e ey W

First Publishing Tricks and Tips for tLe C-128

USEFUL PROGRAMS

{]
The next few pages contain programs designed to help you in your

everyday computing. We've made them fairly simple, so you can make any
chunges approprinte to your work, Have fun!

3.1 ERROR HANDLING

-

“The first step is the hardest" is a well-known maxim. A fellow named
Murphy said it best: "If something can go wrong, it will." Both these
sayings seem to apply to the programmer. In the beginning phases of
programming, we say to ourselves, "What are all these error messages?”
The more advanced programmer has the advantage of knowing some of the
error messages, but he still ends up doing a lot of debugging.

Some BASIC versions have a HELP function, and the C-128 is no
exception. This function finds the errant line, and shows the error in
reverse video (40-column mode) or underscoring (80-columns). You can

also use the command within a BASIC program.
Although the C-128 has no ON ERROR GOTO command, it does have a

TRAP command. Type the command, followed by a line number, and an
error will cause the system to jump to that line.

101

First Publishing Tricks and Tips for the C-128

USEFUL PROGRAMS

The next few pages contain programs designed to help you in your
everyday computing. We've made them fairly simple, so you can make any
changes appropriate to your work. Have fun!

3.1 ERROR HANDLING

"The first step is the hardest" is a well-known maxim. A fellow named
Murphy said it best: "If something can go wrong, it will." Both these
sayings seem to apply to the programmer. In the beginning phases of
programming, we say to ourselves, "What are all these error messages?"
The more advanced programmer has the advantage of knowing some of the
error messages, but he still ends up doing a lot of debugging.

Some BASIC versions have a HELP function, and the C-128 is no
exception. This function finds the errant line, and shows the error in

reverse video (40-column mode) or underscoring (80-columns). You can
also use the command within a BASIC program.

Although the C-128 has no ON ERROR GOTO command, it does have a

TRAP command. Type the command, followed by a line number, and an

error will cause the system to jumyp to that line.

101

& sxus A samasvasaasg A3ILAD auU BIPd UL I LU=140

Next, we have the ERRS variable. The variable ER stores the numbers of
error, and PRINT ERR$(ER) prints the corresponding error messages.

Finally, there's the variable EL, which contains the line number of the "bad"
line.

If the program stops due to a TRAP command, there are three pdssiblc
methods of continuing the program, all by means of the RESUME
command. Typing in RESUME alone causes the computer to continue at
the line where the error occurred. Giving a line number with RESUME
causes the program to continue from the line specified. Finally, you can

type in NEXT after RESUME; then the system sturts from the line after the
"bad" line.

If you want to watch your program step-by-step, if only to see what the
errors are doing, you have TRON and TROFF at hand. These control the
TRACE function.

Now for a some applications using these commands:
1. For Beginners

Type in this program.

10 TRAP 1000
20 :

30 PRINT:PRIND: REM PRIND NOT PRINT

40 PRINT CHR$(147)."(C) 1985 BY WERNER

50 FOR T=1] TO 10:PRINT:NEXT Y

60 PRINT"OK"

70 END

80 :

1000 REM ERROR JMP

1010 PRINT" (YEL 1) "ERRS(ER)" ERROR IN "EL;
1020 HELP

102

First Publishing Tricks und Tips Tor the C-1iu

1030 PRINT" (CRSR DOWN) (CYAN)'G'O ON OR 'E'ND?2"
1040 GET KEY AS

1050 IF AS="E" THEN END

1060 IF AS$="G" THEN RESUME NEXT

1070 GOTO 1040

The program jumps to line 1000 whenever it runs into an error (e.g., at line
30) as a result of the TRAP command at line 10. The error trap routine
gives you the type of error and the line iumber at which it occurred. Thal's
all the routine does; it's up to you to find the error (HELP key) and correct
it.

A tip for machine language programmers: You can develop an "error
statement” program for machine language errors. The vector for printing
BASIC errors is at locations $0300/$0301, and the error number is given in
the X-rcgilstcr. The X-register presents the value $80 when no errors exist.

On the next page are the errors and their values:

103

First Publishing Tricks and Tips for the C-128 , First Publishing Tricks and Tips for the C-128

NUMBER (h : : ' -
NUMBER (hex) : NUMBER (dec): = ERROR 2. The Use of RESUME
$01 : 1 : TOO MANY FILES '
383 ‘ § ‘E%Iﬁg SgﬁNOPEN Typing RESUME without o line number or NEXT can result in an endless
$04 : 4 :FILE NOT FOUND . loop, which probably wasn't what the designers of BASIC 7.0 had
$05 5 :DEVICE NOT PRESENT : :
$06 6 :NOT INPUT FILE mind. Try this program out:
$07 : 7 :NOT QUTPUT FILE
$08 : 8 :MISSING FILENAME , }0 gif}gLégoo
$09 : 9 :ILLEGAL DEVICE NUMBER 20 END
(0721 :
gOB ig ,25§$A¥ITHOUT FOR 1 1000 IF ER=5 THEN PRINT CHRS$(19);"PLEASE TURI
$0C 12 :RETURN WITHOUT GOSUB 1010 g;gh DRIVE ON": RESUME
$0D 13 :OUT OF DATA
$SOE 14 : ILLEGAL QUANTITY
2(1)5 . 1‘2 fgggRg;OgEMORy Turn your disk drive off and run the program, which looks for the disk
$11 : 17 :UNDEF'D STATEMENT ’ directory. Since the drive is off, the system responds with "DEVICE NO'|
12 f . H . . .
213 . ig gggns,lt.]gsgi;ig ' PRESENT" and jumps to line 1000. Seeing error number 5, the program
$14 : 20 :DIVISION BY ZERO ; asks you to switch the disk drive on. The RESUME command causes the
212 g 2‘% ;%IQEGSI;SE}\?EST program to continue displaying this message until the drive is finally turned
817 : 23 : STRING TOO LONG on.
$18 : 24 :FILE DATA
$19 : 25 :FORMULA TOO COMPLEX '
$1A : 26 :CAN'T CONTINUE Now for a sample of RESUME with a line number:
$1B : 27 :UNDEF'D FUNCTION !
$1C : 28 : VERIFY 1 TRAP 1000
$1D : 29 : LOAD ’ 10 INPUT"FILENAME" ; NAS
S1E : 30 : BREAK 20 INPUT"DEVICE NUMBER";DV
$1F : 31 :CAN'T RESUME 30 LOAD NAS,DV
$20 : 32 :LOOP NOT FOUND 40 END
$21 : 33 :LOOP WITHOUT DO { 1000 IF ER=4 THEN PRINT"THERE IS NO SUCH
$22 : 34 :DIRECT MODE ONLY FILENAME" :RESUME 10
$23 : 35 :NO GRAPHICS AREA ' 1010 IF ER=5 THEN PRINT"PLEASE TURN DISK DRIVE
$24 : 36 :BAD DISK ON" : RESUME
$25 : 37 :BEND NOT FOUND { 1020 IF ER=8 THEN PRINT"PLEASE GIVE ME A
$26 : 38 :LINE NUMBER TOO LARGE FILENAME" :RESUME 10
$27 : 39 :UNRESOLVED REFERENCE i 1030 IF ER=9 THEN PRINT"PICX A DEVICE NR FROG
$28 : 40 :UNIMPLEMENTED COMMAND oy 8 - 15": RESUME 20
$29 : 41 :FILE READ ! 1040 END

104

——

First Publishing Tricks and Tips for the C-128

Essentially, this little routine can make a program "foolproof'. That is, it
won't stop if you give it a bad filename, have your disk drive turned off,
press <RETURN> on the filename prompt, or give it a "non-disk" device
address -- and it will tell you what the problem is, in simple English.

3.2 LISTER - A LISTING UTILITY

You've just spent your last dollar on a computer magazine. You run home,
switch on the computer, and start typing in page upon page of program
listing. Wait a minute; there's something wrong here. The problem is, as
in so many cases, the printout in the magazine is from a Commodore
printer. You know what that means: Unreadable control characters --
what's this reversed heart? And this reverse-video cross? Eventually you
give up and either buy the companion disk, or just stop buying the
magazine!

Some computer magazines have heard the cries of their readers. These
publishers use a special llsting technique to alter the progrum listing so that,
instead of control characters, a descriptive term or abbreviation appear (e.g.,
"{CLR}" or "{5 DOWN}") in the listing.

There's an advantage to this: It increases the marketability of the magazine.
It's a lot easier for a user to just punch CRSR DOWN from the listing,
rather than look at the graphic symbol, flip through the manual, figure out
what that symbol actually does, then type it in. On the other hand, there's a
greater frustration that isn't cured. How many spaces do I put here? Are
there 39 or 40 (or 38)? How many CRSR DOWNs? And so on....

106

First Publishing Tricks and Tips for the C-128

Our LISTER fixes that problem: Any spaces and control characters in
quotes and in number will be printed out with their amounts. Plus, each
command will be separated by a space. This can be a godsend to the
beginner. It's a lot easier to read; -

FOR ES = 1 TO P: W = PEEK (ES) AND NOT 5 OR 8

than it’is to read:
FORES=1TOP :W=PEEK (ES) ANDNOTS50RS8.

The design of the printout is familiar to those of you who are also Apple

users: commands are indented, variables are not.

Now for the program: Type it in and SAVE it with the name LISTER
before trying it out.

1 REM LISTING OF LISTER CHAPTER 3.2.A

5 PRINT " {CLR HOME}PLEASE WAIT..."

10 DIM TKS(255),FE$(29),CES$(8),S2$(159)

20 FOR Z = 0 TO 125: READ WES$,A$: TKS(DEC
(WES$)) = A$: NEXT 2

22 FOR 2 = 0 TO 27: READ WES,AS$: FES(DEC
(WES)) = AS$: NEXT 2

24 FOR Z = 0 TO 7: READ WES$,AS$: CES$(DEC (WES))
= AS: NEXT Z

26 FOR Z = 0 TO 25: READ WES$,AS$: SZ$(DEC
(WES$)) = AS$: NEXT 2

30 AN = 7168

40 PRINT "{CLR HOME}'S'CREEN OR 'P'RINTER?"

42 DR = 0: GET KEY AS$: 1IF AS = "D" THEN DR =
l: GOTO 50

44 IF AS < > "B" THEN 40

50 PRINT " {CRSR DOWN]}'U'PPEROR'L'OWERCASE?"

107

First Publishing

Tricks and Tips for the C-128

52
54

60
70
72
73
100
102

105
106
110
115
120
122
123
125
130
135
140
999
1000
1009
1010

1020
1999
2000
2010
2020

2021
2030

2999
3000
3010
3020
3021
3030
3999
4000
4010

GET KEY AS$: IF AS$ = "L" THEN PRINT
CHRS (14): GOTO 60
IF A$ < > "U" THEN PRINT "{CRSR UP}";:

GOTO 50
INPUT "{LINE FEED}NAME OF THE PROGRAM";NAS
IF DR THEN CLOSE 4: OPEN 4,4,0

PRINT PRINT NAS$: PRINT

IF DR THEN PRINT# 4:

FL = 0: AN = AN + 3
LO = PEEK (AN): AN = AN + 1: HI = PEEK (AN):
ZE = LO + 256 * HI

PRINT 2E;" ";
IF DR THEN PRINT# 4,2E;" "y

AN = AN + 1

WE = PEEK (AN): 1IF WE = 0 THEN 1000
IF WE = 32 THEN 2000

IF WE = 34 THEN 7000

IF WE = 58 THEN 8000

IF WE = DEC ("FE") THEN 3000

IF WE = DEC ("CE") THEN 4000

IF FF THEN 6000
GOTO 5000

REM NEW LINE

IF DR THEN PRINT# 4

PRINT IF PEEK (AN + 1) = 0 AND PEEK (AN +
2) = 0 THEN CLOSE 4: END

GOTO 100

REM EMPTY LINE
IF FF THEN 6030

IF FL THEN PRINT " *;

IF DR AND FL THEN PRINTH# 4," "y
GOTO 110

REM SFE

AN = AN + 1: WE =
PRINT FES(WE);" “;
IF DR THEN PRINT# 4,FES(WE);" ";
GOTO 110

PEEK (AN)

REM S$SCE

AN = AN + 1: WE = PEEK (AN)

108

PRINT# 4,NAS: PRINT# 4

)

First Publishing

4020
4021
4030
4999
5000
5005
5010
5020
5021
5030
5040
5041
5050
5999
6000
6005
6006
6007
6008
6010
6020
6021
6025
6030
6040
6050
6060

6061

6070
6999
7000
7010
7020
7021
7030
79989
8000
8010
8011
8020
9999

PRINT CES(WE);" ";
IF DR THEN PRINT# 4,CES(WE);"™ “;
GOTO 110

REM BEGINNING OF STRING

IF WE = 143 THEN FL = 1

IF TKS(WE) < > "" THEN 5040
PRINT CHRS (WE);

IF DR THEN PRINT# 4, CHRS (WE);
GOTO. 110

PRINT " ";TKS(WE);" ";

IF DR THEN PRINT# 4," ";TKS(WE):" "y
aorTo 110

REM INNER PART OF STRINGS

IF WE < > 255 THEN 6010
PRINT "m;";

IF DR THEN PRINT# 4,"xn";
GOTO 110

IF SZS(WE) < > "" THEN 6030

PRINT CHRS (WE);

IF DR THEN PRINT# 4, CHRS$ (WE);

GOTO 110

ZA = 1

IF PEEK (AN + 1) < > WE THEN 6060

AN = AN + 1: ZA = ZA + 1: GOTO 6040
PRINT CHRS$ (18);"[";SZ$(WE); STRS (ZA);"1";
CHRS (146); i '

IF DR THEN PRINT# 4," (";SZ$(WE); STRS
(zay;"} ";

GOTO 110

REM QUOTATION MARR
FF = XOR (FF,255)
PRINT CHRS (34);:
IF DR THEN
GOTO 110

POKE 244,0
PRINT# 4, CHRS$ (34);

REM COLON

PRINT CHRS (58);" ";

IF DR THEN PRINT# 4, CHRS (58);" ";
GOTO 110

109

Tricks and Tips for the C-128

CIdL T UuviSIINg ITICKS 4na 11ps 10r wne v-14o FIrst rubnlisning IFICKS HIIQ 1IPy UK LC L-1.20

10000 DATA "80","END","81","FOR","BZ","NEXT", 10210 DATA "F3","COLLECT","F4","COPY","F5",
"83","DATA","84","INPUT#" "RENAME","FG","BACKUP","F7","DBLETE"
10010 DATA "85","INPUT","86","DIM","87", "READ", 10220 DATA "F8", "RENUMBER", "F9", "KEY", "FA",
"88", "LET", "89", "GOTO" “"MONITOR", "FB", "USING", "FC", "WHILE"
10020 DATA "8A","RUN","8B","IF","8C","RESTORE", 10230 DATA "FD","UNTIL","FF","xmt"
"8D","GOSUB", "8E", "RETURN" 11000 DATA "02","BANK","03","FILTER","04",
10030 DATA “8F","REM","90","STOP","91", "ON", "PLAY","05", "TEMPO","06", "MOVSPR"
"92","WAIT","QB","LOAD","94","SAVE" 11010 DATA "07","SPRITE","08","SPRCOLOR"1
10040 DATA "95","VERIFY","96","DEF","97", "POKE", “"09", "RREG", "OA", "ENVELOPE"
"98", "PRINT#", "99", "PRINT" 11020 DATA "OB","SLEEP","0C", "CATALOG", "OD",
10050 DATA "9A","CONT","9B","LIST","9C","CLR", "DOPEN", "OE", "APPEND", "OF", "DCLOSE"
"9p", "CMD", "9E", "SYS", "9F", "OPEN" 11030 DATA "10","BSAVE","11", “BLOAD","12",
10060 DATA llAOll’ "CLOSE" , "Al", "GET", "po n, "NEW", "RECORD", "3 n, "CONCAT", " 1411, "DVERIFY"
"A3","TAB(","A4","TO", "A5","FN" ! 11040 DATA “15","DCLEAR","16","SPRSAV","17",
10070 DATA "A6","SpPC(","A7","THEN","A8","NOT", "COLLISION","18","BEGIN"
"Agn,"STEP","M",""‘","AB",""" 11050 DATA "19","BEND","1A","WINDOW";"1B"/
10080 DATA IIAC"’ u*n, "AD“, n/n, "AE", "All’ "AF", "AND", "BOOT", "1C", "WIDTH", uan, “SPRDEF"
"BO","OR", "Bllllll>ll,llB2ll,ll=ll 12000 DATA "OO","RWINDOW","02","POT","O:S","BUMP"/
10090 DATA IIB3"’ u<n, "B4", “SGN", "BS", "INT", |104n’ "PEN", "05", "RSPPOS"
"BG", "ABS", wg7 u’ "USR", "B8", “"EFRE" 12010 DATA "06“, "RSPRITE", "07", "RSPCOLOR"I
10100 DATA "BQ", "POS"' IIBA", "SQR", IIBB"' NRNDH' "08", HXORII
llBC"’ IILOG", llBDll, "EXP", "BE", "Cos" 13000 DATA "03", "RUN STOP", "05", "WHT",
10110 DATA "BF","SIN","CO","TAN","C1","ATN", ' "QA", "LINE FEED","11","CRSR DOWN"
"C2","PEEK","C3","LEN","C4","STR$" 13010 DATA "12","RVS ON","13","HOME",
10120 DATA "C5","VAL","Cé6","ASC","C7","CHRS", "1Cc*, "RED", "1D", "CRSR RIGHT", "1E", "GRN"
"C8","LEFT$","C9","RIGHT$" . 13020 DATA "1F","BLU","20","SPACE","81","ORNG",
10130 DATA "CA","MIDs","CB","GO","CC","RGR", ' "90","BLK","91","CRSR up"
"CcD","RCLR", "CF", "JOY", "DO", "RDOT" 13030 DATA "92","RVS OFF", »"g3","CLR HOME",
10140 DATA llDlll,IIDECII,"D2","HEX$"’IID3"’IIERR$II, ¥ "95","BRN","96","L RED"
"D4","INSTR","DS","ELSE" 13040 DATA "97","D GRY","QB","M GRY","99","L GRN",
1015q DATA "D6","RESUME","D7","TRAP", "D8", "TRON", ! "oa","L BLU"
"D9", "TROFF", "DA", "SOUND" 13050 DATA "9B","L GRY",™SC","PUR",
10160 DATA "DB"’ "VOL", "DC"’ "AUTO", "DD", "PUDEF", "9D" , "CRSR LEFT" , ugEn , llYELll, "9F" , “CYN"
IIDE", "GRAPHIC", "DF", "PAINT"
10170 DATA "EO","CHAR","El","BOX","E2","CIRCLE", :

"E3", "GSHAPE", "E4u, “"SSHAPE"
10180 DATA "E5","DRAW","E6","LOCATE","E7","COLOR",

i i ' asked for some inpul

"E8", "SCNCLR", "E9", "SCALE" Now RUN it. After a short wait, you'll be P
10190 DATA "EA","HELP", "EB","DO","EC","LOOP", parameters. For the moment, press "S" for screen and "U" for uppercase.
“ED", "EXIT","EE","DIRECTORY" " " L . <k -- iust a headine for

10200 DATA "EF", "DSAVE", "FO", "DLOAD", "F1", Then enter "LISTER"; this isn't for loading from di] e ting f
"HEADER", "F2", "SCRATCH" . the listing. If you typed the program in correctly, the system will print

"LISTER" on the screen and the program will be listed to the screen;

110 _ 111

First Publishing Tricks and Tips for the C-128

control characters should be spelled out in reverse on the screen. Next,
switch on your printer and run the program again to get a hardcopy listing
of the program.

When you want to use this program to print other listings, you'll need to do
the following:

A) Move the start of BASIC - set pointers $2D (45) and $2E (46)
higher than the length of the program to be listed and place a zero in
the first location of the new start of BASIC. Here are the
commands we used:

A

POKE 46, 192 : POKE 49152, 0: NEW

This moves the start of BASIC to $C000. Try the FRE(0) function
after typing in these commands, less than 16K is free, This is more

than enough memory to run our converter program.

B) LOAD the listing converter program with LOAD"LISTER", 8.
The {,8 }is important! This command loads the listing converter
program into memory at the new start of BASIC.

C) Load in the program you wish listed with the command LOAD
"program-name" ,8,1. The { ,8,1 } is very important here. This
command loads the program into memory at the normal start of
BASIC. Because you have moved the start of BASIC the LISTER
program is not overwritten. LIST the program to be sure.

D) RUN the LISTER to get a formatted listing.

112

Fleat Publishing Tricks and Tips for the C-128

You could revise the LISTER program so that it reads the program directly
from disk, which would save the trouble of moving the start-of-BASIC.
We tried that with the program listings in this book. They were transferred
to this book with a modified version of the above program that used the

RS-232 adapter to send the listing to another computer. The memory
resident version is much faster.

A few things you should know about the memory resident LISTER. It
looks at and interprets every byte from the normal start of BASIC. If it
finds a zero, it checks the next few bytes; a set of three zeroes indicates the
end of the program, and the LISTER halts. Every character is tested to see
if it is o token; if not, the charucter is tested for whether it Is within quotes or
not. Tokens are printed out as commands. Strings with color graphic
symbols will have their colors "spelled out".

Here are a few of the variables used in the program:

DR: If DR=0, the listing goes to the screen only; if DR=1, then
it's sent to the printer and the screen.

FL: If equal to 1, the characters are placed after a REM.

AN: Address of bytes read.

WE Contents of the ab?ve address.

FF: If 0, the byte is not in quotes; 1, the byte is a string (within
quotes).
ZA: Counter -- counts number of consecutive characters (lines

6040-6070). Determines number of spaces in a string.
TK$(255): Contains command strings of individual tokens.
FE$(29): Contains command strings which have a value of $FE in the
: first byte.

115

First Publishing Tricks and Tips for the C-128

CE$(8): Same as FES, but for commands beginning with $CE.
SZ$(159): Graphic character codes are held here.

3.3 0LD

What do you do if you accidentally type NEW while a program you haven't
saved is in memory? No more program, right? Wrong. All is not lost.
You'll remember the programs running around for the C-64 known by
various titles (OLD or UNNEW); these programs renewed the bytes at the
start of a program that had been zeroed out by an errant NEW command.
These two bytes point to the next line number of a program (the address of

the next line number, to be more specific). In addition to finding and
resetting the starting address, the start-of-variables must be reset as well

before the program can be completely recovered.

These OLD routines are fairly long and inaccurate most of the time. There's
a much easier way of going about it:

A) Put any number into the two skipped bytes (unequal to 0, of
course). This works best when you use the high-byte of
start-of-BASIC.

B)" Next, call the BASIC interpreter routine that restores the BASIC
program lines, and is usually used for inserting program lines in
editing. It changes all the vectors (line links) and recalculates
appropriately. The link to the first program line, which were zeroes

a moment ago, are re-inserted into memory, and recalculated.

14

First Publishing Tricks and Tips for the C-128

C) Sturtof variubles Iy set at the end of the program.
This process is much simpler on thc C 128: Step C) can be eliminated,

since variables are stored in Bank l and don't collide with Bank 0. You
can activate OLD by doing this:

POKE PEEK(45)+256*PEEK(46)+1,28:SYS DEC ("4F4F")

Addresses 45/46 point to start-of-BASIC. Calling this routine restores the
pointers. This is what it looks like in machine language.

OBOO A0 01 LDY #$01 ;Offset 1

0B02 A9 1C LDA #$1C ;28 for BASIC RAM start
0B0O4 91 2D STA ($2D),Y ;and in link high-byte
0BO6 20 4F 4F JSR S$4F4F ;Determine links

0B09 60 RTS +End

You can put the routine anywhere in memory, not just at $0B0O.

OLD also works if you've changed the BASIC pointers (say, for the
conversion program in chapter 3.2). Not even a RESET can outsmart this
program.

There is one exception -- when start-of-BASIC is moved up and a RESET
is executed; then OLD goes for the normal starting address of BASIC, and
won't find it there. If you know where the starting address is, just change

the parameters accordingly, and you should be able to recover the program.

First Publishing Tricks and Tips for the C-128

3.4 A LITTLE MUSIC ON THE SIDE....

Some folks like music while they're typing. That's great, unless there's no
radio or stereo nearby, and most of us aren't born singers. Hiring an
in-house pianist can be expensive, and typewriters don't make music. The
C-128, however, CAN make music. The next program actually plays a
piece of music while you're working with the computer. You can listen

through your television or monitor, or run it through your stereo, etc.

The BASIC loader is a long one; the main reason is the 99-note tune within.
To play a note, the SID chip needs two numbers per note
(high-byte/low-byte) and a duration, which gives us a total of 297 DATA
elements. You'll find this DATA at the end of the program.

0 REM IRQ MUSIC

10 FOR I = 5120 7T0 5198
20 READ A

30 POKE I,A

40 S =8+ A

50 NEXT I

60 IF S <> 8891 THEN PRINT "?ERROR IN DATA":END
70 DATA 120,169,22,141,20,3,169,20

80 DATA 141,21,3,88,160,0

90 DATA 140,243,20,200,140,241,20,96

100 DATA 206,241,20,208,49,72,141,0

110 DATA 255,141,18,212,138,72,174,243,20
120 DATA 189,0,21,141,14,212,189,0

130 DATA 22,141,15,212,189,0,23,141

140 DATA 241,20,169,65,141,18,212,232

150 DATA 56,224,99,144,2,162,0,142

160 DATA 243,20,104,170,104,76,101,250
170 BANK 15

180 POKE 54296, 15

190 POKE 54288,255

200 POKE 54289,0

First Publishing

Tricks and Tips for the C-128

210
220
230

240
250

260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430

440
450

460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630

POKE
POKE
N =

99: REM

54291,15
54292,0
99 NOTES

FOR I =0 TO N - 1

READ
POKE
READ
POKE
READ
POKE
NEXT
POKE

A

5376 + I,A
A

5632 + I,A
A

5888 + I,A
I

5185,N

SYS 5120

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

10,13,5,10,13,5,10,13,10
10,13,5,162,14,5,162,14,10
247,10,10,10,13,5,10,13,5
103,17,5,137,19,13,237,21,5
237,21,10,237,21,5,237,21,10
137,19,10,137,19,10,103,17,10
103,17,20,237,21,5,237,21,13
59,23,10,237,21,5,237,21,5
237,21,13,137,19,30,237,21,8
137,19,8,137,19,15,103,17,15
103,17,30,103,17,13,10,13,5
10,13,5,10,13,10,162,14,10
103,17,5,10,13,5,10,13,10
10,13,10,103,17,5,137,19,13
137,19,5,237,21,13,237,21,10
137,19,5,137,19,5,137,19,5
103,17,10,103,17,5,103,17,20
237,21,5,237,21,13,59,23,10
237,21,5,237,21,5,237,21,13
137,19,30,237,21,10,137,19,10
137,19,10,103,17,15,103,17,30
237,21,5,137,19,10,103,17,5
103,17,20,237,21,5,20,26,10
69,29,5,69,29,10,20,26,10
20,26,5,20,26,10,237,21,5
237,21,5,137,19,5,103,17,10
162,14,5,10,13,10,237,21,5
237,21,10,103,17,30,237,21,5
237,21,10,59,23,5,59,23,10
237,21,5,237,21,5,237,21,10

117

First Publishing Tricks and Tips for the C-128 ot umnsneng St el

640 DATA 137,19,30,237,21,10,137,19,10 $1400 (5120) Routine which moves IRQ vectors to $1415 (5141)
650 DATA 137,19,10,137,19,13,103,17,13 . .
660 DATA 103,17,30,247,10,5,10,13,5 $1416 (5142) Start of music/IRQ routine till $144E (5198)
$14F1 (5361) Count duration; when 1CF1=0, go to next note
This tune may bore you after a while, so we'll now give you some ground $14F3 (5363) Note counter
rules for putting in your own tunes. A song can have up to 255 notes, with $1500 (5376) Memory for low-byte of note to $15FF (5631)
every note entered in this format: $1600 (5632) Memory for high-byte of note to $16FF (5887)
$1700 (5888) Memory for all note values to $17FF (6143)
Frequency (low-byte) .
Frequency . (high-byts) Once you have a look at the commented listing, you'll have a good iden of
Duration (how long it is to be held) the program's inner workings. You can use our BASIC loader, or type this

in on your monitor:

You can choose your own notes. For example, we called up a frequency of o

1400 78 SEI ;Hinder interrupt
3338 (in low/high format, 10 and 13) for a G. Our duration was 10 (like 1401 A9 16 LDA #S16 ;Set IRQ vector to
an average quarter note). Line 230 will have to be changed to adjust for 1403 8D 14 03 STA 30314 istart of the
1406 A9 14 LDA #514 ;music routine
your song length. When you want to change waveforms, put POKE 1408 8D 15 03 STA $0315
7226,WF (waveform) at the end of the program. WF has the following 140B 58 CLI iEnable interrupt
, 140C A0 00 LDY #500
functions: 140E 8C F3 14 STY $14F3
1411 C8 - INY
1412 8C F1 14 STY $14F1
17 TRIANGLE WAVE , 1415 60 RTS ;Return to BASIC
33 SAWTOOTH WAVE 1416 CE F1 14 DEC 14F1 ;Decaement counter
:) 1419 DO 31 BNE 144C ;Counter >0, then

65 PULSE WAVE continue count

129 NOISE _ 141B 48 PHA ;Accu on stack
141C 8D 00 FF STA S$SFFO0O ;switches I/0
) 141F 8D 12 D4 STA $D412 ;Waveform = 0
This program operates voice three ONLY. You could convert the program 1422 8A TXA jX-reg into accumulator
. ‘ . . : 1423 48 PHA ;Accu to stack
to include the first and second voices of the SID chip. If you want to : 1424 AE F3 14 LDX $14F3 ;Number for new note
program this routine in machine language, we've included that listing ' 1427 BD 00 16 LDA $1500,X ;Get note low byte
. . . 142A 8D OE D4 STA S$D40E ;Set low byte
below. This routine works with the IRQ vectors: ! 142D BD 00 16 LDA $1600,X ;Get high byte
1430 8D OF D4 STA $D40OF ;Set high byte

' 1433 BD 00 17 LDA $1700,X ;Get note value

118 119

First Publishing Tricks and ‘Lips lor the C-128

1436 8D F1 14 STA $14F1 ;Set counter

1439 A9 41 LDA #541 ;Load waveform

143B 8D 12 D4 STA $D412 ;Set waveform

143E E8 INX ;Raise note counter
143F 38 SEC

1440 EO 63 CPX #563 ;Last note?

1442 90 02 BCC $1446 ;NO--then $1C46
1444 A2 00 LDX #3500 ;Note counter at 0
1446 8E F3 14 STX S$14F3 ;Store note counter
1449 68 PLA ;Accu from stack
144A AA TAX ; X—-reg = accu

144B 68 PLA ;Accu from stack
144C 4C 65 FA JMP S$FA65 ;Goto normal IRQ

2.8 REAL-TIME CLOCK ON TIIE C-128

These aays, time is important to all of us. Perhaps this is on reason why
most computers now have built-in clocks. By making use of the built-in
variable TI$, your C-128 can become a clock. Be forewarned that T1$ runs
unevenly at times; because of this we have developed a real-time clock using
CIA #1:

20 REM O

30 DATA 31,248,,63,252,
40 DATA 127,254,,255,255,,240,15,

50 DATA 224,7,,224,7,,224,7,,224,17,
60 DATA 224,7,,224,7,,224,7,,224,7,
70 DATA 224,7,,224,7,,224,7,,224,7,
80 DATA 240,15,,255,255,,127,254,
90 DATA 63,252,,

100 REM 1

110 DATA 3,252,,7,254,,7,254,

120 DATA 7,254,,7,254,,3,254,

130 DATA ,126,,,126,,,126,,,126,,,126,
140 DATA ,126,,,126,,,126,,,126,,,126,
150 DATA ,126,,,126,,,126,,,126,,,60,,

120

First Publishing

i

Tricks and Tips for the C-128

160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310

320
330

340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580

REM

DATA
DATA
DATA
DATA
DATA
DATA
REM

DATA
DATA
DATA
DATA
DATA
DATA
DATA
REM

BATA
DATA
DATA
DATA

DATA.

DATA
REM

DATA
DATA
DATA
DATA
DATA
DATA
REM

DATA
DATA
DATA
DATA
DATA
DATA
REM

DATA
DATA
DATA
DATA
DATA
REM

2

63,254,,127,255,,124,255,
124,31,,120,15,,48,15,,,15,
13111163111126111252111/2481
3,240,,7,224,,15,160,,31,134,
63,7,,126,7,,252,7,,255, 255,
127,254,,

3

63,254,,127,255,,127,255,
124,31,,120,15,,48,15,,,31,
,63,,,127,,,255,,1,255,
1,255,,,255,
,127,,,63,,96,31,,240,15,
240,15, ,255,255,
255,255,,127,254,,

4

1124 252 1,252)
4383001808, 21288, i 202,
15,188,,15,188,,31,60,,31, 60,
62,60,,124,60,,248, 60,
255,255,,255,255,,255, 255,
555,255,,,60,,,60,,
127,252,,255,255,,255,255,
240,15,,224,15,,224,6,,240,,
255,,,255,224,,127,248,
112541111271113111131111311
,31,,96,127,,241,254,,255, 248,
255,224,,127,128,,

6

127,252,,255,255,,255,255,
240,15,,224,15,,224,6,,240,,
255,,,255,224,,255,248, 248,
254,,240,127,,224,31,,224,31,,224, 31,
224,31,,240,127,,248,254,,255,248,
255,224,,127,128,,

2

63,254,,127,255,,127,255,
124,31,,120,15,,48,15,,,15,
/31,,,63,,,126,,,252,,1,248,
3,240,,7,224,,15,160,,31,128,
23,,.126,,,252,,,252,,,252,,,

171

First Publishing

Tricks and Tips for the C-128

590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770

780
790

800
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950
960
965
970
980
990
1000

DATA 127,254, ,255,255,,255,255,
DATA 240,15,,224,7,,240,15,

DATA 255,255,,255,255,,127,254,
DATA 127,254,,254,127,,240,15,

DATA 224,7,,224,7,,224,7,,224,7,
DATA 240,15,,127,254,,31,248,

DATA 15,224,,1,128,,

REM 9

DATA 1,254,,7,255,,31,255,,127,143,
DATA 254,15,,240,15,,240,15,

DATA 240,15,,240,15,,254,15,

DATA 127,143,,31,254,,7,255,,1,255,
DATA ,15,,96,7,,240,7,,240,15,

DATA 255,255,,255,255,,127,254,,
POKE 56334, PEEK (56334) OR 128

FOR I = 3456 TO 4095

READ A

POKE I,A

NEXT 1

REM SET TIME

TNPUT "HOURS {SPACE} (SPACE) {SPACE}";S
IF S > 12 THEN § = S - 12: GOTO 800
IF S < 0 THEN 790

POKE 56331,S + INT (S / 10) * 6
INPUT "MINUTES{SPACE}";M

IF M <0 OR M > 59 THEN 830

POKE 56330,M + INT (M / 10) * 6
INPUT "SECONDS{SPACE}";S

IF S < 0 OR S > 59 THEN 860

POKE 56329,S + INT (S / 10) * 6
S=0
FOR I =
READ A
S=5+a

POKE I,A

NEXT I

IF S <> 6300 THEN PRINT "?ERROR IN DATA" : END
PRINT "{CLR HOME}HIT RETURN TO START"

GET AS: IF AS < > CHR$ (13) THEN 965
POKE 56328,0

SYS 5120

DATA 120,169,13,141,20,3,169

DATA 20,141,21,3,88,96,160

5120 TO 5180

First Publishing

Tricks nc. Tips for the C-128

1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120

DATA 3,173,11,220,41,31,76
DATA 26,20,185,8,220,41,240
DATA 74,74,74,74

DATA 72,185,8,220,41,15

DATA 72,136,208,237,173,8
DATA 220,72,160,7,104

DATA 24,105,54,153,247,7,136
DATA 208,246,76,101,250

FOR I =1 TO 7

SPRITE I,1,1,1,0,1,0

MOVSPR I,30 + I * 20 + INT((I-1)/2) *
NEXT I

10,100

The individual numbers are actually sprites. In fact, most of the listing is

just to define the sprites. 1f you prefer, you can run the program without
sprites; just type in the program beginning at line 780 and ending at line

1080. You will need to alter the checksum (1o "6298"), and change line
1070 to!

1070 DATA 24,105,4&,153,255,3,136

Now for the machine language listing:

1400
1401
1403
1406
1408
140B
140C
140D
140F
1412
1414
1417
141A
141C
141D

78
A9
8D
AS
8D

58

60
a0
AD
29
4C
BS
29
4A
47

SET ;Interrupt off
0D LDA #500 ;Set IRQ vector
14 03 STA $0314 ;to beginning of
14 LDA #$14 ;this routine
15 03 STA $0315
CLI ;Enable interrupt
RTS ;Return to BASIC
03 LDY #$03
0C DC LDA $DCOB ;Hour -setting
1F AND #S1F ;only first 5 bits
1a 14 JMP $141A
08 DC LDA S$DCO08,Y;Time
FO AND #SFO ;only decimal point
LSR ;Shift bit 4-7
LSR ;to bits 0-3

123

kirst Fublishing

ATICKd HUU 1IPd UL LUC V140

590
600
610

620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840

850

860
870
880
890
300
910
920
930
940
950
960
965
970
980
990
1000

paTa 127,254,,255,255,,255,255,

DATA 240,15,,224,7,,240,15,

DATA 258,288,,288,255,,127,25%4,

DATA 127,254,,254,127,,240,15,

DATA 224,7,,224,7,,224,7,,224,7,
DATA 240,15,,127,254,,31,248,

DATA 15,224,,1,128,,

REM 9

DATA 1,254,,7,255,,31,255,,127,143,
DATA 254,15,,240,15,,240,15,

DATA 240,15,,240,15,,254,15,

DATA 127,143,,31,254,,7,255,,1,255,
DATA ,15,,96,7,,240,7,,240,15,

DATA 255,255,,255,255,,127,254,,
POKE 56334, PEEK (56334) OR 128

FOR I = 3456 TO 4095

READ A

POKE I,A

NEXT I

REM SET TIME

INPUT "HOURS{SPACE} {SPACE} {SPACE}";S
IF S > 12 THEN § = § - 12: GOTO 800
IF 8 € 0 THEN 780

POKE 56331,S + INT (S / 10) * 6
INPUT "MINUTES{SPACE}";M

IF M < 0 OR M > 59 THEN 830

POKE 56330,M + INT (M / 10) * 6
INPUT "SECONDS({SPACE}";S

IF S < 0 OR S > 59 THEN 860

POKE 56329,S + INT (S / 10) * 6

S =20

FOR I = 5120 TO 5180

READ A

S =S + A

POKE I,A

NEXT I .

IF S <> 6300 THEN PRINT "?ERROR IN DATA":END
PRINT " {CLR HOME}HIT RETURN TO START"
GET AS: IF AS < > CHRS (13) THEN 965
POKE 56328,0

SYS 5120

DATA 120,169,13,141,20,3,169

DATA 20,141,21,3,88,96,160

122

UIIDL 1 BULISIARE

ACICKS aud 11ps 105 e C-21208

1010
1020
1030
1040

1050
1060
1070
1080
1090
1100
1110
1120

DATA 3,173,11,220,41,31,76
DATA 26,20,185,8,220,41,240
DATA 74,74,74,74

DATA 72,185,8,220,41,15

DATA 72,136,208,237,173,8
DATA 220,72,160,7,104

DATA 24,105,54,153,247,7,136
DATA 208,246,76,101,250
FOR I =1 TO 7

SPRITE I,1,1,1,0,1,0

MOVSPR 1,30 + I * 20 + INT((I-1)/2) * 10,100
NEXT I

The individual numbers are actually sprites. In fact, most of the listing 1s

just to define the sprites. If you prefer, you can run the program without

sprites; just type in the program beginning at line 780 and ending at line
1080. You will need to alter the checksum (to "6298"), and change line
1070 to:

1070 DATA 24,105,48,153,255,3,136

Now for the machine language listing:

1400
1401
1403
1406
1408
140B
140C
140D
140F
1412
1414
1417
141A
141C
141D

78
A9
8D
A9
8D
58
60
AQ
AD
29
4C
B9
29
4n
4

SEI ;Interrupt off
0D LDA #5500 ;Set IRQ vector
14 03 STA $0314 ;to beginning of

14 LDA #5$14 ;this routine
15 03 STA 50315
CLI ;Enable interrupt
RTS ;Return to BASIC
03 LDY #3503

0C DC.LDA $DCOB
1F AND #$1F
1A 14 JMP $141A

;Hour setting
;only first 5 bits

08 DC LDA $DCO08,Y;Time

FO AND #SFO ;only decimal point
LSR ;Shift bit 4-7
LSR ;to bits 0-3

123

First Publishing Tricks and Tips for the C-128

141E 4A LSR

141F 4A LSR

1420 48 PHA ;Put number on stack
1421 B9 08 DC LDA S$SDCO8,Y;Time

1424 29 OF AND #S$0F ;Seconds

1426 48 PHA ;Put time on stack
14297 88 pEY

1428 DO ED BNE $1417

1422 AD 08 DC LDA $DCO8 ; Tenths

142D 48 PHA ;Put tenths on stack
142E A0 07 LDY #3507

1430 68 PLA ;Get count from stack
1431 18 CLC

1432 69 36 ADC #$36 ;Add start-of-sprites
1434 99 F7 07 STA SO07F7,Y;Sprite on block
1437 88 DEY
1438 DO F6 BNE 1430

1437 4C: 65 FA JMP S$FA65 ;Goto normal IRQ

The "other" version (without sprites) requires changing only two lines:

1432 69 30 ADC #$30 ;Convert count into ASCII
1434 99 FF 03 STA S$O3FF,Y;and put onscreen

As you can see from the listing, you could set the clock using the IRQ. The
clock will shut down when <RUN STOP/RESTORE> is pressed.

124

First Publishing Tricks and Tips for ihe C-128

3.6 ANALOG CLOCK

To emphasize the importance of time, here's another clock program. Since
not everyone likes digital clocks, this is an analog clock, from which most

of us learned to tell time in the first place. This program combincs a time
program and the C-128's graphic commands. This program only works on
a 40-column screen.

Now on to the program. It's divided into two parts. The first part should
look familiar to you, since it was used for setting the clock in the previous
chapter. The second section of the program begins at line 150. This 1y
where the clock face and hands are drawn, and where the second hand 1s
controlled. Every minute, the screen is redrawn. The hands are all drawn
using an extension of the CIRCLE command.

10 REM SET CLOCK

20 INPUT "HOURS{SPACE 3}";S

30 IF 8§ » 12 THEN S = § - 12: GOTQ 30
40 IF S < 0 THEN 20

50 POKE 56331,S + INT (S / 10) * 6

60 INPUT "MINUTES{SPACE}";M

70 IF M < 0 OR M >/59 'THEN 60

80 POKE 56330,M + INT (M / 10) * 6
90 INPUT "SECONDS{SPACE}";S

100 IF S < 0 OR S > 59 THEN 90

110 POKE 56329,S + INT (S / 10) * 6

120 PRINT “HIT RETURN TO START CLOCK"

125 GET AS: IF AS$ <> CHRS$ (13) THEN 125
130 POKE 56334, PEEK (56334) OR 128

140 POKE 56328,0
150 ' REM DRAW CLOCK
160 GRAPHIC 1

170 SCNCLR

180 COLOR 1,2

125

First Publishing

Tricks and Tips for the C-128

200 CIRCLE ,160,100,74
210 CHAR ,19,4,"12"
220 CHAR ,20,21,"6"
230 CHAR ,28,12,"3"
240 CHAR ,11,12,"9"
270 REM DRAW HOUR AND MINUTE HAND
280 COLOR 1,12
200 M «INT(PEEK(56330)/16)*10+ (PERK(56330)AND15)
300 COLOR 1,1
310 CIRCLE ,160,100,0,60,40,90,M * 6
320 H = ((16 AND PEEK(56331))/16)*10 +
(PEEK (56331) AND 15)
330 CIRCLE ,160,100,0,60,60,90,H * 30 + M / 2
340 REM DRAW SECOND HAND
350 WAIT 56328,8
360 COLOR 1,12
370 CIRCLE ,160,100,0,110,0,40,S * 6
380 COLOR 1,2
390 S=INT (PEEK(56329)/16)*10 +(PEEK(56329)AND15)
400 CIRCLE ,160,100,0,110,0,40,S * 6
410 IF S = 0 THEN 170
420 GOTO 350
3.7 LLIST

There are times when you'd like a quick printout of a BASIC program.
Commodore BASIC doesn't make a hardcopy listing easy. You must enter

all of the following commands:

OPEN4,4:CMD 4:LIST:CLOSE4

Other versions of BASIC have the command LLIST. The C-128 has to

enable printer output only, jump to LIST, and turn back to the screen.

—
3]
(@,

Kirst Publishing EFICKS 2Rd LIPS I0Y LLc L-18

1)

The following LLIST routine will not go directly to the LIST command at
the beginning, but a little later. It won't check for which lines to list (you'd
want the entire program in hardcopy anyway). Vectors $61/$62 come into

play here (pointing to the beginning of the first line to be listed). Here's the
assembler listing:

1A00 A9 00 LDA #S00
1A02 8D 00 FF STA SFFO0O
1A05 A9 00 LDA #S$00
1A07 20 BD FF JSR SFFBD
1A0A A9 04 LDA #504
1A0C AA TAX

1A0D A0 00 LDY #$07
1AOF 20 BA FF JSR SFFBA
1A12 20 CO FF JSR SFFCO

:Configuration

:Set configuration
:File name

:Ser file name
:Logical file number
:Device number
:Secondary address
:Set file parameters
:Kernal routine OPEN

1A15 A2 04 LDX #504 :Logical file number
1A17 20 C9 FF JSR SFFC9 :Set output device
1A1A A5 2D LDA $2D :BASIC RAM start--low
1A1C 85 61 STA $61 :store

1A1E A5 2E LDA S2E :BASIC RAM start--high
1A20 85 62 STA $62 :store

1A22 20 ES 50 JSR $50E5
1A25 A9 00 LDA #5500
1A27 8D 00 FF STA SFF00

:LIST routine (list all)
:Configuration
:Set configuration

1A2Aa AS 04 LDA #504 :Logical file number
1A2C 20 C3 FF JSR SFFRE7 iKernal routine CLALL
1A2F 60 RTS :Return

Run this routine by entering SYS DEC("1A00") and your program will be
listed to the printer.

Here is the BASIC loader:

100 FOR X = 6656 TO 6703

110 READ A : CS = CS + A: POKE X, A

120 NEXT X

130 DATA 169,0,141,0,255,169,0,32,189,255

127

First Publishing Tricks and Tips for the C-128

140 DATA 169,4,170,160,7,32,186,255,32,192
150 DATA 255,162,4,32,201,255,165,45,133,97
160 DATA 165,46,133,98,32,228,80,169,0,141
170 DATA 0,255,169,4,32,231,255,96

3.8 DO-IT-YOURSELF WORD PROCESSING

Writing about full-fledged word processing doesn't make a lot of sense in a
"Tricks and Tips" book. Instead, we offer you a short idea which will do
for throwing a quick memo on paper, that is, in effect, a cheap imitation of a
word processing program.

First, type in AUTO 10 <RETURN>. Now type in your first line number
(10), followed by a line of text and <RETURN> (you'll have to do this at
the end of every line, but it's a small price to pay). Watch your line length
(60 characters (1 1/2 lines) will work), since the printer will receive this
verbatim. Here's a sample of text:

10 This is the new word processor which
20 is using built=in commands. The quick
30 brown fox jumped over the lazy warthog.

40

Great, but how do we get it on paper? Simple; type in this line in direct
mode when you're through entering text:

POKE 24,37:0PEN4,4:CMD 4:LIST:PRINT#4:CLOSEA4

179

]

First Publishing Tricks and Tips for the C-12b

The text prints out -- without the line numbers!
You can SAVE this material to diskette or cassette as you would a normul
program, and print it out later. Sooner or later, though, you may end up

with your own professional word processing software.

Address 24 can do an amazing number of things. For example:

POKE 24,37:LIST

lists a program on the screen without line numbers. If you run into a
"FORMULA TOO COMPLEX ERROR", just try

POKE 24,27
Values other than 27 used in address 24 can make some changes to BASIC
listings. Be careful. Error messages will reset the contents of location 24.

3.9 MODIFIED INPUT

BASIC 7.0 has all those input commands you "grew up with" on the C-64;
GET and INPUT, and a new one: GETKEY.

INPUT, however, isn't especially aesthetic -- you get a question mark at

every prompt onscreen. Sometimes a question mark isn't appropriute, as in

10 INPUT"INPUT YOUR NAME!";NS$

. 129

First Publishing Tricks and Tips for the C-128

One method of getting around this is to open your screen as a file. Try this
out instead of the normal INPUT statement:

10 OPEN 1,0 :REM (screen as a file)
20 INPUT#1,AS$S: REM (input w/o ?)
30 CLOSE 1

Now, if the INPUT command has to be in a particular spot on the screen,
add the following:

20 CHAR, column, row
25 PRINT" ;.

27 INPUT#1,A$

CHAR positions the cursor much like a PRINT AT statement,

3.10 WARNING TONE

When the first typewriters appeared, they had a warning bell to let you
know that you were getting close to the right margin. This can still be
useful on computers. Here's a machine language program to create such a
function:

142D A9 FF LDA #SFF ;Musical values
142F 8D 06 D4 STA $D406
1432 8D 18 D4 STA $D418
1435 A9 09 LDA #S$09
1437 8D 05 D4 STA $D405

143A 78 SEI ;Interrupt off
143B A9 47 LDA #3547 ;Reset IRQ vector
143D 8D 14 03 STA $0314

1440 A0 14 LDA #$14

11N

First Publishing Tricks and Tips for the C-128

1442 8D 15 03 STA $0315

1445 58 CLI ;Enable IRQ

1446 60 RTS ;Return to BASIC
1447 48 PHA ;Accu on stack

1448 A5 E7 LDA S$E7 ;Load right margin
144A ES EC SBC SEC ;Draw cursor-column
144C C9 02 CMP #502 ';=27

144E DO 11 BNE $1461 ;NO--then $1461
1450 CD 80 14 CMP $1480 ;Column by last
1453 FO OF BEQ $1464 ;IRQ also 2, then 51464
1455 8D B0 14 STA $1480 ;Store 2

1458 A9 AQ LDA #SA0 ;Play tone

145A 8D 01 D4 STA $D401

145D a9 21 LDA #5521

148%F DO 05 BNE £1466

1461 8D 80 14 STA $1480 ;Store column

1464 A9 00 LDA #3500 ;Turn tone off

1466 8D 01 D4 STA $D401

1469 8D 00 D4 STA $SD40O

146C 8D 04 D4 STA $D404 ;S&t waveform
146F 68 PLA ;Accu from stack
1470 4C 65 FA JMP S$SFA6S ;Jump to IRQ
1480 Pointer for previous column.

Two characters from the end-of-line, a tone will sound. This is standard; it
doesn't change if you switch from TV to a monitor. Basically, the program
counts from the right margin of a window -- this is where the current cursor

position is drawn.

10 REM WARNING TONE

20 FOR I = 5165 TO 5234

30 READ A

40 S =8 + A

50 POKE I,A

60 NEXT T

70 IF S < _~ 8167 THEN BEGIN

80 PRINT "?ERROR{SPACE}IN{SPACE}DATA"
90 END

100 BEND

110 SYS 5165

131

First Publishing Tricks and Tlps for the C-128

120 DATA 169,255,141,6,212,141,24,212
130 DATA 169,9,141,5,212,120,169,71

140 DATA 141,20,3,169,20,141,21,3,88,96
150 DATA 72,165,231,229,236,201,2,208
160 DATA 17,205,128,20,240,15,141,128
170 DATA 20,169,160,141,1,212,169,33
180 DATA 208,5,141,128,20,169,0,141

190 DATA 1,212,141,0,212,141,4,212

200 DATA 104,76,101,250

¢

You can change the value to anything excepr the last column. Just bear in

EERR e

mind that this routine is counting from right to left:

pd

R s e

R R S R R

POKE 5197,N

" A

3 :
%1 e e meerrirrer et
i s 3 3

N will give you your new "warning" location.

This routing would be great for word processing, or for other data input '
especially when used in combination with the "Keyboard Beep' program in
Chapter 7.

First Publishing Tricks and Tips for the C-128

SOFTWARE PROTECTION ON THE C-128

Software publishers invest a lot of time and money in copy protection. It's
really pretty sad that software piracy is running rampant. Pirates are taking
money out of the author's hand. The author is writing software to make a
profit, but if the pirate is stealing software, then this is a disincentive to the
author to produce more quality software.
&

You can install copy protection on your own disks. The protection isn't
unbreakable, but it will make matters difficult for the curious. One form ot
protection is based on a staple of BASIC programming: the LIST
command. We'll talk about other methods of getting in the "back door" of
protection,

4.1 PROTECTION WITH COLONS-

We did a lot of research and experimentation into protection routines. We
found a few small BASIC routines for you to try. For example, you can
hide individual lines from nosy folks with five colons! Type this:

450 :::::PRINT "(C) 1985 by 'The Team'"

Next, add this routine to your programs with five colons inserted in the
lines you wish to hide:

138

First Publishing Tricks and Tips for the C-128

60000 LI = 45
60005 BA = LI
60010 LI = PEEK (LI) + 256 * PEEK (LI+1l)
60020 1IF LI = 0 THEN PRINT "BRONE!" 1 END

60030 PRINT CHR$(145); "PASS ";

PEEK (BA+2) +256*PEEK (BA+3) ;
60040 PRINT X$
60050 BA = LI
60060 FOR X = 4 TO 8
60070 IF PEEK (LI+X) <> ASC(:) THEN X=8: FL=1
60080 NEXT X
60090 IF FL = 1 THEN FL =
60100 POKE LI + 4, 0 : X$
60110 GOTO 60010

0 : GOTO 60010
= X$ + "wxn

The routine is activated with RUN 60000. It tests for program lines to be
ignored (PASS). When it finds one, the line will be covered with asterisks.
The system will say READY when it's done; all that remains is for you to
DELETE 60000- . Run the program; works fine. Now LIST it; the line

numbers of the protected lines appear, but the contents of the lines are
invisible,

The Program:

60000 : Start-of-BASIC is stored in variable LI. If you want to use this
program in C-64 mode, you'll have to change the parameters in
locations 45 and 43.

60010 : Rather than look at every byte in the program, the protection
routine checks line links for colons; the routine runs faster that
way.

60020 : Program ends when line link LI=0.

13A

First Publishing Tricks and Tips for the C-128

60030 : Current line number given.

60040 : Number of protected lines is stored in X 5.

60050 : Basis of new line starting range is equal to the contents of link
LI.

60060 : Routine looks at first five characters of a line.
60080 : Each "normal” line sets flag FL, and X to 8.
60090 : IfFL=1 the flag is reset, and the next line observed.

60100 : Line is protected; first colon is set to 0. When the program sces

the 0, it's interpreted as an end-of-line, and the line is treated as if
it wore non-oxistent,

4.2 LINE NUMBER ROULETTE

A prime characteristic of BASIC is its sequential line numbers, which act as
a guide for the programmer. Line numbers larger than 64000 cannot be
used. We can use this little fact to our advantage: Type in this routine.

60000 BA PEEK (45) + 256 * PEEK (46)

60010 LI PEEK (BA) + 256 * PEEK (BA + 1)

60020 IF LI = 0 THEN PRINT "DONE!"™ : END

60030 PRINT"FIND LINE:"; PEEK(BA+2)+256*PEEK (BA+3)
60040 PRINT " (C)HANGE (G)O ON (E)ND 2"

60050 GETKEY AS

137

First Publishing Tricks and Tips for the C-128

60060 IF AS$ = “E" THEN PRINT "OK" : END
60070 IF AS$ = "G" THEN 60140

60080 INPUT "NEW LINE NUMBER"; ZN$

60090 IF ZN < 0 OR 2ZN > 65535 THEN 60080
60100 HI = INT(2ZN/256) : LO= ZN- (256*HTI)
60110 POKE BA+2, LO

60120 POKE BA+3, HI
60130 PRINT CHRS (145);

60140 BA = LI
60150 PRINT CHRS (145) ; CHRS (145) ;
60160 GOTO 60010

The first line probably looks familiar to you. Start the routine; the system
will go through each line with prompts. You have three options:
(C) HANGE, (G)O ON,or (E)ND. C alters the program line; G looks for
the next line; and E ends the program. There are a few limitations:

a) GOTO and GOSUB line numbers are unaltered.

b) Line numbers larger than 64000 cannot be deleted.
c) All line numbers less than one cannot be jumped to.
The Program:

The principle of this routine is pretty simple: It looks at all the BASIC
program lines. If the line number is changed, the new line number is

stored in ZN and in line 60100 in low/high-byte format. Then, the new
value is POKEA over the old in BASIC memory.

This protection will be automatically saved on disk or cassette with the
program itself.

138

First Publishing Tricks and Tips for the C-123

One other thing: type in a line, say, 64000. Now run the routine, and
change it to 65535. This produces two effects. First, a line with the
number 65535 is essentially considered to be the end of the program.

Second, that high number is not shown if it's a REM, 80 you could hide
your copyright notice there.

4.3 MANIPULATING LINE-LINKS

The preceding routine worked on the so-called line-links to chunge line
numbers. Let's take another shot d["bendmg these line-links, specifically,
adjusting the link pointing to the next line. When we do this, the next line is
invisible. Or, if you wish, we could fix a line-link to list the same line over
and over. Usually, this won't bother the program run, unless you've really
gone wild with these adjustments. Type this in by hand:

60000 INPUT "1, LINE NUMBER"; 71
60020 INPUT "2. LINE NUMBER"; 22

60020 BA =

60030 BA = PEEK (BA) + 256*PEEK(BA+1)

60040 IF BA=0 THEN PRINT "LINE DOES NOT EXIST!":END

60050 ZN = PEEK(BA+2) +256*PEEK (BA+3)

60060 IF FL = 0 THEN IF ZN =21 THEN
L1=BA:L2=BA+1:FL=1

60070 IF FL = 0 THEN 60030

60080 IF ZN=22 THEN POKE L1,PEEK (BA)
POKE LZ2,PEEK(BA+l) :END

60090 GOTO 60030

The routine will ask you for the numbers of the first and second program
lines. The links in the first line pointing to both lines will be altered. All

lines become invisible. One thing to remember with this routine: any

R 130

First Publishing Tricks and Tips for the C-128

alterations (adding or deleting lines) recalculate the line-link pointers, so it's
a far from infallible protection trick.

4.4 CREATIVE CONTROL CHARACTERS:
MAKING GREMLINS

Control characters are a familiar sight; for example, this one clears the
screen: "v". We see them in quote mode, they change chaiacter position and
color. There is another use for these characters, though: we can use them
on the screen to foil LISTing. Type this in first in direct mode:

KEY1,CHRS$ (27) +CHRS$ (79) +" {RVSON} { SHIFT-M} {RVSOFF } "+
CHRS (34) +CHRS$ (20)

This turns <F1> into an instant <SHIFT-M> (this activates control

characters). Let's have some fun with a few BASIC lines (whenever an
asterisk (*) appears, press <F1>).

The Gremlin and PRINT
PRINT"This is how it works*in PRINT statements*!"

All <SHIFT-M> does here is perform a carriage return (C/R). This has
nothing to do with software protection; just showing you what it does.

140

First Publishing Tricks and Tips for the C-128

The Gremlin and REM

-

10 REM"* (CRSRUP) (RVSON) This is a test line

List this line, things are getting interesting now! The <SHIFT-M> causes
the two control characters to execute, so the line moves up one line and goes
into reverse video. In other words, the REM acts like a PRINT statement
when [isted!

The possibilities are almost limitless! We can change colors...

1000 REM"* (CTRL+1to8)
1000 REM"* (C= + 1to8)

...format listings...
1000 REM" * (CRSRDOWN) (CRSRDOWN)
...or simply mask lines out:

1000 REM"*{CRSRUP}900 SYS (4096) CRACKED BY RUSS T
(Indicates cracked machine language program)

1000 PRINT"(C) BY RUSS T" :REM"* {CRSRUP)
(Line 1000 overwritten by next line)

Have a good time!

141

First Publishing Tricks and Tips for the C-128

4.5 PROTECTION WITH POKES

POKE:s can do so much; they even give you the ability to ward off saving,
listing or running a program. One disadvantage: The program has to be
RUN before any of this will take effect, but you can sidestep this somewhat
by using an autoboot program.

4.5.1 LIST DISABLING

Page 3 has a pointer that points to the vector for the LIST input. This vector
has the addresses 774/775 ($0306/$0307). Try POKE 774,61:POKE
775,255. Now LIST. The computer acts as if you've requested a
warm-start, and goes to the opening screen. Now try POKE 774,38:POKE
775,160, which points to the vector for "RTS". Only line numbers will be

given.

As you can see, changing pointers can do remarkable things.

4.5.2 DISABLING RUN-STOP/RESTORE

Early in computing, people got the idea of putting code words into
programs. Commodore computers can be circumvented, just by pressing
<RUN-STOP/RESTORE>, and looking up the code word in the program.
We can foil that with POKE 808, PEEK (808)-3 which disables both keys.

142

First Publishing Tricks and Tips for the C-128

Let's put it into practice:

10 POKE 808,PEEK(808)-3
20 PRINT"This is a test ";
30 GET AS:IF AS=CHRS$ (3) THEN PRINT:PRINT"BREAK"

POKE 792,51:POKE 793,255 disables RESTORE alone; <RUN-STOP>
alone can be done in BASIC:

10 TRAP 1000

20 PRINT"This is a test ";
30 GOTO 20

1000 ?"*BREAK*"

1010 RESUME NEXT

Here we used the message "BREAK" to signify the <RUN-STOP> key.
See the chapter on "Error Handling" (Chap. 3). One final word: This
routine can be skirted by pressing the <RUN-STOP> key quickly several

times. ‘
1

4.5.3 DISABLING SAVE

Tha SAVE vector alue residey in page 3 of mpmory (B18/819
[$0332/$0333]). We can pretty much pull the same stuff that we did in the
LIST disable: RTS, reset, etc.

143

First Publishing I'Ticks and Lips 10T ne L-120

4.6 DISK COPY PROTECTION

So far, we've looked at general in-program protection. Next, we're going
to look at what's involved in protecting a disk from copying.

Perhaps you've heard of "destroying” the tracks on a disk. We can create a
READ ERROR, which will at least slow down disk copying. Name the
track you wish to change in the variable TR.

0 REM READ ERROR ON DISK
10 OPEN 1,8,15

20 OPEN 2,8,2,"#"

30 PRINT#1,"Ul 2 0";TR;0

40 PRINT#1, "M-E"CHRS (163) CHRS (253)

Before starting, make sure there's no valuable disk in the drive.

1D 1 uBnsIInY Iricks aud Yips for the C-128

4.7 LOAD "$"

There are times when you may want to try stopping anyone from reading
the disk directory, since the directory gives important information to the
would-be copier. Best way around this is to wipe the directory altogether!

10 REM DIRECTORY SCRATCH

20 OPEN 1,8,3,"#"

30 OPEN 2,8,15,"B~-P3,144"

40 PRINT#1,CHRS (20)CHRS (20) CHRS (20) CHRS (0) CHRS (0)
CHR& (0)

50 PRINT#2,"U02:3,0,18"

60 PRINT#2,"1"

70 END

Use this program with disks from which you've memorized the program
names. Also, keep in mind that you won't know what programs have been
changed, scratched, or whatever.

Essentially, when the directory is loaded with LOAD "$",8 it is handled like
a BASIC program. We simply write a zero to the beginning of the
directory, and the LIST routine interprets the zero as the end-of-program.
This only works for LOAD"$",8 and not the DIRECTORY command.

145

First Publishing Tricks and Tips for the C- ~

SELF-MODIFYING PROGRAMS
i ¢

5.1 LINE INSERTION

Programs are usually designed with just one application in mind, partially
due to the fact that you can't change programs as they're running. In the
next few pages, we're going to show you how to insert lines into a running
program. We'll also give you some sarﬁple applications for this useful
feature.

Inserting lines in an running program opens up a new spectrum of
programming, and can be accomplished with a few simple POKES.
Remember, though, this little routine is a big step from a program
generator, which lets you create a BASIC (or other) program.

Technically, this line addition is very complicated. So, the normal procedure
is to stop the program, insert the line and restart the program. The key to
our work in this chapter is the keyboard buffer. Try this test program:

10 TP=842

20 POKE TP,ASC("L")

30 POKE TP+1,ASC("I")

40 POKE TP+2,ASC("S")

50 POKE TP+3,ASC("T")

60 POKE TP+4,13: REM RETURN
70:

80 POKE 208,5

90 END

1A0

First Publishing Tricks and Tips for the C-128

RUNning this program makes it LIST itself by writing LIST into the
keyboard buffer (lines 20-50) and <RETURN> (line 60). Line 80 tells the

operating system that five characters are in the keyboard buffer. One
application would be for INPUT or GET, or for a program end. This is

what happens: the program ends at line 90, but the computer "INPUTS"
the characters that were "stuck” in the keyboard buffer. So, the system
interprets LIST<RETURN> as a direct command. Remember that the
computer gets the characters when the program ends. Experiment -- put in
your own commands (e.g., RUN; but remember to put in <RETURN>s

(13)).
5.2 FORMULA ENTRY

Now, let's experiment with changing lines in a running BASIC program:

10 PRINT"FORMULA ENTRY"

20 PRINT:PRINT

30 PRINT"ENTER AN EQUATION"

40 PRINT"(E.G. Y=2*X+SQR(X/34.5)*INT(5.6*X"4)
50 INPUT V§

This program section needs no detailed explanation. Basically, the equation
of your choice is typed in, and stored in V$. Our example has the format
Y=...X..., which leaves X open for any variable. But how do we get the
equation into the program?

60 PRINT CHRS$ (147)
70 PRINT : PRINT"1000";VS$
80 PRINT : PRINT"RUN 500"

150

S

First Publishing Tricks and Tips for the C-125

This creates a new line number -- line 1000 with your formula.
90 PRINT CHR$(19);

When you RUN this program, the cursor blinks on the new line. If the line
is correct, press the <KRETURN> key. Here's more:

100 FOR A=0 TO 3

110 POKE 842+a,13
120 NEXT A

130 POKE 208,4

140 END

500 PRINT CHRS$ (147)
510 INPUT "X-VALUE";X

1000 REM HERE'S WHERE THE EQUATION GOES
1010 PRINT"RESULT IS:";Y
1020 END

-

The keyboard buffer is filled with the ASCII code for <RETURN> . The

program ends, the <RETURNb>s are sent, and the routine nutomaticnlly
starts with RUN 500. Be sure you make the proper changes when a larger

number of variables are used; this is a matter of altering line 500.

5.3 DATA STATEMENT GENERATOR

We're not through with this subjcc‘t and the next program will show that.
This is a "real” application program: a DATA generator, which'you'll find

to be useful. Although this program lends itself to alterations, it generates a
lot of lines!

151

First Publishing

Tricks and Tips for the C-123

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250

260

270
280
290
300

310
320
330

340
800
810
<820
830
840

PRINT "{CLR HOME}D ATA - GENERATO R"
PRINT PRINT PRINT
PRINT "THIS PROGRAM CONVERTS THE “;
IF PEEK (215) < 128 THEN PRINT
PRINT "CONTENTS OF MEMORY TO A BASIC-LOADER!"
PRINT PRINT
PRINT "I NPUT-FORMAT : "
PRINT : PRINT
TNPUT "MEMORY CONFIGURATION (BANK)";BK
INPUT "BEGINNING DATA ADDRESS (HEX) ";AS$
INPUT "ENDING DATA ADDRESS (HEX) ";BS
A = DEC (AS) - 1: B = DEC (B%9)

Z

:'[NPUT "BEGINNING LINE NUMBER";Z: O
INPUT "LINE NUMBER INCREMENT";S
INPUT "AMOUNT OF DATA PER LINE";DZ: XY = D2

GOSUB 1000

LD =B - A

PRINT "{CLR HOME)} {CRSR DOWN} {CRSR DOWN}™
IF LD < DZ THEN DZ = LD: FL =1

LD = LD - D2

PRINT Z;"DATA ";

IF Dz > 1 THEN FOR W = 1 TO DZ - 1:
ELSE GOTO 290

BANK BK: P = PEEK (A + W +
PRINT P;"{CRSR LEFT},"¢

CS = CS + P

(XY * ZE)):

NEXT W

ZE = ZE + 1

BANK BK: P = PEEK (A + (XY * (ZE-1)) + DZ):
PRINT P: CS = CS + P

é =2 + S

IF FL = 0 THEN PRINT "GOTO 210":
ELSE PRINT "GOTO 900"

GOTO 800

REM FILL KEYBOARD BUFFER

PRINT "{HOME}";

FOR X = 842 TO 851

POKE X,13

NEXT X

152

1dL I UL

IrICKS ana '11ps 1or tle C-12Y

850
860
900
910
920

930

940

1000
1010
1020
1030
1040
1050
1060
1070

POKE DEC
END

REM EDITOR

PRINT " {CLR HOME} {CRSR DOWN} {CRSR DOWN]}";
PRINT O+3*S;"IF CS<>";CS;

" THEN PRINT CHR$(7);: LIST"

PRINT "DELETE -1300"

BANK 15: GOTQ 800
REM INIT

/ 1
PRINT " {CLR HOMEi{CRSR DOWN} {CRSR DOWN]}"
PRINT Z;"FOR X=";A + 1,;"TO";B
PRINT Z + S;"READ A: CS=CS+A: POKE X, A"
PRINT 2 + 2 * S;"NEXT X"
Z =2+ 4 *S
PRINT "GOTO 200"
GOTO 800

("DO"),IO

Save this program as DATAGEN before running!!! Here's what it does:

The program generates a BASIC loader foryou. You'll need to know the
starting and ending addresses of the machine language program and the
memory configuration (normally Bank 0). In addition, you choose the line

number to start, increment, etc. The first line number should be larger than

1300; otherwise the DATA generator program will be overwritten. Once
this is complete, the DELETE command erases the DATA generator
program, after which you may want to renumber the program.

C-128 C-64 MEANING

e ok 2k o ok ok ke ok e ok e sk ok o ok ¢ ok e ok e ok ok ok ok ok ok ok ke ok ke ok ¢ o ok o ok ok ok i ok o ok ke ofe ook A ok o e sk ok ok 4

208 198 Number of characters to be given by the
keyboard.

842-851 631-640 Keyboard buffer (normal); 10 bytes to be
given are stored in keybourd buffer .

2592 649

Maximum size of keyboard buffer (10).

153

kirst Fublisning LIILKD @IU 1IPd 1UI LUT L-140

Important: "Real-time" line insertion is also possible in C-64 mode, but
it's a lot easier to manage in C-128 mode. When you change lines in 64
mode, all the variables are cleared. This is not the case in C-128 mode,
because a special memory bank is set aside for variables (Bank 1).

The maximum size of the keyboard buffer is normally 10, which is usually
sufficient. If need be, command words can be inserted in “short form" (see
the back of the C-128 User's manual for ubbreviations). Otherwlse, the
C-128 lets you change the keyboard buffer to a maximum of 20 elements.

This overwrites the TAB-bitmap memory, which means that the TAB key
won't work properly. The enlarged keyboard buffer covers memory
locations 842 to 861, Change the size of the keyboard buffer with this

command:

POKE 2592,20

154

|
i
x
gi"!'. <

kirst Publishing ‘Fricks and Tips for 1the C-124

THE DATASETTE

In this chapter, we're going to show you a few neat tricks for your Datasettc
(or whatever compatible tape drive you may have). We imagine that most
of the C-128 owners have opted for the 1571 disk drive. By the samec
token, if you can be patient with the tape drive's speed, it's a good, cheap
alternative to a disk drive (beats having nothing for storing programs).

1 (]

6.1 SOFTWARE CONTROL FOR DATASETTE

Those who use the Datasette usually don't notice that the cassctte motor
stops on its own when the drive is through saving or loading programs.
This motor is controlled by the operating system, but can also be controtled
by software (i.e., through programming). The important addresses are
locations 1 (processor port) and 192 (cassettg motor flag).

Try this: press the PLAY button on your recorder; the motor runs and the
tape spins. Now type this in direct mode:

POKE 192,1:POKE1l,PEEK (1) OR 32

The motor stops without your touching the recorder. Let's get the motor

running again:

POKE 1, PEEK(l) AND 39:POKE 192,0

157

kirst Publishing LTICKS aNa 11PS JOT LUE U140

The key to this is the processor port, address 1. Bit 3 (CASS WRT), bit 4
(CASS SENS) and bit S (CASS MOTOR) of this address deal with cassette
operation. To switch the motor on, the bit CASS MOTOR must be turned

on.

Now you can control the cassette drive using a timing loop to create a
catalog of your programs, or even set up function keys to switch the motor
on and off.

6.2 SENSING THE DATASETTE KEYS

L4

Address 1 does more! Bit 4 checks to see if a key is pressed on the
Datasette, which is part of the operating system ("PRESS
PLAY(&RECORD) ON TAPE" messages are controlled here).
Unfortunately, the computer is unable to discern which Datasette key 1s
pressed. This can be a nuisance if the user presses PLAY and forgets to
press RECORD as well; the system won't catch the error.

This bit checks for the tape switches:

WAIT 1,16 (Wait until STOP is pressed on recorder)
WAIT 1,32,32 (Wait until a key has been pressed on the recorder)

We can also make the system test for RUN-STOP:

IF PEEK(1)=99 THEN PRINT "OOPS"

158

FAPdL Fubisiing Liltad aBU LIPd JUS Al LTie0

P

6.3 DOING UNUSUAL THINGS WITHl THE DDR

Okay, what is a "DDR"? And what sort of "unusual things" can you do
with it?

A lot, we think, The processor port is basically an /O (Input/Output) port,
handled by the CIAs. This port has six lines, three of which are dedicated
to the Datasette. The lines act as both output and input; these directons are
determined by the DDR (Data Direction Register) for the processor port,
found at address 0. The layout:

bit 3 ; Data direction CASS WRT
bit 4 : Data direction CASS SENS
bit §: Data direction CASS MOTOR

0 = Input
1 = Output

CASS WRT and CASS MOTOR are output. They affect the recorder when

writing to tape. CASS SENS is an input line. It checks if a tape drive key
down or not.

159

First Publishing Tricks and Tips for the C-128

6.4 COPY PROTECTION WITH THE DATASETTE

What happens if we change the bits in the DDR? The POKE below turns
CASS SENS into an output line:

POKE 0,PEEK(0) OR 274

The result: CASS SENS will not register cassette status. The system will
say, "PRESS PLAY(& RECORD) ON TAPE", and even if you do so, the
operating system won't acknowledge "OK", or LOAD, or SAVE.

Changing things back to normal is a simple matter of typing:

POKE 0,PEEK(0) AND NOT 2"4
By changing CASS WRT, we can produce a method of copy protection:
POKE 0, PEEK(0) AND NOT 2”3

The prompt will come up, the keys will be sensed, and the SAVE routine
will appear to work...but it won't. To return to normal:

POKE 0O,PEEK(0) OR 273
One last possibility is to alter the motor control. Re-enter:
POKE 0,PEEK(0) AND NOT 2"4

The solution to this problem: POKE 0,PEEK(0) OR 24

1AN

First Publishing the C-Lo

Tricks and Tips for

6.5 "LO-FI" -- THE DATASETTE AS MUSIC BOX

Stereo systems and video disc players have been developed with computer
interfaces built in. This means that in a few years, your stereo and video
equipment will be computer controlled. Right now, some computers allow
you to play audio cassettes through the computer's data system. We give
you a program that does just that on the next page. A word of warning: thc
sound quality -- well, the word "rotten" would describe it best.

The program below manipulates the three I/0 lines of the processor port
There is another, unused line between the recorder and the computer (CALS

READ, the equivalent of CASS WRT). All "incoming" data goes through
this line. 'The problem: The line doesn't end at the processor, like the other

lines -- it continues on to CIA1 (putting the serial port at our disposal). So
register 13 of CIA1 will have to be set:

REG 13 BIT 4:1= Signal tripped on pin FLAG

Here's the machine code listing:

1A00 A0 0O LDY #$00
1A02 AD OD DC LDA $DCOD
1A05 C9 00 CMP #3500

:VOLUME O
:Check FLAG pin on CIAl
:No signal?

1A07 FO 02 BEQ $1A0B :YES--go on

1A09 AO0 OF LDY #$OF :NO--turn off volume
1AOB 8C 18 D4 STY $D418 :rand SID register 24
1A0E A5 DS LDA S$D5S :Read keyboard

1210 C9 58 CMP #$58 :88=no key pressed
1A12 FO EC BEQ $1A00 :No keys -- go on
1Aa14 60 RTS :Return to BASIC

161

First Publishing Tricks and Tips for the C-128

And the BASIC loader:

5000 FOR X = 6656 TO 6676

5010 READ A: CS = CS + A: POKE X,A

5020 NEXT X

5030 IF CS <> 2799 THEN PRINT CHRS$ (7);: LIST
5040 DATA 160,0,173,13,220,201,0,240,2,160,15,140
5050 DATA 24,212,165,213,201,88,240,236,96

Start this program with the command: SYS DEC ("1A00"). The principle of
this program is simple: It looks for a signal at FLAG. If that's the case, the
speaker is turned on; if not, the speaker remains off. The switching on and
off occurs within the smallest loop possible in machine language and a

horrible tone comes out.

If you put a music cassette into the system, it will probably sound pretty
mangled; the tone is filtered as much as possible.

;.

6.6 SAVING TO CASSETTE -- SORT OF

The SAVE command needs no introduction; you know what it is, and how
it works. But what are those funny sounds made by a cassette (did you
listen, using the program in the last chapter?)? The peeps are made by the
CASS WRT line:

bit 3 CASS WRT
l=impulse

It's fairly simple to make your own tape impulse:

105"

First Publishing Tricks and Tips for the C-128

10 REM'TONES ON CASSETTE
20 PRINT "PREBE PLAY AND RECORD ON WAPELY
30 WwaIiT 1,32,32

40 FOR W= 1 TO 20
50 FOR K= 0 TO 20
60 POKE 1,PEEK(l) OR 8:REM IMPULSE

70 FOR T = 1 TO W:REM DELAY

80 NEXT T

90 POKE 1,PEEK(l) AND NOT 8:REM SET BACK
100 NEXT K

110 NEXT W

120 END

-te

This short program saved different high and low tones to your cassette.
Use the previous program to listen to the various sounds created. It should
demonstrate the principle.

T Y T

First Publishing Tricks and Tips for we C-128

THE KEYBOARD

7.1. KEYBOARD ASSIGNMENT

There are many ways to read the keyboard besides the BASIC commands
GET and INPUT, especially for machine language programmers. In zero

page location 213 ($DS5) the computer stores the value of the currently
pressed key. This value is not the ASCII value, it is derived from the

keyboard table in the ROM of the computer. -~

The C-64 stores the currently pressed key in zero-page location 203 ($CB).
Due to the additional keys on the'C-128 the values are not always the same.

Below is a chart showing what value is returned for each key pressed.

Key Value Key Value
Left arrow 57 1 56
2 59 3 8
4 11 5 16
6 19 7 24
8 27 9 32
0 35 + .40
- 43 0] 48
CLRHOME 51 INST DEL 0
CTRL 58 Q 62
W 9 E 14
R 17 T 22
Y 25 U 30
I 33 0 38
P 41 @ 46
* 49 ~(up arrow) 54
RUN-STOP 63 A 10
S 13 D 18
F 21 G 26

167

First Publishing

Tricks and Tips for the C-128

AT

-~

ZWONI "

CRSR down
SPACE

There are differences between the C-64 and C-128. No key pressed returns
the value 88 on the C-128. On the C-64 no key returns the value 64.

]
L

X
\Y
N
/

C

TURN

RSR right

The following keys are brand new on the C-128:

Help-Button
Tab-Button
ESC-Button
Line Feed

In addition to the cursor keys below the <RETURN> key (which return the

same values in both machines) there are four new cursor keys. These have

different values!

Cursor up
Cursor down
Cursor left
Cursor right

168

34
42
50
1

23
31
39
47
55
2

I'ITSU 1I"UpHsSIIng saaena g s

The C-128 also includes a numeric keypad. Just like the separate cursor
keys, the values returned by the keypad keys are not equal to the values
returned for the numbers on the alphanumeric keyboard. Here are the
values for both keyboards on the C-128:

Key Keyboard Keypad
1 56 71
2 59 68
3 8 79
4 11 69
5 16 66
6 19 77
7 24 70
8 27 65
9 32 78
0 35 81
. 44 82
RETURN 1 76
+ 40 73
43 74

The joystick of port 1 can also affect location 213 ($CD). Unfortunately this
address is not useful for reading the joystick. When you push the joystick
upward, the address will not change. You could use this fact to connect
another keyboard to port 1.

} ,

Joystick up 88 Effect like ALT
Joystick in the middle ~ 88 Np effect
key pushed 92 Effect like shift

169

First Publishing Tricks and Tips for the C-128

Joystick left 90 Effect like CTRL
Joystick right 91
Joystick down 89

With the following program you can simulate the BASIC 7.0 command
GETKEY:

10 IF PEEK(213) = 88 THEN 10
20 GET AS

30 PRINT AS

40 GOTO 10

Of course, this command sequence in BASIC programs doesn't make much
sense because the GETKEY command already exists. This program can be

converted for machine language programs. In assembly language the
program would be very short and could look as following:

Loop LDA $D5
CMP $58
BEQ Loop

After leaving the loop the accumulator contains the value of the key pressed
for further processing.

170

i s—

B — e i

S ——

e e

. rm—

First Publishing Tricks and Tips for the C-128

7.2. CHANGING KEY ASSIGNMENTS

Every computer programer and user has their own ideas on how to use a
computer. Many people became interested in computers through computer
games. For this group the computer indusrty designed their products 1o be
user-friendly, with easily connected joysticks, a lightpen, a trackball, or
paddles.

Another group of computer users are people who got involved with
computers because of their jobs. The C-128 will probably be more popular
with this group than was the C-64, because the C-128 can also run CP/M.
CP/M is an operating system that runs on a wide variety of computers. The
ubility of CP/M 1o run on many different computers has made it a very
popular operating system. To expand the performance of the C-128 it
would be very useful to change the key assignments, depending on the

requirements of the user.

This is not as easy in the C-128 as it is in the C-64. The keyboard decoder
table is located in the ROM:

64128 ($FA80) for ASCII operation
64809 ($FD29) for DIN operation (international models only)

On the interpational models of the C-128, two character decoding tables are
included in ROM. This is to give the international models the correct
foreign character sets for the countries in which they are sold. We have
checked the U.S. models and the German models (DIN stands for Deutsch
(German) Industry Norm). On the international models the <CAP-LOCK>

171

First Publishing Tricks and Tips for the C-128

key is replaced by an <ASCII-DIN> key. When this key is pressed the
operating system loads the foreign character (DIN) set into memory. Minor
changes were made to the aperuting system to secommodute this: for more
details please see our book Commodore 128 Internals.

You can read the key assignments (with the monitor use the command
MFFARB0), but you can't change the assignments because they are in ROM.
There is another way. In zero page there is an pointer to the keyboard
decoder table. It is at locations 830 ($033E) and 831 ($033F). To change
theSe values on the international models a little trick is needed. On both the
U.S. and the international models you will be able to change the low-byte,
but you will not be able to enter commands anymore because the keyboard
will not be decoded properly.

On the international models, as soon as you change the high-byte of the

pointer (at 831) you will notice that the computer has reset these locations
buck to their normal values.

This doesn't happen because the address is in the ROM. It is caused by the
permanent check of the <ASCII-DIN> key. On the international models
when the high-byte does not equal the value which is preset for the current

mode, the address is reset. You can prevent the permanent check of the
<ASCII-DIN> key, by setting the seventh bit of address 2757 ($OACS).

POKE 2757, PEEK(2757) or 128

Now you can change the pointer to the decoder table on the international

models. It will not reset automatically again. This is not necessary on the
U.S. models.

172

|

o

First Publishing Tricks and Tips for the C-*°

When you alter this pointer you will no longer be able to enter any
commands from the keyboard. When you push a key a character will appear
but it is seldom the one you pressed. You must press the reset buiton to
return the computer back to normal operation; not even u
<RUN-STOP/RESTORE> helps. For this reason, you should copy one of
the character set tables to RAM before switching. Example at 6912
($1BOO):

10 REM Copy and switch

20 FOR I=0 TO 88

30 POKE 6912+71,

40 NEXT 1I

50 REM INTERNATIONAL MODELS ONLY:
POKE 2757,PEEK(2757) OR 128

60 POKE 830,0

70 POKE 831,27

PEEK(64128+1)

On the international models if you had the <ASCII-DIN> key on, you will
not recognize u big differcnce, It you sturted the program when the ASCH
character set was activated, you will have the <CAPS-LOCK> character set,
which is normal in the American version. When the <CAPS-LOCK > key is
on, all letters appear as capital letters, just like the <SHIFT> or
<SHIFT-LOC>K key. The difference is, the numbers appear just like
before and not the upper character, obtained with <SHIFT>. If
<CAPS-LOCK> is not pushed, you have the normal character set.

Now back to changing the keyboard assignments. In the previous section is
a chart showing keyboard assignment values, which you can use now.
Take the value of the key you would like to change and add it to €912. In
this location you store the ASCII value of the new assignment.

1712

First Publishing Tricks and Tips for the C-128

Example: You would like to change Y and Z. Just add these lines to the

previous program.

80 POKE 6912+12,89
90 POKE 6912+25,90

After the program finishes running the Y is the Zkey and Z the Y. It is
really that easy.

Another tip that will help you to enter machine language listings, in the form
of DATA statements, faster into your computer. In the keypad is a period
key. This character is useless for entering DATA statements for machine
language programs. Instead of this period a comma would make entering
DATA statements much easier. So we'll change the keypad, to a comma

instead of the period:

10 REM COMMA INSTEAD POINT
20 FOR IwO TO 88
30 POKE 6912+I,PEEK(64128+1I)

40 NEXT I

50 POKE 2757,PEEK(2757) OR 128
60 POKE 830,0

70 POKE 831,27

80 POKE 6994,44

174

S —

kirst rublishing LFICKS HilU LIPS lur .ul wmi-0

7.3. HEX-KEYBOARD FOR THE C-128

If you work with hexadecimal numbers, then you know the problems of
entering these numbers from the normal keybourd.

Above the keypad are the eight function keys. You only have to assign
those with the six necessary letters. After this change you still have two
keys left which are not assigned to any function. But we'll also change
those. We assign those two keys to the function DEC(" and HEX$(, which
are used often. Often, during prqgrarr'lming you have only one hand free.
Your second hand is busy holding books, lists and other things. For this
reason, some of the letters that are reachable only with the <SHIFT= key
are awkward to use. But there are still plus and minus keys which are not
really necessary for entering hex-numbers. Thats why we'll assign those
keys to the letters E and F.

And here is an example how you can enter hex-decimal numbers with one
hand:

-

10 REM Hex-keyboard on the C-128
20 KEY 1,"A"

30 KEY 3,"B"

40 KEY 5,"C"

50 KEY 7,"D"

60 KEY 2,"E"

70 KEY 4,"F"

80 KEY 6,"PRINT DEC ("+CHRS (34)
90 KEY 8, "PRINT HEXS ("

100 For I=0 TO 88

110 POKE 6192+I.PEEK(64128+1I)
120 NEXT I

130 POKE 2757,PEEK(2757) or 128

175

First Publishing Tricks and Tips for the C-128

140 POKE 6994, 32
150 POKE 6985, 69
160 POKE 6986, 70

You reach the letters "E" and "F" when you push the keys <SHIFT> and
<F1> or <SHIFT> and <F3>, or with the plus key (E) and the minus key

(F).

When you would like to convert a hexadecimal number to a decimal number
you only have to push the keys <SHIFT> and <F5>. You can convert a
decimal number to a hexadecimal number with SHIFT and <F7>.

7.4.SHIFT, C=, CTRL, ALT KEY ASSIGNMENTS

When you used the program where we changed the Y and z, you probably
saw, that the shifted values of these keys remain unchanged. For
assignments using the <SHIFT>, the <C=> key, the <ALT> key and the
<CTRL> key, there are separate tables. For the ASCII character set (U.S.
models) the tables are located as follows:

64128 ($FA80) First assignment

64217 ($FAD9) With SHIFT
64306 ($FB32) With COMMODORE-Key
64395 ($FB8B) With CTRL

64128 ($FA80) With ALT (same meaning without shift)

On the international models the C-128 has a second foreign language
character set. When the <ASCII-DIN> key is pressed, you can change the

176

- I ——

First Pui)lishing Tricks and Tips for the C-125

-

keyboard assignment. Therefore you have four completely different tables

containing the keyboard decoder tables and the shift assignments. Here are
the current addresses:

64809 ($FD29)
64898 ($FD81)
64987 (SEDDB)
65076 (SFE34)
64128 ($FA80)

Initial value

With SHIFT-KEY

With COMMODORE-KEY
With CTRL

With ALT

Pointers to the respective table for each of the five keys are located in zero

page. On the international models there is also a pointer for the
<ASCII/DIN> key:

830-831 ($033E-$033F) Standard key press
832-833 ($0340-$0341) With <SHIFT>

834-835 ($0342-$0343) With Commodore (<C=>)
836-837 ($0344-$0345) With <CTRL>

838-839 ($0346-$0347) With <ALT>

840-841 (50348-$0349) With <ASCII-DIN> or

<CAPS-LOCK > key

Each table has 89 bytes, equals to the 88 keys, plus the possibility that no
key is pressed.

To replace two keys, you have to change the values in all four tables. The
following program will do this:

177

First Publishing Tricks and Tips for the C-128

10 REM Z and Y change

15 BANK 15

20 FOR I=0 to 90*4

30 POKE 6656*I,PEEK (64128+1I)
40 NEXT I

50 POKE 2757,PEEK(2757) or 128
60 REM normal table

70 POKE 6656+12,89

80 POKE 6656+25,90

90 REM Shift-Chart

100 POKE 6656+89+12,89+32
110 POKE 6656+89+25,90+32

120 REM Commodore~Chart
130 RPOKE 66K6+2 » B89+12,183

140 POKE 6656+2 * 89+25,184
150 REM CTRL

160 POKE 6656+3 * B89+12,25
170 POKE 6656+3 * B89+25,26
180 REM Change pointer

190 POKE 830,0

200 POKE 831,26

210 POKE 832,89

220 POKE 833,26

230 POKE 834,89 * 2

240 POKE 835,26

250 POKE 836,11

260 POKE 837,27

Now you can change the shifted key assignments to anything you want.

The new key assignment does not have to be at address 6656. Remember,
you also have to change the pointer (830 - 841).

178

g

First Publishing Tricks and Tips for the C-128

7.5. THE AUXILIARY KEYS

The computer needs extra keys to make it possible for a key to have more
than one value. The C-64 had three extra keys: <SHIFT> (both <SHIFT-
and <SHIFT LOCK> have the same function), <C=> and <CTRL>.

The C-128 has these, as well as three additional keys: <ESC>, <ALT> and
the <CAPS-LOCK> («ASCIT-DI> on the internntionn) models).

ESC means escape. This key is not a new invention from Commodore. It
has been used for many years in other computers. With the <ESC> key on
the C-128 you can do functions like switching from the 40 to the 80 column
screen. Every key has a special function in combination with the <ESC>
key. But <ESC> is different th‘an the <SHIFT>, <C=> and <CTRL>

keyss: <ESC> and another key are not pressed simultaneously, but one
after each other.

7.5.1. USING THE AUXILIARY KEYS

The auxiliary keys can be read at memory I6tation 211 ($D3). If one of the
<SHIFT> keys or <SHIFT-LOCK> key is pressed, the first bit is set.
With the <C=> key the second bit is set. The third bit is for <CTRI.>, and
he fourth for <ALT>. The next bit is set by pressing the <CAP-LOCK>
(<ASCII-DIN>) key. Because these keys can be pressed at the same ume,

there are 31 possible combinations. The following table shows a few of

179

First Publishing Tricks and Tips for the C-128

those possibilities. It is not complete and only intended as an example.
Once you understand the principle, a complete table is not necessary.

0 - No Extra keys 1 - SHIFT

2 - COMMODORE - KEY 3 - SHIFT + COMMODORE

4 -CTRL - KEY 5 - SHIFT + CTRL

8- ALT 10 -ALT + COMMODORE

15 - SHIFT+COMMODORE+CTRL+ALT 16 -CAPS LOCK
(ASCIV/DIN-KEY)

7.6. EIGHT ADDITIONAL FUNCTION KEYS

When the eight existing function keys are not enough, the following
program will solve your problems.

To /any of the new function keys you can assign text that is sixteen
characters long, similar to the KEY command, and you can enter all the
control commands. You get the additional function keys with the <ALT>
key. You get the first function key, when you press ALT only, the second
with <ALT> and <SHIFT>. The <C=> key and <CTRL> key in
combination with <ALT> key activates the third and fourth. As a
by-product you get four more function keys but those are much harder to
produce. You would have to push several extra keys and <ALT> key at the

same time.

The following BASIC loader is a program that lets you assign the eight new
<ALT> function keys. You can't edit the text for the extra function keys

1RN

First Publishing Tricks and Tips for the C-128

directly on the screen. Only after you are fimshed entering the text will it be
displayed. You are then asked if everything is correct. When you program
your own lse for the <ALT> key you can use the same principles as we did
in the following machine language program.

-t

10 REM 8 EXTRA FUNCTION KEYS

20 FOR I = 5120 TO 5190

30 READ A

40 S =S +A

45 POKE I,A

50 IF A <> PEEK (I) THEN PRINT A,I, PEEK (I)
60 NEXT I

70 IF S < > 7375 THEN BEGIN

80 PRINT "?BERROR IN DATA

90 END

100 BEND

110 BANK 0: SYS 5120

120 DATA 120,169,13,141,20,3,169,20,141
130 DATA 21,3,88,96,72,152,72,165

140 DATA 211,168,41,8,240,29,152,205
150 DATA 96,20,240,23,141,96,20,10

160 DATA 10,10,10,168,185,0,20,240

170 DATA 13,201,13,240,15,32,210,255
180 DATA 200,208,241,140,96,20,104,168
190 DATA 104,76,101,250,141,74,3,169
200 DATA 1,133,208,76,55,20

210 REM INPUT OF THE FUNCTION KEYS

220 FOR I = 0 TO 7

230 BS = " ": REM 15 SPACES
240 PRINT "ALT-";I + 1

250 PRINT "INPUT TEXT: END WITH LINE FEED"
260 FOR J = 0 TO 14

270 GET KEY AS

280 IF AS = CHRS (10) THEN 330

290 IF AS = CHRS (13) THEN 330

300 MIDS (BS,J + 1,1) = AS

310 POKE 5248 + J + I * 16, ASC (AS)
320 NEXT J

330 POKE 5248 + J + I * 16,0

340 PRINT BS$S

350 INPUT "ALL OK (Y/N)";RAS

\ 1Q1

First Publishing

Tricks and Tips for the C-128

360
370

[

IF AS =

NEXT

I

IIN "

THEN 230

Here is the machine language portion of the above routine:

1400
1401
1403
1406
1408
140B
140C
140D
140E
140F
1410
1412
1413
1415
1417
1418
141B
141D

1420
1421

1422
1423
1424
1425
1428
142A
142C
142E
1431
1432
1434
1437
1438
1439
143A
143D
1440

78
A9
8D
A9
8D
58
60
48
98
48
A5
' A8
29
FO
98
CD
FO
8D

oA
oA

0):%
0A
A8
BS
FO
Cc9
FO
20
c8
DO
8C
68
A8
68
4C
8D
A9

oD
14
14
15

D3

08
1D

60
17
60

00
0D
0D
OF
D2

Fl
60

65
4A
01

03
03

14

14

14

FF

14

FA
03

SET ;Prevents Interrupt
LDA #SOD ;Sets Interrupt vector
STA 50341

LDA #§14

STA $0315

CLI ;Permit IRQ

RTS ;Back to Basic

PHA ;Accumulator on Stack
TYA ;Y-Register in Accu.
PHA ;Accumulator on Stack
LDA $D3 ;Flag for ALT

TAY ;Accu. in Y Register
AND #$08 ;Bit 3 set?

BEQ $1434 ;No, then $1434

TYA ;Value back in Accu.
CMP $1460 ;Previous Key ALT ?
BEQ $1434 ;Yes, then $1434

STA $1460 ;Stores 8

ASL iMove four Bits

ASL ;To the Left

ASL

ASL

TAY ;Accu. in Y register
LDAS$1400,Y;Character

BEQ $1437 ;$1437 whenzero

CMP #S$0D ;Return ?

BEQ $143D ;Yes, then $143D

JSR SFFD2 ;Give out Character
INY

BNE $1425

STY $1460 ;Stores Helpbutton
PLA ;Accumulator from Stack
TAY ;Accu. to Y Register
PLA ;Accumulator from Stack
GMP S$FA65 ;To normal Interrupt
STA $034A ;Return in Key Buffer
LDA #S01

10N

First Publishing Tricks and Tips for the C-128

1442 85 DO STA $DO
1444 4c 37 14 JMP $1437

7.7. KEYBOARD BEEP

Here is another little program that gives your C-128 programs a more

professional appearance: press any key and a low volume beep will sound.

The program changes the IRQ vector, so it reacts very fast to every key
press. For this reason it is not written in BASIC, but you can enter it in
your computer with the BASIC loader. To make programing easier your
computer will also give out a different tone whenever the <RETURN> key

is pressed. Below is the assembly language listing for those of you who are
familiar with machine language.

1400 AS FF LDA #SFF ; Set Value For
1402 8D 06 D4 STA $D406 ; the Beeptone
1405 8D 18 b4 STA sD418 i
1408 AS 08 LDA #5089
140A 8D 05 D4 STA $D405
140D 78 SEI ; Prevents Interrupt
140E A9 1A LDA #$1A
1410 8D 14 03 STA $0314 ; IRQ-Vector open
11413 A9 14 LDA #514 "
;Beep—-Routine
1415 8D 15 03 STA $0315 ; set
1418 58 CLI

Permits Interrupt

1419 60 RTS ; Back in BASIC
141A 48 PHA ; Accu. on Stack
141B AS D5 LDA $D5 ; Val. pushed key
141D C9 58 CMP #$58 ; key pushed?
141F FO0 24 BEQ $1443 ; Yes

107

First Publishing

Tricks and '1ips for the L-12>

1421 C9 4cC CMP #54C ; RETURN?
1423 DO OD BNE $1431 ; no, then $1431.
1425 A9 67 LDA #567 ; stores Frequences.
1427 BD 00 D4 STA $D400 ; Tone by RETURN
142A A9 11 LDA #511
142C 8D 01 D4 STA $D401
142F DO 14 BNE $1445
1431 C9 01 CMP #5501 ; RETURN key?
1433 FO FO BEQ $1425 ; Yes, then $1425.
1435 A9 67 LDA #$67 ; set Frequence for
1437 8D 01 D4 STA $D401 ; the Beeptone
143A A9 21 LDA #521
143C 8D 00 D4 STA $D40O
143F A9 11 LDA #511 ; Waveform
1441 DO 02 BNE $1445 ; Skip Next Line
1443 A9 00 LDA #$S00 ; Waveform, when no
key pushed

1445 8D 04 D4 STA $D404 ; Store Waveform
1448 68 PLA ; Accum. from Stack
144A 4C 65 FA JMP S$FA65 ; Normal IRQ

Here is the BASIC loader:

10 REM KEY SOUND

20 FOR I = 5120 TO 5195

30 READ A

40 S=S +A

50 POKE I,A

60 NEXT I

70 IF S < > 8932 THEN BEGIN

80 PRINT "?BRROR{SPACE}IN{SPACE}DATA"

90 END

100 BEND ,

, 110 SYS 5120

120 DATA 169,255,141,6,212,141,24,212

130 DATA 169,9,141,5,212,120,169,26

140 DATA 141,20,3,169,20,141,21,3

150 DATA 88,96,72,165,213,201,88,240

160 DATA 34,201,76,208,12,169,103,141

170 DATA 0,212,169,17,141,1,212,208

184

rirst runnsning ITICHS BHU 11PDS JUD LS L-120

180 DATA 20,201,1,240,240,169,103,141
190 DATA 1,212,169,33,141,0,212,169
200 DATA 17,208,2,169,0,141,4,212

210 DATA 104,76,101,250

{)

7.8. PROGRAM PAUSE

With this routine you can assign a program pause function to any key, you
can stop program execution with the key of your choice. You can answer

the door or the telephone without missing any computing.

-

If you would like to assign the program pause function to & key other than
the <NO-SCROLL> key, you have to add the following POKE commands
to the end of the BASIC loader:

POKE 5134, N
POKE 5140, N

The parameter N must contain the value of the key you choose. You can
find the exact values in the chapter 7.1.

The interrupted program resumes when you press any other key. This key
stays in the keyboard buffer and is read by the next input statement.

10 REM PAUSE-FUNCTION
20 FOR I = 5120 TO 5165
30 READ A

40 S =85 + A

50 POKE I,A

185

First Publishing

Tricks and Tips for the C-128

60 NEXT
70 IF S <

> 5361 THEN BEGIN

80 PRINT "?ERROR{SPACE}IN{SPACE}DATA"

90 END
100 BEND
110 SYS 5120

140 DATA 169,11,141,8,3,169,20,141

150 DATA 9,3,96,165,212,201,87,208

160 DATA 10,165,212,201,87,240,250,201
170 DATA 88,240,246,169,15,133,2,169
180 DATA 74,133,3,169,162,133,4,169

190 DATA 0,133,5,76,227,2

The routine in machine language:

1400 AS OB LDA #$S0B
1402 8D 08 03 STA $0308
1405 A9 14 LDA #514
1407 8D 09 03 STA $0309

140A 60 RTS

140B AS D4 LDA $D4
140D C9 40 CMP #$57
140F DO OA BNE $141B
1411 A5 D4 LDA $D4
1413 C9 40 CMP #$57
1415 FO FA BEQ $1411
1417 CS 58 CMP #9558
1419 FO F6 BEQ $1411
141B A9 OF LDA #80OF
141D 85 02 STA $02
141F A9 4E LDA #S4A
1421 85 03 STA $03
1423 AS A2 LDA #S$SA2
1425 85 04 STA $04
1427 A9 00 LDA #5500
1429 85 05 STA $05

142B 4C E3 02 JMP $02E3

186

®e Me We W W W N N N W W,

Changes Vector
For "execute
next BASIC-Line"

Back to BASIC
Value of Key
NO SCROLL?

No

Value of Key
NO SCROLL?
Yes, then wait
No Key?

Yes, then wait
Next BASIC-Line
execute

——r

First Publishing Tricks and Tips for the C-128

7.9. HELP & RUN/STOP KEY ASSIGNMENT

The C-128 has a total of ten function keys, that you can assign yourself. In
addition to the eight function keys above the numeric keypad, there are two
more: one of them is the <HELP> key, which is actually function key ten.

You can reach the ninth function key with the «SHITT= anrl
<RUN-STOP> key combination. This key is assigned with

DLOAD" *
RUN

These lines load the first program from the disk drive and then run the
program. This text can be chapged, but not with the KEY Command. If
you enter KEY 9 or KEY 10 the computer will print out " ? ILLEGAL
QUANTITY ERROR ".

But a little program can take care of that problem:

10 REM FUNCTION KEY 9 + 10

20 REM [SHIFT] RUN/STOP + HELP
30 FOR I = 4096 TO 4103

40 A=A + PEEK (I)

50 NEXT I

60 PRINT "~ = RETURN"

70 PRINT CHRS (27);"F"

80 FOR I =0 TO 1

90 PRINT "FUNCTION KEY # "9 + I
110 GET KEY BS

120 IF BS < > CHRS (13) THEN BEGIN
130 PRINT BS; i !

140 B = ASC (BS)

150 IF B = 94 THEN B = 13

160 POKE 4106 + A + Z,B

187

First Publishing Tricks and Tips for the C-128

170 2 =2 + 1

180 IF A + 2 + 4106 > 4351 THEN END
190 GOTO 110

200 BEND

210 PRINT

220 POKE 4104 + I,2

230 A=A + 2

240 2 =20

250 NEXT I

With this program you can change the assignment of these two keys. If
you'd like to execute a <RETURN> (CHR$(13)) after the text, you have to
enter an up arrow (T). To make it possible to enter commas we used the

GET command.

After minor changes, this program can be also used to change the
assignment of the other function keys. This would be very useful for
function key assignments with text of more than 128 characters. In this
case you would obtain an error using the KEY command.

The assignment of the function keys is in memory at 4096 ($1000) to 4AA2
($1100). In the first ten bytes, the length of the function key text is stored.
With these values you can find out the start address of the text. When you
add the first five bytes to each other, you get the start address to the text of
F6. You can assign a total of 245 characters to the 10 function keys. The
program will not allow you to enter a longer text.

Of course you can use different control characters other than <RETURN>.

You can enter these directly. Example: If you like to scroll up your screen
ten times you just push the <ESC> and the <W> key 10 times.

1RR

First Publishing

ITICKS Uuud 11ps 108 tuc w-120

If you entered a wrong character you should not use the <INST-DEL> key.
This key seems to work alright, but the entering of the <INST-DEL> key
will then be stored in the function key definition.

189

