128 '

4. Display Sprite
{
This lets you see the sprite at any time.

5. Reverse
Not to be confused with mirroring -- the sprite comes up as a

"negative" (i.e., reverse video). Multicolor mode is not in '
this program, but you can still use the sprite in that mode !
later.

6. Turn 90 Degrees

Self-explanatory.

7. Turn 270 Degrees
Self-explanatory.

C. Copy sprite
Self-explanatory.

Final note: Pressing "C" copies the original sprite, so you have a backup if
you destroy your original during experimentation.

