First Publishing ‘Iricks and 1Ips 5o¥ {ue C-izo

COMMAND EXTENSIONS

After you switch on the C-128 it displays the following message:

COMMODORE BASIC V7.0 122365 BYTES FREE
(C)1985 COMMODORE ELECTRONICS, LTD.
(C)1977 MICROSOFT CORP.

ALL RIGHTS RESERVED

Microsoft developed the popular version of BASIC called MBASIC that's
widely used on CP/M computers. MBASIC has a large command set;
perhaps this is why the BASIC 7.0,0f the C-128 has so many commands.

BASIC V7.0 is upward compat_ible to the BASIC V2.0, V4.0 and V3.5.
The V2.0 version is the grandfather of the other BASICs; the V1C-20 and

the C-64 contain BASIC V2.0. BASIC V4.0 is used in the large
Commodore computers, such as the 8000 series. Commands for the disk
drives were added to the commands of BASIC V2.0 (for example,
DIRECTORY).

The next BASIC version, BASIC V3.5, is for the C-16, C-116 (available in
Europe) and the Plus/4 computers. BASIC V3.5 contained many new

graphic commands. Programming aids and a machine language monitor are
also included in V3.5

The C-128 features BASIC V7.0. Even more commands have been added,

such as sprite control, music programing (limited in version V3.5) and disk

commands. And there is another convenient option: the command GO 64.

193

First Publishing Tricks and Tips for the C-128

This command turns the C-128 into a C-64 .

Even with all the new commands, you'll find that more are required. How
about PRINT AT?, or POP?, or GOTO X? and RESTORE X?. We easily
could continue this list. As a frequent programmer you'll rely on several

helpful routines, such as APPEND. What then? You'd usually call them
with a SYS and some values behind it. But how many addresses can you

remember, and how understandable is a program when it's full SYS
commands?

Luckily it's easy to insert new commands into the operating systems of
Commodore computers. We use the routine called CHRGET (CHRGET
means CHaRacter + GET) to accomplish this small miracle.

8.1. WHAT IS THE CHRGET ROUTINE ?

When you turn on the C-128 the CHRGET routine is copied from the ROM
to the RAM. We will explain that luter. Right now we'll deal with the
function of the CHRGET routine.

With the CHRGET routine, the computer takes a character from the BASIC
text, meaning from the program memory or from the BASIC input buffer.
The BASIC interpreter always jumps to the CHRGET routine to get the next
character. Lets have a look at the CHRGET routine for the C-64:

0073 INC $7A

0075 BNE $0079
0077 INC $7B

194

First Publishing

IrICKS «nad LIPS IOF 1N¢ C-iis

0079 LDA S$HHLL
007C CMP #S$3A
O007E BCS $008A
0080 cCMP #3520
0082 BEQ $0073

0084 SEC

0085 SBC #5530
0087 SEC

0088 SBC #SD0 =
0o8A RTS

The first three instructions increment the value of the text pointer. The leust
significant byte of the pointer is incremented. But if there is a carry
(meaning greater than 255), then the most significant byte of the pointer 1s
also incremented. When you look at the address of the pointer (called
$HHLL in the above routine) you will notice it is located within the
CHRGET routine. Now the ROM - RAM copy procedure makes sense:

the routine changes itself!

The actual value of $HHLL is the pointer to a location within the BASIC
program text. The pointer is called TXTPTR and is actually a vector at
$007A. The CHRGET routine loads the accumulator (LDA instruction at

address $0079) with the next character of BASIC text pointed to by
TXTPTR.

This character is checked in several ways. First the character will be
compared with the ASCII value for the semi-colon. The routine returns
when the character is larger or equal to this value. If the character 1s the
semni-colon, the zero-flag becomes set , in addition to the carry-flag. If the
character number is smaller, the tests continue. The first test checks to see
if the character is a space character. If so, the next character will be
examined. In effect, space characters are ignored (PRINTX has the same

195

First Publishing Tricks and Tips for the C-128

effect as PRINT X). The two next commands check to see if the character
is a number between 0 - 9.

The CHRGET routine of the C-128 has been changed:

0380 INC $3D

0382 BNE $0386
0384 INC S$3E
0386 STA $FFO1
0389 LDY #5300
038B LDA ($3D), Y
038D STA SFFO03
0390 CMP #83A
0392 BCS S$O039E
0394 CMP #520
0396 BEQ $0380
0398 SEC

0399 SBC #$30
0398 SEC

039C SBC #S$DO
039E RTS

The first three instructions increment a pointer again. This pointer is not
within the CHRGET routine anymore, but in zero page. The next
instruction assures that the computer takes this information from the correct
bank. This instruction is similar to the BASIC command BANK 0. RAM
Bank O is always activated. That guarantees that the program can use the
full 64K of the RAM in Bank O (minus the first few pages that are used by
the system).

The next two commands instructions retrieve a character from the BASIC
text. Because the Y register is used as an offset, it must be set to zero first.

10/

e ——

s i P —

T — S e e

First Publishing Tricks and Tips for the C-128

The instruction at address $038D switches the banks back again. This
machine language instruction is equi{/alen‘t to the BASIC command BANK
14, which switches on BASIC interpreter, character generator, and RAM
Bank O.

The following instructions are just like the C-64's, meaning the check
procedure for semi-colon, space character, etc.

A last word on the CHRGET routine: once in a while the operating system

jumps to the CHRGET routine at address $0386 ($0079 in the C-64). Then
it's called CHRGOT. You will also get a character, but the pointer is not

incremented. The last character will be read.

8.2. CHANGING THE CHRGET ROUTINE

Here we limit our discussion to the C-128, because there 1s enou,.
literature available on how to change the routine on the C-64. To insert new
commands you have to change the CHRGET routine--but where do you do
that? Theoretically you could do it anywhere, but only two solutions are

practical:

a) Each time you get a character, a certain function will be executed.

b) A new command must be inserted.

197

In a) you want to change the CHRGET routine at the start. Here is an

example. Enter the monitor and type in the following assembler fisting:

d 0380 JSR $0B0O
0383 NOP
0384 NOP
0385 NOP

0B08 STA S$FF00
O0BOB LDA $D020
OBOE EOR #S$FF
0B10 STA $D020
0B13 RTS

Leave the monitor with the "X" command, type in a character and press the
<RETURNS> key. The border color will change (the border color of the

forty column screen, because we are manipulating the VIC chip). Let's have
a closer look at the listing.

It has two parts. Part one is located in the CHRGET routine and alters the
routine itself. When you enter a character now, the computer will call a
subroutine at $0B00. This subroutine constitutes part two. Here, it
continues the first part of the CHRGET routine that was replaced by the
first part. Then the I/O is switched on to gain access to the VIC chip (Bit O
is responsible for this; see Chapter 9, "Banking"). The access to the VIC
chip occurs with the next three instructions. Here we change the border
color. The bank that was on before the called routine switches on again,
Finally, you return to the CHRGET routine with a RTS.

198

a sse A sanrssessasgy

You have to remember one thing: the functions performed by the CHRGET
routine must be kept intact. If any section is missing, the operating system
will not function properly anymore. For example, the system will crash if
you leave out the instructions in the second part of the assembler listing that
raise the indicator in the CHRGET - routine.

Very seldom are commands one character in length. Usually you would
like an action performed only if several characters are entered. This

character sequence becomes the new command.

The CHRGET routine can accomplish this task. Enter the following

assembler listing (you should reset the computer before entering the listing):

0380 INC 53D

0382 BNE. $0386
0384 INC $3E

0386 STA SFFO1
0389 LDY #500
038B LDA ($3D), ¥
038D JMP $0BOO
0390 STA SFFO3
0393 NOP

199

First Publishing Tricks and Tips for the C-128 1 First Publishing Tricks and Tips for tue C-?

This time the CHRGET routine was changed at address $038D. There we 0380 INC 3D
) o 0382 BNE $0386
jump to address $OBOO (this time not JSR, but JMP). The instruction at 0384 INC S3E
address $0390 (STA $FF03) was taken from the old CHRGET routine. gggg ig? jgggl
The NOP instruction assigns the free byte in the CHRGET routine. Now to 038B LDA ($3D), Y
th : 038D JMP $0BOO
e part after addrc§s $0B0O 0390 STA SFF03
0393 NOP
Fi . . Thisvalweis | TS S m s =m----— -
irst the charact?r read is compared thh.the valu.e $FF (255) Tl.ns value is 0B0O cMp 4 SFF
the token for Pi (x). 'If the character is not Pi (1), you continue from 0B02 BNE $0B14
fiddress $0B 14.' There the CHRGET routine c.on'tinucs. First the charlacter 828% IS?‘: g?gg 0
is compared with that of the semi-colon. If it is larger, Bank 14 will be 0B09 LDA , $R020
. . . SN, sy 0BOC EOR #SFF
activated (just like the CHRGET routine); then it will jump to the address OBOE STA $D020
where the CHRGET routine was called. If the ASCII value of the character 0B11 JMP $0380
is smaller than the value of the semi-colon, it continues with the JMP 0B14 CMP 588
0B16 BNE SOB28
instruction to the normal CHRGET routine. 0B18 LDA #500

Let's imagine the entered character was Pi (). In this case you continue the 0B20 EOR #SFF

program. at afidrcss $0B04. Here, Ba.nk 15 switches c.m to have access to 8:32 ig{? ggggé

the /O (in this case the VIC). Then, like the other routine, the value for the ’ 0B28 CMP #$3A

screen border is inverted. Then there's the usual jump back to the 8?‘5‘2 3;2 ggggg‘

CHRGET routine, to read the next character. OB2F STA SFFO03
0B32 RTS

Now enter a Pi (%) and press the RETURN key. The border color of the
forty column screen will change. When you enter Pi (n) again, the frame [Two new commands are inserted by this listing;
color goes back to normal. ’
a) Pi (m): Here you invert the value for the border color, just like in
Contain your curiosity and don't experiment with the Pi () character (for the previous routine.

example, what happens when you enter it in a program line). First, enter the b) LET: This command inverts the value for the background color.

following assembler listing:

200 ! 201

First Publishing Tricks and Tips for the C-128

8.3. THE "BEHAVIOR" OF THE NEW COMMANDS

Enter the character Pi (nt) with a line number and you will see that the
command will be executed immediately. It will not be carried out in the
program. Now try out the same with the command LET. The command
will not be executed right away, but will be executed in a program RUN.

As you can see the computer can distinguish between normal and new
BASIC commands.

Now enter Pi (%) in a line again, but type in a semi-colon at the start of the

line. Again, the command will be executed immediately, but the line will be
malntined. That also works when you insert new commands between old

commands. Enter the semi-colon and the command LET in the line. In this
case you also maintain the line, and when you start the program the border
and background color will change. Try the following line:

f{

10 LET GOTO 10

Even though it looks wrong, it functions well: the value for the background
color will change quickly (this effect is really interesting).

That works in the following format also:
10 GOTO LET 10
This works because the interpretation of the BASIC lines will go to the

(changed) CHRGET routine. The token for GOTO will be read first.

Because this value does not equal one of the values of the new commands,

202

First Publishing Tricks and Tips for the C-128

it jumps back from the character analysis and branchs to the GOTO
command. There it will jump to the CHRGET routine again, to get the line
number. But this time the character equals the value of the new commund,
which is $88 for LET. So, the color is changed and then jumped back to
the CHRGET routine. There the next character, the number 1, is read and
jumps back to the GOTO command. The command LET is executed but
otherwise it is ignored. Of course, that works behind any other command.
But there are some limitations:

a) The new command cannot be in other commands. The following

example does not work:

10 GO LET TO 10

That is because GOTO becomes changed into a token first. In this
case the GOTO command will not be identificd, so it won't get
changed to a token. But you can place the new command in

numbers:

10 A=100LETO
20 PRINT A

Here A receives the value 1000.
b) The new command is not identified in strings.
10 PRINT "LET"

will print LET without changing the background color.

203

rirst rublshing

Tricks and Tips for the C-128

8.4. SEVERAL ADDITIONAL COMMANDS

If you want to add more commands, the listing above would be too tedious.

If you wanted to check for every new command, the command extension

would grow too large. There is an easier method; as follows:

0380
0382

0384
0386
0389
038B
038D
0390
0393

INC
BNE

INC
STA
LDY
LDA

STA

£3an
$0386

S3E
SFFO1
#$00
($3D),
$SO0B0O
S$FFO03

Y

$0B27,

$0B26,

588,

$OB
$0B

204

Y

Y

SFF

- sarmggy

T e e Tty

First Publishing

Tricks and Tips for the C-128

0B2A

0B2C
0B2E
0B31
0B34
0B36
0B39
OB3C

OB3E
0B41

0B44
0B46
0B49
0B4C
0B4D
0BS1
0BS4
0B56
0BS59
0B5C
OBSE
0B61

$53,

LDA
STA
LDAa
EOR
STA
LDA
EOR

STA
JMP

LDA
STA
LDA
EOR
STA
JMP
LDA
STA
LDA

ECR -

STA
JMP

$S0B

#500
SFF00
$D020
533
$D020
$D021
#SFF

spozil
80380

$D021
SFF00
$D021
#SFF

$D021
$0380
#$00

SFF00
$D020
#SFF

$D020
$0380

In the part after $0B0O three commands are defined:

a) Pi(m): Functions like above

b) LET: Functions like above

¢) @= Pl (n)and LET

The principles are easy to understand. The codes of the new commands are

stored in a table, and the addresses where the commands should be executed
in another table. Take a close look at the listing again:

$0B00:
$0B02:
$0B03:

Here you load the number of new commands in the X-register.

Decrement by one.

When all commands are carried out you jump to address $0B0C.

205

ST A uwLIIMIE

LIILKRY Auu 11pPd U WIE L-140

$0BO5:

$0BO8:

$0BOA:

$0BOC:

$0B17:

$0B18:
$0B19:

$0B1A:

$0B1D:
$OBIE:

$0B21:

This BRANCH command also checks if the X-register contains
the value zero (you also check if X=2).

Here the entered character is compared with a byte from table
$0B23 - $0B25. This table contains the values for the new
commands.

Here you jump to address $0B17 when the entered character is
equal with one of the new commands.

If it was not equal, jump to $0B02 and compare the entered
character with the next command,
You continue with this address when the entered character does

not equal any of the new commands. At address $0B16 the
routine is the same as in the normal CHRGET - Routine.

You continue here when the entered character was equal with one
command. The number of the command (0 - 2) will be placed in
the X-register,

Multiply by two

and place back in the X-register again.

Here is the high-byte of the address where the new command
starts, pulled in from the accumulator.

Stored on the stack.

Here you get the accompanying low-byte.

And also stored on the stack.

You can see for yourself that with the separate X register values, the

following low/high-bytes'become stored on the stack:

CHDL CUDHDIIEG

1rIChs usd llpb Jud the L-Lllo

X-Reg. Low - Byte High - Byte Command
0 $2B $0B @

1 $43 $0B LET

2 $53 $0B Pi

This address must always show one byte below the address where the

routine really starts. So the command LET starts not at $0B43, but at
$0B44. The reason for this is in the next command:

$0B22:

$0B23 - $0B25:

$0B26 - $0B2B:

Here is the return from the subroutine. But from which
subroutine? $0B00 was called with JMP, and not with JSR.
Now by RTS the jump address is called from the stack; first the
low-byte, then the high-byte. One address was stored in the
stack by the prev{ous instructions, and called in the program
counter. This is incremented to get the next command. That is
why the address had to be one byte lower than the correct
address. You fool the computer, because you tell it, that a JSR
instruction brought it to address $0B22 (which is before the sturt
of the respective command).

Table with codes of new commands

Table with addresses of new commands (-1!)

The new commands, which start at $0B2C, will not be explained aguin.

i |

You shouldn't think you can use only commands of one byte lengths, or

commands that already exist. Of course you can use your own longer

207

First Publishing Tricks and Tips for the C-128

commands. The length of these commands can be different. When you
examine the three tables, please notice that the first contains start addresses
of the strings which are to be compared, the second contains those strings,
and the third has the addresses of the commands.

And here's a last tip; always place an identifying mark in front of your
commands, such as @. That makes it easier to tell your own commands
from the commands of the Interpreter. This will make your work easier and

faster.

208

First Publishing Tricks and Tips for the C-128

BANKING

9.1. THEORETICAL BASICS

We don't want to write a book about theory, but you should know some of
the basics about memory management.

A few years ago the VIC-20 in the standard version had only 5K of RAM.
It had 3583 Bytes available for BASIC programs. It had a 20KByte of
ROM, which was extendable to 32K RAM and 24K ROM. Together you
had 32K + 24K = 56K memory available. This could be addressed with the
6502 processor,without any problems, because it had 16 address lines
available which ullows for nccess to 2716 = 65536 = 64K of memary.

In a short time memory became so inexpensive that computers could be
packed with memory and still remain within the price range of home
computers. But how was the additional memory supposed to be addressed?
To install a CPU with more than 16 address lines would result in an

-

excessive price increase.

Engineers worked out three methods to use more memory than can be
addressed. For C-128 owners only one of these is interesting; its called
BANKING or BANK SWITCHING. In this method, memory chips are
installed "above each other" , which contain the total amount of addressable
memory. This means that two memory banks are located in the exact same
address range. But only one memory bank is used at a time. To choose a

211

First Publishing Tricks and Tips for the C-128

particular bank, you can electronically (under program control) switch
between those banks. This makes it very easy for the user, but creates a

problem for the manufacturer of the computer system.

If, after the bank switching, the program returns to the wrong bank, and

hence the incorrect program code, the computer will "hang up". It would be
possible to switch only a certain range (for example, the operating system)

instead of the total memory range. But that would mean a loss in memory
size again. There is a possibility to switch the whole memory with an easy
hardware solution (just like in the C-64, when you read the address $A000,
then you read from the ROM, but when you write at address $A000 you

write in the RAM).

This is enough theory on bank switching and memory management. Let's

return to the C-128 memory management.

9.2. BANKING WITH THE C-128

The Commodore advertisments for the C-128 state that it has 128K Bytes
RAM (expandable to 512K Bytes) and 48K Bytes of ROM. How can this
be possible if the microprogessor can only access 64K bytes at one time?
The memory is overlayed and the proper memory bank is selected when
necessary. The picture on the next page should clarify this.

But how is the memory management accomplished?

212

First Publishing Tricks and Tips for the C-128

If you examine the memory diagram you will notice that the C-128 uses
banking somewhat like the C-64 (the C-128 contains more overlayed
memory banks. To manage this big mess, you need an additional integrated
circuit. In the C-64 this was the AM (Address Manager). Because
Commodore owns a company that makes integrated circuits (MOS

Technology), they quickly designed a new integrated circuit called MMU
8722 (Memory Management Unit). The MMU controls which bank is

currently accessed and makes sure that the computer always calls the
information from the right bank.

)

1

FrOS j - _/ . 7

i x .',.l

FFO0 z |z g%)

Z Z|— + X

KERNEL 955;/% Coo

(000 G;:Z:H . .

OHRJZ =|=~ ' '

-7 - =

0000 e, -“ 170 \7/ G

\: 810S P (L P = N

cooo Ur e S _|zZ e RER

xr Z|= ‘ '

BOOO MONITOR selgkl® ||z

SEIZ W x z < i

i- 2 lz|=j®2 |

BASIC HI ..// = » Yoo

]]

]]

8000 : ,

7

BASIC LO /////

4000 /,/"
0000

213

S

First Publishing Tricks and Tips for the C-128

9.3. SWITCHING THE BANKS WITH THE MMU

To switch the banks you use only one register of the MMU, register 0. It
is called the CR (Configuration Register). The bits have the following

function:

Bit Function

0 Seleots the range $1D000 - $E000 ;
0=10 1 = ROM /RAM

1 Selects the range $4000 - $7FFF :
0=ROM 1 = RAM

2&3 Selects the range $8000 - $BFFF :
00 = System ROM 01 = internal function ROM
10 = external function ROM 11 =RAM

4 & 5 Selects the range $C000 - $FFFF :
00 = System ROM 01 = internal function ROM
10 = external function ROM 11 =RAM

6&7 Selects the RAM - Memory :

01 =RAM - Bank 1
11 = RAM - Bank 3

00 =RAM - Bank 0
10 = RAM - Bank 2

Here are some further explanations:

a) Bits 4 and 5 are dependent on bit 0. This means when bits 4 and 5 are
set and O is not, then the area from $C000 - $FFFF is not completely
RAM. From $D000 - $E000 is the /O (Input/Output). RAM would be
there, when Bit 0 would be set to 1. If Bit 01is O, the I/O is switched on
independently of bits 4 and 5. But bits 4 and 5 control the memory
layout from $C000 - $FFFF.

AT

First Publishing Tricks and Tips for the C-128

b) In the present versions of the C-128 bits 6 & 7 make sense in only the
first two modes because the RAM Banks 2 & 3 are not available yet.

c) In the area from $FF00 - $FF04 the system memory is located,
independent from this register. The first of these five bytes ($FF00) is
register O of the MMU. You are prol;:ibly wondering why. The
answer is very simple. Imagine you have the I/0O switched off, for
exnmple, to access to the churacter generutor. Now you would like to
turn on the I/O, to change the screen color, but how do you switch it
back on? The registers of the MMU are also in the /O (excuse us for
holding that information back so long): from $D500 - $D50B! Now
the memory cell $FFO0 wakes action. Because this register has the sume
function as register O you can switch the 1/O back on.

Because banking wouldn't be very user friendly if it could only be done
using the registers of the MMU, the programmers of the BASIC interpreter
implemented a new command: the BANK command. The SYNTAX is as
follows:

BANK nr
The nr is a number from O to 15 that activates the respective memory

configuration. On the next page is a chart showing the different memory
configurations of each bank.

215

First Publishing

Tricks and Tips for the C-128

SOWw N o

o ~ o w»

10
11
12

13

14

15

Contents of $FF00

aag 00111111
S7TF $01111111
SBF $10111111
SFF $11111111
$16 $00010110
$56 %$01010110
$96 %$10010110
$D6 $11010110
S2A %$00101010
S6A %$01101010
SAA %$10101010
SEA %11101010
$06 %$00000110
$O0A $00001010
$01 %$00000001
$00 %$00000000

Memory Configuration

RAM - Bunk 0 !
RAM - Bank 1 f,
RAM - Bank 2 1
RAM - Bank 3 |
Function - ROM internal, with !
RAM - Bank 0 and /O ‘
Like above, but RAM - Bank 1 |
Like above, but RAM - Bank 2

Like above, but RAM - Bank 3

Function - ROM external,

with RAM - Bank 0 and VO

Like above, but RAM - Bank 1

Like above, but RAM - Bank 2

Like above, but RAM - Bank 3
Function - ROM internal low , with

Kernal, RAM - Bank 0 and VO
Function - ROM external low , with
Kernal, RAM - Bank 0 and /O
Kernal with BASIC, Character -
generator and RAM - Bank 0
Kernal with BASIC, /0O and RAM -
Bank O

The command "BANK 15" is the the configuration when the computer is

turned on.

AR S B e

O,

e

b

]

o —

e

r——

First Publishing Tricks and Tips for ihe C-128

AUTOSTART o

10.1 AUTOSTART FROM THE DISK DRIVE

Many first time Commodore computer users have difficulty in starting
their first program; they have not yet learned “computerese”. On some
computer systems, MS-DOS computers forexample, it is possible to start
a program by simply turning the computer on and inserting a disk in the
disk drive. To start a program with the CP/M and MS-DOS operating
systems all you have to do is type in the name of the program and press
the <RETURN> key.

In the C-64 it was a little harder. You had to enter LOAD, the name of
the program, "8" (maybe even ",8,1"). But admittedly the C-64 was
designed for hobbyist programmers, people with some experience in
using computers. The C-128 is aimed at a different group, the business
user, and because of this it is equipped with the CP/M operating system.
As aresult it is possible to load programs automatically from disc, starting
them when the computer is first turned on. This "autostart" routine is also
called by resetting the computer.

This "autostart” routine holds several possibilities. You can load any
number of blocks from disk (but they have to start in sequence from track
1, sector 1) before you load any program. After loading you can execnte
the program. So you could load in a new language (for example
FORTH), then a program in the new language and then switch on the new

¥

First Publishing Tricks and Tips for the C-128 First Publishing Tricks and Tips for the C
ips for the C-123

language. The same can be done with BASIC programs. We'll only

know how many possibilities there are after the C-128 is on the market
. ; F8B2 LDA S$BF
for a while. ¢ F8B4 STA $0106
i F8B7 LDA #$00

In the next sectionwe will explain the "autostart" routine in detail. If you .
" " ' H : F8BE LDA #S$01
only want to use the "autostart’, you don't have to study this section F8CO LDX #5%15
simply use the programs presented here, But if you want to know more _ F8c2 LDY #§FA
. . il e
about how these procedures operate, you should continue reading. i‘gg ?l ggi ig é (3) 1

F8CY9 LDY #S$OF
g F8CB LDX,SBA

10.1.1, THE BOOT-CALL ROUTINE . FBCD JSR SF738
F8DO JSR $FFCO

The boot-call routine is located in the operating system from $F890 - - €8?3_ _BES_$§8§B_ _

$F98A. You should call it with address $FF53; this is where it is located

in the kemnal jump table.

F890 STA $BF

1
!
]
i
!
First the listing of the routine: E _ F8EO TAY
F892 STX $BA !

F894 TXA

F895 JSR S$F23D E o iERe o BLLSE
" “peos | Lpx #s00 _ F8EB_ JMP $F98B
FB9A STX SOF F8EE LDA #500 ST
F89C STX $C2
FBFO LDY #S0B
FBOE INX
F8O9F STX $C1 f F8F2 STA S$AC
______________ ! F8F4 STY $AD
' A i al
F8A1 INY | - - -
F8A2 BNE $F8AL | _ F8F6 JSR SFODS
T ex L rers px #so0
FBF9 LDX #S00
B F8AL
- faés_ - §3_$_8§ _____ F8FB LDA $OB0O, X
F8A7 LDX #$0C gggi ggg §§§§§'X
F8AS LDA SFAOS8,X | foos oNE

220 .

First Publishing

Tricks and Tips for the C-128

— e mm s me s ew =
-— . m we e =

CPX

#3503

BCC S$F8FB

JSR $FAl7

4F 5
47 2

JSR

2E 2E 2E 0D

00

LDX

4 49 4E
0 00

$0B0O, X
$AS9, X

#507
SF917

$0B00, X
SF92A
SFFD2

SFI91F
$9E

SFAl17

$SOE

.BYTE $2C

INC
INX
LDA
BNE
INX
STX

$9F

0B0O, X
$SF94B

$04

299

e — e

First Publishing Tricks and Tips for the C-125

F953 INX
F954 STX $04

F958 LDA #S3A
FOo5a STA #0B0O, X

FO5E LDA S$BF
F960 STA $0B0O, X
F963 STX $9E

The first two instructions store the contents of the accumulator and the
X-register in the zero page. The function of these two bytes are: the
accumulator represents the device address of the disk drive, from where
you lqad a program. The X-register contains the device address of the
disk drive, where you will search the disk for an autostart sequence. In
most cases these bytes are identical. During a reset both register contents

2723

First Publishing ‘Iricks and 11ps 10or tne L-1z0

are set to 8. You execute an autostart only on the disk drive with a device
address of 8. A programmer can jump to this routine in many different
ways, for example, with SYS DEC ("FF53"),9,9. This command
searches a disk drive with device address 9 for the autostart track and

sector.

The subprogram, called in address $F895, closes all files with the device
address in the accumulator. The function is clear: the commands and
data, which are supposed to be sent to the disk, wouldn't reach the disk
quickly enough if a file was still open.

The files close in the following manner: first a table is searched which
contains the device address of the present open files for the determined
device number. The computer finds the device number in this table
($0362 - $036B) then it finds the respective file number (the information
in both tables are in the same place). This file is closed with the kernal
routine CLOSE ($FFC3). This happens with all open files (the amount is
in $98). There is a third related table at ($0376 - $037F), this contains the
secondary addresses of the open files (in the same sequence as the other
two tables).

The next five instructions of the boot-call-routine set the following zero

page bytes to the following values:

$9F (159): 00
$Cl1 (193): 01
$c2 (194): 00

The address $9F is a counter and will be used later.

274

T rr—

e —————————

kirst Publishing Tricks and Tips for the C-12

In $C1 is the track number, in $C2 is the sector numaber of the block of
the disk where the information to be loaded is located. The information
for the "autostart" boot-call is on track 1, sector O--the first block on 111;
disk. This block may not be used for any other data storage if you wish o
make an "autostart” disk. The ideal solution is, to use only "fresh”
formatted disks for "autostart" programs. Or check with a disk monitor 10
see if the block is used or not on disks that contain data.

Track 1 and sector O are not only used for the autostart routine, but also o
load the CP/M operating system. CP/M uses the autostart routine to load
and exccute the new operuting system. The next four commauands (from
$F8A1 - $F8AG) are a delay loop. Then 13 bytes from the operating
system (from $FAOQ8 - $FA14) are, copied into the RAM (from $0100 -
$010C). These bytes have the following values:

FAQ8: 30 30 20 31 30 20 30 20 33 31 3A 31 &5
When you translate these characters to ASCII format and put them in
sequence you will receive the following command:

|

Ul: 13 0 01 oO"
If you are familiar with disk drive commands, the command sequence will

make sense to you. If you are not familiar with the disk drive commands,
please be patient.

225

First Publishing Tricks and Tips for the C-128 First Publishing Tricks and Tips for the C-128

The two instructions from $F8B2 - $F8B6 store the contents from $BF to disk. If you switch disks that have the same ID, the drive still thinks the
a string. At the start of the routine the address $BF was loaded with the old disk is inserted; this can can cause a great deal of trouble. The
chosen device address. That means, you write the device address instead programmers of the C-128 didn't trust that 11l of your disks would have
of the single zero into the string. different IDs, so they inserted this command.

The next eleven instructions have the following function: | Using the file number zero you can send commands to the disk drive. In

' address $F8D3 is a BRANCH instruction. This jumps to address $F8ER

Value Location Function if the disk drive didn't report its presence on the serial bus (for examnle

#0 $C6 Bank - Number for LOAD/SAVE/VERIFY when it is switched off). In this case you don't get an error message.
#OF $C7 Bank - Number for present file name 1 Try it out with the following command (you probably don't have your
#01 $B7 Length of present Filename '. disk drive switched to device address 10).
#15 | $BB Low - byte address of file name
#FA $BC High - byte address of file name ' SYS DEC ("FF53"), 10,10
#00 $B8 Logic data -file number
#0F $B9 Secondary address | "READY" will appear again.
#BA $BA Device address ;
__ When the disk drive reports its presence on the serial bus, you continue at
So, the file name is in address $FA1S. In this address is the value $49 address $F8D5. There you set more parameters:
(73). This value is the ASCII value of the character "I". Then the '
instruction following (JSR $FFCO) calls the kernal routine OPEN. These : Value Comes after Function
assembler instructions are the same as the following BASIC command: , #01 $B7 Length of the present file name
#16 LB Low - byte address of file name
OPEN 0, Deviceaddress, 15, "I" #FA $BC High - byte address of file name
‘ d #0D $B8 Logic data - file number
The "I" stands for the disk command "INITIALIZE". This command E #0D $B9 Secondary address

reads the BAM (Block Availability Map) of the inserted floppy disk. This #BA $BA Device address
command is used to check the disks for different IDs. The ID on the disk
tells the drive if a new disk has been inserted since the last time it read the The value $23 (35) is in address $FA16, which is the pointer in
BAM. The Block Availability Map keeps track of the free space on the $BB/$BC. The filename is "#".

226 2oe

First Publishing Tricks and Tips for the C-128

The assembler instructions (with the call of the OPEN Routine in $F8E6)
is the same as the following BASIC command:

OPEN 13, Deviceaddress, 13, H

In case you are not familiar with the disk drive, this reserves a buffer in
the disk drive, for the information to be read from the disk. You have

access to this buffer over channel 13.

Here you leave the boot-call routine if the disk is not present in the disk

drive.

The four instructions from $F8EE - $F8F5 set the bytes SAC/$AD to

$0BO0O (the cassette buffer). These two zero page addresses are used as a
pointer; the caasetts bulfer is used to store the charucters read from the

disk.

Address SF8F6 sends a command to the disk drive and characters are
called accordingly. This important routine is listed and documented

below:

F9D5 LDX #$00 ; Logic Filenumber
F9D7 JSR $FFC9 ; Output device with Device
address of file number 0

F9DA LDX #$0C Amount of Chars to send-1

FODC LDA $0100,X ; Call Character

FODF JSR S$SFFD2 ; And Send (BSOUT)

FOE2 DEX ; All Characters ?

FOE3 BPL S$F9DC ; No

FO9ES JSR SFFCC ; Close Present T/0 Channel

at IEC - Bus (CLRCH)
Logic Filenumber

-

FOES8 LDX #%0D

nIQ

R

First Publishi i
ng Tricks and Tips for the C-123

F
9EA JSR SFFC6 ; Device address of file

with number 13

;ggg Egz #8600 ; Counter to zero
Fon phdi §§§CF ; Enter Character (BASIN)
BC ; And store in Address
determined by AC/SAD (in
POFS Ny bapk determined at S$C6)
H ?alse offset for pointer
AC/SAD
F9F6 BNE S$F9EF ; Sgill not all characters
FOF8 JMP SFFCC ooatck!

; Close present 1/0 Channel
at IEC-Bus and Jump back

In this case the message "U1:13 0 01 00" is sent and the block at track 1
sector 0 is read into the buffer. This buffer is read and the bytes from

$0BOO0 - $0BFF are stored. Then you continue the boot-call routine.

Next the contents of the addresses $E2C4 - $E2C6 arc compared with the
first three bytes thut were read In. If one of these bytes is different, you

leave the routine just as if the disk wasn't present. This means thesc three
bytes contain the information determining whether an autostart will be

performed or not! The three bytes in the operating system have the
following values:

SE2C4 : $43 (67) "C"
$E2CS : $42 (66) "B"
$E2C6 H $4D (77) "M

The first three bytes from track 1, sector 0 together build the string
NCBMII. -

First Publishing Tricks and Tips for the C-128

If all the bytes are equal, the message “(CR) BOOTING" will be output
on the screen. This uses the kernal routine PRIMM.

Then the contents of the addresses $0B03 - $OB06 are copied to the
addresses $AC - $AF. The contents of the addresses $0B03 - $0BO06
equal the bytes 3 - 6 of the block called from disk. We'll explain the

function of these bytes later.

In the next section, locations $0B07 to the next zero (0) are interpreted in
ASCII and the respective characters are output. The location where the

zero appeared is stored in $9E.

Then the PRIMM routine is called again and the text " ..(CR)" is output.
The next two instructions copy the contents of address $AE to $C6.
Additionally, the address $AE was loaded with the contents of $0BO5,
byte 5 of the block read from the disk. Also, the address $C6 was used
befors, in & previous routine, Thore the bank where the block was
supposed to be loaded was determined by the content of $Co6.

In the next section the content of $AF is called. Ifit is different than zero
one will be subtracted from the value. If it is zero, you jump to another

subprogram:
F9B3 LDX $C2 Sector Number
FOBS INX Raise one

Already Sector 2172

No

yes, then Sector = 0
And Track No. raise one
Sector No. store€ again
Sector No. in ACCU
Sector No.to ASCII code

FIB6 CPX #$15
F9B8 BCC SF9BE
F9BA LDX #$00
F9BC INC $C1
F9BE sTX §C2
F9CO TXA

F9C1 JSR SF9FB

. e e W W W

ws W “e

230

I'IrS1 rubusning f

Tricks gnd Tips for the -128

gggg STA $0100 ; Lower Nibble
e ig; 22101 ; Upper Nibble
; Get Track No
F9C '
FQCS JSR SFI9FB ; Change to ASCII characters
Eocr STA $0103 ; Lower Nibble
Fop2 ?TA 80104 ; Upper Nibble
EQ?S- : §9§A_ ; Documented above
gggg ggé #530 ; Upper Nibble = :O: S
o ;i Set carry-flag for subtrac
SBC #$0A ; Is number 0-9°? o
g:gg ?gi SFAQ0S ; yes, then end
; No, then rais
gggg BCS SF9FE ; Ané try againe namber
ADC #S3Aa ; i
vt ane $; Change low nibble to ASCII

The subprogram changes numbers to ASCII values; it only functions with

two decimal numbers. Don't forget this when you use the routine for
your OWn purposes.

S0, you miay nak, what s the funstion of the rest of the beot-eutl routine?

The content from $AF determines how many blocks are to be read from
dis; $AC - $AD determines, which address those blocks are to be stored
(you can't skip pages, the blocks are stored in sequence) and $AE
determines the bank where the blocks are stored. The blocks go in
sequence, track 1, sector 1 then track 1, sector 2 etc..

But there is more. Regardless of if there are more blocks read or not, you
close the opened files in address $F94S.

231

Tricks and Tips for tne L-120

First Publishing

Then you repeat the counter. Which counter? You might remember that
in $9E was stored the location where the string ended. Increment this
counter and get the character at which the counter shows. If it is zero you
leave this section of the boot-call routine. If it is not zero, increment the

indicator by one. If zero, increment the indicator again and store it in

$04.

In the next section you use the indicator $9E as an offset. At the location
of the first zero goes the ASCII value for the colon and before that the
content of $BF. The new counter is now stored. Then, the length of the

file name is placed into the X-register. If it is zero, you jump over this
part, because you know another program is supposed to be called. Bug, if
it is not zero, it is incremented by two, because the colon and the contents

of $BF have been added. Then more parameters are set:

Value Comes After Function

ACCU $B7 Length of present file name
$9E $BB Low-byte address of file name
40B $BC High-byte address of file name

#00 $CC Bank-No. for LOAD/ SAVE/VERIFY
#00 $C7 BANK-No. for Present file name

In address $F979 the accumulator is loaded with a zero to signal that a
LOAD is required. The subprogram, called in the next instruction, is also

used by VERIFY. In that case, the flag would be 1.

Thenlyou load the program. You continue at address $F97E, whether a

program was loaded or not.

3]
13}
(S

e e e e g

e e — v

LD 1 UIISIg

LUICKS JaItg 1ips 100 1he L=l

Next in address $0004, the value $0B is stored then in $0002 the value
$O0F. Then you jump to the subprogram which 1s also used by the kernul
routine. This call does the following: you select the bank, with the
number in $0002. Then you jump to the address, determined through
$0003/$0004. This program will be executed. Should this subprogram
be left with a RTS, the program continues in the bank from which you
called the program (in this case address $F989).

In address $F989 you clear the carry-flag. This indicates that the
boot-call routine was left properly (if the disk drive did not report, the

carry-flag would be set, see address $F8D3). The routine is left with a
RS,

10.1.2. USING THE BOOT - CALL _

By examining the boot-call routine in the previous chapter, we found out
that the first block on a disk, track 1/sector O, must have the following
byte assignment:

Byte: $43 (67) ASCII-Value for "C"

Byte: $42 (66) ASCII-Value for "B"

Byte: $4D (77) ASCII-Value for "M"

Byte: Low-byte of address, from which more blocks are
stored (comes in address $AC)

Byte: High-Byte of this address (comes after $AD)

Byte: Bank-number, in which the blocks are to be stored
(comes after $AE)

BowoN =

o

233

rirst rublishing

ITICKS ana 1ips 10r ioe ©-120

7. Byte: Number of blocks to read (comes after $AF)

8. Byte: To the first zero: Text, given out after BOOTING.
Behind the first zero to the second: The name of the
program, which should be loaded after loading the blocks.
Behind the second zero up to the end program which shall
be executed after loading.

Let's try out the new knowledge and create an "autostart" disk.:

10 OPEN 1,8,15

20 OPEN 2,8,13,"#"

25 PRINT #1,"B-F 0 1 0"
30 PRINT #1,"B~P 13 O"

40 PRINT #2,"CBM"

50 PRINT #1,"U2 13 0 1 O"
60 PRINT #1,"B-A O 1 O"
70 CLOSE 2

80 CLOSE 1

If you are not familiar with disk drive commands here is an explanation of
the program. First you open a data file, giving you access to the
command channel of the disk drive. Then you reserve a buffer in the disk
drive. This is because data cannot be written directly to the disk, it has to
go in a data buffer. In line 25 a block is marked as free. Important! Any
program on that block will be erased!

In line 30 a pointer is set to the first byte of this buffer. After this, the
character sequence "CBM" is written into this buffer. The instruction in
line 50 will write the data buffer to the disk on the block at track 1, sector
0. In line 60 this block is marked as "used" and the files are closed.

234

A o

2'11DL & I-IIJIIDIIIIIE

BRI and gy WL thhe ULl

Now call the boot - call routine:
SYS DEC ("FF53"),8,8 (or SYS DEC ("¥890"),8,8)

The disk drive starts and after a short time the text "BOOTING..." will be
output on the screen. Then the computer will probably jump into the
monitor. Why? Because we assigned the first three bytes of the block,
only the bytes that permit the autostart. The rest of the block was
probably filled with zeros, so the computer did not get any more text and
didn't search for any more blocks or programs. After that the computer
tried to execute a machine language program, but found only zeros.
These zeros represent the machine language instruction BRK, so 1t
jumped to the monitor (the normal reaction of the C-128 to the BREAK
instruction),

Let's enter some more values into our "autostart” program.

10 DIM BY (255)

20 BY (0)=ASC("C"): BY(1)=ASC("B"): BY(2)=ASC("M")
30 BY(3)=0: BY(4)=0: BY(5)=0: BY(6)=0

40 PRINT CHR$(147);"TEXT BEHIND 'BOOTING':"
50 FOR ZA=7 TO 252

60 GET KEY AS$: IF AS$S=CHR$(13) THEN 80

70 BY (ZA)=ASC(AS$): NEXT 2zA

80 BY (zZA)=0

90 ZA=ZA+1l: BY(ZA)=0

100 Z2A=ZA+1: BY (Z2A)=96

110 OPEN 1,8,15

120 OPEN 2,8,13,"#"

125 PRINT #1,"B-F 0 1 O"

130 PRINT #1,"B-P 13 0"

140 FOR ZA=0 TO 255

150 PRINT #2,CHRS (BY(ZA));

160 NEXT ZA

170 PRINT #1,"U2 13 0 1 O"

235

O B L

First Publishing Tricks and Tips for the C-128

180 PRINT #1,"B-A 0 1 O"

190 CLOSE 2
200 CLOSE 1

Here you first create an array with 256 elements. The first seven bytes of
this array (later written to the autostart block) are set, so that the autostart
can be identified without loading any more blocks. Then you can enter
any text, but no more than 246 characters. That happens in the following

lines:

Line 80: End of string to output
Line 90: End of program name

(0 characters, no program is loaded)
Line 100: Program to execute (the command: RTS)

Then the bytes are written to disk, Start the boot-call routine again after
running this program. Your text is printed and you are returned to

BASIC.

Now for & program using the autostart, When you run the following
program, the block at track 1, sector O will be written so that it starts a
(BASIC) program with name "HELLO" automatically. The assignment

of the bytes is as follows:
Byte 0- 6 :Bits for autostart routine

Byte 7-26 :Text to printout

Byte 27 : Zero as end mark

Byte 28 - 32 : Name of program to load ("HELLO")
Byte 33 : Zero as end mark

Byte 34 - 52 : Machine Program to Execute (RUN)

736

e

First Publishing Tricks and Tips for the C-128

Now the complete "autostart” program:

10 OPEN 1,8,15

20 OPEN 2,8,13,"#"

25 PRINT #1,"B-F 0 1 O"

30 PRINT #1,"B-P 13 Q"

40 FOR ZA=0 TO 52

50 READ A

60 PRINT #2.CHRS (A)

70 NEXT 2zA

80 PRINT #1,"U2 13 0 1 Q"

90 PRINT #1,"B-A 0 1 O"

100 CLOSE 2

110 CLOSE 1 S

1000 DATA 67,66,77,0,0,0,0,

1010 DATA 13,40,67,41, 32 49 57,56,53,32,66
1020 DATA 89,32,65,66,65,67,85,83,32

1030 DATA O

1040 DATA 72,69,76,76,79

1050 DATA 0

1060 DATA 162,2,189,50,11,1

1070 DATA 169, 3, 133,208,96 S; 33331502 Hos 2

The assembler program (data in lines 1060 & 1070) is as follows:

1 LDX #502 ; Counter
Loop 2 LDA table, X ; Get Character
3 STA $034A,X ; And in Keyboard Buffer
4 DEX / One more Character?
5 BPL Loop ;i Yes
6 LDA #S03 ; Amount of characters
7 STA S$DO ; In Keyboard Buffer
8 RTS / End of Routine
Table 9 $52, $D5, $0D ; ASCII for R,Shift+U

And RETURN

The machine language routine also stores RUN in the keyboard buffer.

B T

First Publishing Tricks and Tips for the C-128

After you have modified your disk with the above program, call the
boot-call routine again or reset your computer. The text will be output,
but then you receive a "FILE NOT FOUND" message. Of course, this is
because the file name "HELLO" is not on the disk. What could a
"MELLO" program look like? Like this for exumple :

10 PRINT CHR$(147)

20 PRINT"ENTER CHOICE:"

30 PRINT: PRINT" (1) DIRECTORY"

40 PRINT: PRINT"(2) LOAD PROGRAM"
50 PRINT: PRINT" (3) DISC-OPERATION"
60 PRINT: PRINT: PRINT" (4) FINISH"
70 GET KEY AS$: A=VAL (AS)

80 ON A GOTO 100,200,300,400

90 GOTO' 70

100 PRINT CHR$(147)

110 -DIRECTORY

120 PRINT: PRINT"- PRESS ANY KEY TO CONTINUE-"
130 GET KEY A$: GOTO 10

200 PRINT CHR$(147)

210 INPUT "NAME OF PROGRAM"-,NAS
220 LOAD NAS,8,1

300 PRINT CHRS$ (147)

310 INPUT "COMMAND"-,BFS$
320 ORPEN 1,8,18

330 PRINT#1 ,BF$

340 CLOSE 1

350 GOTO 10

400 PRINT CHR$(147)

410 PRINT"ARE YOU SURE (Y/N)?2"
420 GET KEY AS$: IF AS$="N" THEN 10
430 IF AS<>"Y" THEN 420

But there are many other possibilities. You could change the name of the
program called from the boot-call to automatically load your favorite game

or the program you work with most.

T — i ———TTE -

e

First Publishi i
ishing Tricks and Tips for the C-i28

The boot-call routine can also load more blocks.*You can load a different
operating system, a different language, etc, etc..

The respective data has to be in sequence on the disc (starting at track 1
sector 1) und is londed in the memory in sequence. The bytes that

determine this loading are the bytes 3 - 6 on block track 1, sector O (see
above).

No doubt this routine will be used very often, probably by every

commercial program written for the C-128. But you can use it for your
OWN purposes.

10.2. AUTOSTART BY CARTRIDGE

Who doesn't know them, those little boxes, which are inserted in the

expansion port. They are called cartridges. This automatic start by
cartridge has two advantages:

1. It is user friendly; the user doesn't have to enter inconvenient
SYS commands.

2. The cartridge is harder to copy.
But how does this autostart work? In the C-64 it worked as follows.

When the computer was reset it examined the memory locations $8004 -
$8008. If it found the ASCII values of the character sequence "CBMB8(",
it did an indirect jump to the address pointed to in $8000/$8001; which
means it called the contents of $8000 as the low byte of the address and

239

ishi i Tips for the C-128
First Publishing Tricks and Tip

the contents of $8001 as the high byte. Then the computer jumped to this
address.

The C-128 works about the same. After a reset, the computer jumPs t? a
subprogram that compares some bytes with fixed values. You will find
this routine in memory from $E1FO - $E241:

E1F0 LDX #SF5S

E1F2 LDY #SFF

E1F4 STX $C3
E1F6 STY $C4

E1F8 LDA #SC3
E1FA STA $02AA
E1FD LDY #5$02
E1FF LDX #$7F
E201 JSR $02A2

E204 CMP SE2C4,Y
E207 BNE SE224

E209 DEY

E20A BPL $E201
E20C 1LDX #SF8
E20E LDY #SFF
E210 STX $C3
E212 STY $C4
E214 1LDY #501
E216 LDX #S$7F

E218 JSR $02A2

E21B STA $0002,¥
E21E DEY

E21F BPL $E218
E221 JMP ($0002) _
E224 - LDA #540
E226 STA SFFOO
E229 ©LDA #524
E22B LDY #S$SE2
E22D STA SFFE8
E230 STY S$FFF9
E233 LDX #$03
E235 LDA $E2C3,X

First Publishing Tricks and Tips for the C-123

E238 STA S$FFF4,X
E23B DEX

E23C BNE $E235
E23E STX SFFO0O
E241 RTS

First the vector at ($§C3/$C4) points to address $FFF5. Then it jumps to

a routine which calls any address from nny bank. Here it calls thy
contents of address $FFF7 in Bank 1. This byte will be compared with

the content of address $E2C6. If these two bytes not identical it jumps to

address $E224. If they are equal, it tests the next bytes. The following
addresses are compared:

$FFF5 with $E2C4 : $43 (="C")

$FFF6 with $E2C5 : $42 (="B")

$FFF7 with $E2C6 : $4D (="M")

.

So, unlike the C-64, only three bytes are tested, which are enough.
These three bytes equal the string "CBM", which is also used in the
autostart routine of the disk drive. If these are identical, you call the
contents of the addresses $FFF8 and $FFF9 and store it in the address
$0002 and $0003. Over this vector an indirect jump is carried out. To
execute an autostart, the following bytes must be assigned as follows:

$FFF5: $43 ("C")
$FFF6: $42 ("B")
$FFF7: $4D ("M")

-

$FFF8: Low-Byte determined jump - address
$FFF9: High-Byte determined jump - address

241

i of an error must be in Bank 15. Jumping i address initializes the C-64 mode. Try it out: push the reset button. Afier
ine i n case . . . :
The rouu‘nc jumped to. 1 f Bank O doesn't work, because the a short tlmc. (the 80 column screen might start to blink) you are in the
to a routine at $A000 in the RAM o C-64 mode.

. o th _
BASIC interpreter is in Bank 15. But you can jump to a routine in the |

)) f show some examples of the uses of back on. As you can see, the computer comes on in the C-64 mode! No,
Here is a short explanation before we al you don't jump to f don't be afraid; it is not broken. In the C-128 the RAMs don't clear as
the cartridge autostart. When the bytes are not equat y i fast as in the C-64. That's why the values from $FFF5 - $FFF9 stayed in
BASIC as in the C-64. the computer. Turn your computer off for a litue bit longer and you will

i o instructions select the memory come back in the C-128 mode. The longer "life" of the RAMs has two
At address $E224 the first tw ifference is that you select RAM advantages: first, a power loss does not affect the operation of the
configuration for Bank ll;mz' ge(:::;::b;ﬁ{AM BANK 15 turns on all 3 computer; and second, your programs stay in the computer after you
I;Zn:y:t;n:;ag&i%en you store the following values in the addresses switched it off for a short time.
$FFFS - $FFF9: Of course, you can also start BASIC programs with a reset. You have (o
CPFES: $43 ("C") change the vector at $FFF8 - $FFF9 to your own routine, which
- simulates the RUN command. In the C-64 it was possible with the
: ZFEE?] : z:z i "?4"; following assembler commands:
F :
SFFF8: 924 JSR S$A659 /CHRGET On Program start + CLR
SFFF9: SE2 ' JMP SATAE :Interpreter loop

ith the
' is performed after every reset, but only wit | |
That's why an autostart 18 perto We can accomplish the same thing on the C-128 in a different manner.

Because the C-128 has a keyboard buffer, we store the string RUN and

normal reset routine.

these bytes: enter the monitor and enter M 1FFFS. [RETURN in the buffer and then quit the program. This starts the BASIC
Now take a looki; e;zrc);scs. $FFF5 - $FFF9 are assigned with the program in memory. An assembler listing would look as follows:
As you can see, the a |
values above. Now enter your own address for the autostart: change |
byte $24 to $4D. Now change byte $E2 to $FF. You now will jump To
address $FF4D instead of address $E224 when a reset occurs. This

747 243

First Publishing Tricks and Tips for the C-123

LDX #502 ;Counter
Loop LDA table,X ; GET CHARACTER
STA $034A,X ;In the Keyboard Buffer
DEX ;One more Character?
BPL Loop ;Yes
LDA #$03 ;Number of characters
STA $DO ;In the Keyboard Buffer
RTS
Table $52, $D5, $0D ;ASCII for R, SHIFT+U]

;And RETURN

244]

First Publishing Tricks and Tips for the C-12,

C-128 MEMORY

11.1 IMPORTANT ADDRESSES

The C-128's new BASIC is one of the most complete BASICs available on
a microcompuier today. But with the C-128 you can do a lot more than the
standard BASIC commands allow--without using machine language. The
key is the zero page, which is made up of the first 256 memory locatious.
They contain a lot of pointers and addresses used by the operating system.
Modifying these pointers and addresses will let you create your own speciz}

operating system, allowing you to do things not possible with normal
BASIC commands.

The Commodore 128 has several zero pages, because its operating system
is more complex than those used by previous Commodore computers,

The following pages contain interesting memory locations and suggestions
for using them. Don't be afraid of destroying your computer when
modifying the memory locations. About the worst you can do is lock up the
computer, but usually a reset will put everything back to normal. If that
fails, then you'll have to turn off the computer and turn it back on.

Beside the addresses of the C-128 you will find the corresponding C-64
addresses in parenthesis. This means you can translate your old C-64

programs to the new C-128. Both modes are fairly compatible.

Here are some interesting memory locations and their functions.

247

First Publishing Tricks and ‘1ips 1or tne L-1z0

(decimal location) (comment)

45 - 46 (43-44) BASIC Start (Bank O)

This memory location contains the start address of where the BASIC
programs are stored in the memory (in Low-byte/High-byte formula,
Bank O). The command:

PRINT PEEK(45)+256*PEEK(46)

prints this address. You can also move the start-of-BASIC address.
To do that type:

POKE45, 10:POKE 46, hi:POKE (lo+256*hi)-1,0:NEW
This command sequence has to be entered in direct mode. 1o and hi

are the low-byte/high-byte for the now sturt address, These byiew ure
calculated as follows:

HI=INT (address/256) : LO=address- (256*HI)

You grase the program in the memory if you shift the start of BASIC.
Remember that you usually can't shift the start-of-BASIC. This
memory area is reserved for the operating system!

47 - 48 (45-46) VARIABLE Start (Bank 1)

These two bytes point to the start of variable-memory (in bank 1).
This pointer can be read or manipulated like the BASIC start (above).

248

e S

1o 8

sanrssonssesg

avenw ssmsne s egew swe seeem - e

59 -

65 -

60 (57-58) Current BASIC-Line Number

The current BASIC line number is stored in these bytes. Therefoie

the readout of these addresses makes sense only in the program
mode:

10 PRINT "This line #";PEEK(59)+256*PEEK(60);
"in use!"

66 (63-64) Current DATA line number

This pointer is interesting if you use the commands READ and DATA
in your programs. It contains the line number of the line where you

READ the last DATA element; the following program demonstrates
this:

10 READ A: IF A=1 THEN END
20 PRINT"THE ELEMENT A IS IN LINE ";
30 PRINT PEEK(65)+256*PEEK(66);"!"
40 GOTO 10
50 DATA 3,6,4,8,4,6,2,
57 DATA 33,6,4,2,4,2,4,
99 REM TEST PROGRAM
167 DATA 3,7,4,9,6,0,0,
190 DATA 5,7,5,-1

This address is also useful in finding errors. You find the error with
the pointer that gives you the line number where the error occurred. If
your program contains a string and your program allows numerical
DATA only, the following BASIC program is handy:

249

First Publishing Tricks and Tips for the C-128

10
20
30
40
50
60
70

READ A$:IF ASC(A$)<50 OR ASC(AS$)>60 THEN1000
A=VAL(AS) : IF A=-1 THEN END

PRINT A, :GOTO 10

DATA 4,3,7,54,3,5,2,444

DATA 3,5656,a,3,d,4,2,2,2,:REM Error line
DATA 4,6,3,5,6,

!

,1000 REM ERROR MESSAGE

1010 PRINT"IN LINE";PEEK(65)+256*PEEK(66);
1020 PRINT"ERROR FOUND. ONLY NUMBERS ";
1030 PRINT"ARE ALLOWED !"

1040 PRINT"CHANGE THIS!":END

208 (198) Number of keys pressed

This pointer contains the number of characters you entered with the

keyboard.

POKE 208,0

clears the keyboard buffer.

213 (203) Keyboard reading

The value of the key actually pressed is stored in this address. It has
the value 88 if no key is pressed.

10
20

PRINT CHR$ (147);
PRINT PEEK(213) :GOTO 10

prints the value of the key pressed.

——

First Publishing Tricks and Tips for the C-128

215 (---) 40/80-column Flag

This address shows you which screen is active. Bit 7 is set in ilic
80-column-mode, PEEK(215) = 128:

10 A=PEEK(215)

The following addresses refer to the 40-column and 80-column screens.,
These memory locations are revised when switching to the other scrcen.

Therefore, you always find the value for the active screen in these locations.

241 (646) Actual character color

There are 16 colors available for characters on the screen. Normally
control-characters are used to turn on the colors. But thiy is
impractical and hard to follow in program listings. Often it is easier to

use this memory logation, It containg the value of the netuul character
color (0-15) and is very easy to manipulate.

10 A=INT(RND(1l)*16) :REM Random number 0-15
20 POKE 241, A:Set character

30 PRINT"*",;

40 GOTO 10

Here is a short summary of the color combinations:

0 :Black 1 : White 2 :Red
3 :Cyan 4 :Violet 5 :Lightgreen
6 :Blue 7 :Yellow 8 :Lightred
9 :Brown 10 :Lightred 11 :Greyl
12 :Grey?2 13 :Lightgreen 14 :Lightblue
15 :Grey3 (Only for a 40-column screen)

751

B

1751 Publishing Tricks and Tips for the C-128
0 :Black 1 :Grey2 2 :Blue
3 :Lightbluie 4 :Green S :Light green
6 :Greyl 7 :Cyan 8 :Red
9 :Lightred 10 :Dark violet 11 : Violet
12 :Brown 13 :Yellow 14 :Grey3
15 : White (Only for a 80-column screen)

You don't have these colors if you work with a monochrome screen.
The colors are transformed into different shades of green, grey, etc.

There are only 5 steps of brightness available for all 16 colors. You
have to use colors with different brightness if you want to use them

on a monochrome screen. Here is the order of brightness:

1. Black

2. Red, Blue, Brown, Grey 1

3. Violet, Orange, Light red, Grey 2, Light blue
4. Turquoise, Yellow, Light green, Grey 3

5. Whitc

The 80-column screen has additional features. The bits 4-7 have the
following functions:

Bit 4 : Flashing ’
BitSs: Undcrl’ino '
Bit 6 : Reverse

Bit 7 : 2nd set of characters

Bits 4 and 5 only affect the next PRINT statement after the POKE

command.

POKE 241, 15+274 : PRINT "TEST"

252

First Publishing

Tricks and Tips for the C-128

Puts a white, flashing "TEST" on the screen.
POKE 241, 2+275+2~7 : PRINT "HELLO"

The above prints a blue-underlined "HELLO". This means you can
mix the different functions! The functions "reverse" (bit 6) and "2nd
set of characters" (bit 7) are constant functions; they refer to all
following PRINT orders and to the direct mode. A RVS-mode like
this cannot be turned off by CRTL+9!

243 (199) RVS-Flag

Corresponding to address 241, this address determines the kind of
characters that are to be shown on the screen. Reverse or normal

(there is also a control-character for this). 0 = normal, 1 = reverse:

10 POKE 243, 0:PRINT "NORMAL and..... "
20 POKE 243,1:PRINT "..... REVERSE!"

244 (212) Quote-Mode-Flag

Quote-mode means control-characters are not active between
quotation marks, but instead display control characters on the screen.
If you turn the quote-mode on (=1) the following control characters in
a PRINT statement are ignored and their control characters are printed

on the screen.

253

ublishing Tricks and Tips for the C-128

POKE 244, 1 : PRINT" {3crsrdwns} {rvson}HELLO [

247 (657) C=/SHIFT Stop-Flag, CRTL-S

You know how to change the character set by pressing the <SHIFT>
key and the Commodore key (<C=>). You can also do this while a
program is being cxecuted. It doesn't disturb the running program,

only what you see on the screen. This can be disabled:

POKE 247,128
POKE 247,0
POKE 247,64

(locked)
(normal)
(disable CTRL-S)

248 (---) Scrolling Stop-Flag

Once you have reached the lowest screen-line and print on the next
line, the screen contents are shifted one row up. You can eliminate

this effect:

POKE 248, 128 (Scrolling off)
POKE 248, O (Normal)

249 (---) Beep-Tone Stop-Flag
Here it is possible to disable the beep-tone. It is generated by:

(Program-mode) or
(Dircct-mode)

PRINT CHRS(7)
CTRL+G

254

i E———

First Publishing Tricks and Tips for the C-128

Try this:

POKE 249, 128 (off)
POKE 249, O (Enables the beep-tone again)

By the way: SYS 51602 generates the tone. But you can do more
with the tone than just give a signal.

FOR X=0 TO 100:SYS 51602:NEXT X

This gives you a longer tone, depending on the X-value.

All the following addresses are common and not tied to the active screen.
They are not in the true zero page.

842-852 (631-640) Keyboard-Buffer

These ten bytes are the buffer for keys entered from the keyboard.
They can be used for many programming applications. There are too
many possibilities to describe here, but we'll give you one example:

10 POKE 842, ASC("L"): POKE 843,ASC("I")+128
20 POKE 844,13

30 POKE 208, 3

40 END

288

nohisheng ETICKS dNUu LIPS 1UI e Lriso

17024-2023 (1024-2023) 40-Column Screen Memory

These 1000 bytes contain the 40-column screen. This area is not used
if you work with a 80-column screen; you can use it for own machine

language programs. Otherwise:

POKE 1024 +X + 40 * Y,Z

X=Column
Y=Row
Z=Character-code

-

places a character on the 40-column screen.

2592 (649) Maximum Length of the Keyboard-Buffer

The length of the kcyboard-buffer is defined with this address.
' !

POKE 2592,0 (turns off the buffer, keys are no longer stored)
POKE 2592,10 (normal)

The length of the keyboard-buffer should not exceed the maximum 10
because this is the maximum of available space reserved in memory!

2593 (---) CTRL-S Flag

A running program stops when <CTRL-S> is pressed, and continues
when any other key is pressed. Many larger computers have this

function. It is very uscful if you only want to interrupt the program

256

TR TE YO RTITTRYSTEL Iricks and Tips for the C-128

for a short while to have a closer look (or have a quick breakfast).
But you can use this address in a completely different way. You

simulate the <CTRL-S>. The program stops and waits for the next
key pressed.

10 PRINT "PRESS ANY KEY "
20 POKE 2593,1
30 PRINT "QOK"

2594 (650) REPEAT-Flag

The C-128 has a REPEAT-function for all keys. This means if you

depress a key for a short period of time the character will be printed
continuously.

POKE 2594, 0 (space bar and cursor keys)

POKE 2594, 64 (no keys with repeat function)
POKE 2594,128 (normal)

2595 (651) REPEAT-delay

The computer continues normal printing after a short delay. The delay
time can be adjusted with this address, so you can choose a long
delay. No delay makes sense as a controller (with a GET).

POKE 2595,X
X=delay time

257

“ublisiiing Tricks and 1ips 1or ine L-140

2598 (---) VIC Cursor-Mode

This address controls the flash of the cursor, but only the cursor
controlled by VIC chip. This means the address will work only in

40-column mode.
Bit 6 : 1=solid
O=flash

(Cursor flashes, normal)

POKE 2598,0 :
(Cursor doesn't flash)

POKE 2598, 64

2599 (204) VIC Cursor on/off-Flag

This address works only with the 40-column screen. You can activate
the cursor with this address. The following demonstrates what you

can do with this address:

Bit 0 ; 1=Cursor on
0=Cursor flash

10 POKE 2599, O0:REM CURSOR ON

20 PRINT "HELLO!";

30 FOR T=1 TO 5000: NEXT T
40 PRINT "THAT'S IT!"

50 END

This can be used effectively with the command GETKEY. This
command waits for a key press and then stores the character. It is
different from the INPUT command in that the cursor does not flash
to get the user's attention. Here is an example:

258

ad I UUHY: 5 ITICKS ana iips 10r 1ne L -1.20

10 POKE 2599, 0
20 GETKEY AS
30 (. . .)

This works with the GET command too.

2603 (---) YDC Cursor-Mode

You can influence the cursor of the 80-column screen at address
2598. The bits of this address mean:

Bit0 1=solid

Bit 2-3 Display in pixel rows
Bit 4-5 Cursor off

Bit6 1=flash

POKE 2603, 270+241+242

This activates the underline cursor. The thickness of the cursor
depends on the bits 2 and 3.

2604 (---) VIC Pointer to Screen-RAM / character set
The content of this address are transferred automatically to address

53272 of the VIC. The contents determine the start addresses of the
screen-RAMs and the character generator.

259

iirst I"ublishing Tricks and Tips for the C-128

2606 (648) VDC Iiigh-Byte of the screen RAMs

This address is responsible for the 80-column screen again. Here you
can shift the screen-memory with the registers 12 and 13 of the VDC.

2607 (--) VDC High-Byte of the color memory (attribute-RAM)

The High-Byte of the 80-column attribute-RAM is stored here. It is
velated to the previout address because you can move the
color-memory in the 80-column mode.

2619 (648) VIC Hi-Byte of the screen RAMs
This address has the same function as the address 2606 at the VDC.
You find the start address of the 40-column screen-RAM here.
2816-3327 (828-1029) Cassette buffler

This relatively large area is used by the system only if you work with
the Datasette. This area is not used if you use the disk drive. It offers
roo for machine fanguuge routines.

10

First Publishing Tricks and Tips for the C-128

4096-4105 (---) Assignment-length of the function keys

Each of these ten bytes is reserved for one of the ten function keys
(<F1-8>, <HELP> and <SHIFT +RUN/STOP>). The length of the
function key assignment is stored in these bytes. Set the
corresponding byte to zero if you want to turn off the assignment of a

function key (for example: if you want to read a key in your own
program).

POKE 4096,0 (erases assignment of F1)

4624-4625 (55-56) Pointer pointing to end-of-BASIC

The highest address of a BASIC program is stored in these bytes (in
bank 0):

PRINT PEEK (4624)+256*PEEK (4625)
The size of your program is easily determined:

PRINT (PEEK(4624)+256*PEEK (4625))-
(PEEK(45) +256*PEEK (46))

In case you want to write your own machine language program at the
end of the memory in bank 0 (BASIC-memory) you can limit the
BASIC-memory with these two addresses so that your machine
language program is protected from being overwritten.

761

First Publishing Tricks and Tips for the C-128

11.2. JUMP TABLE

Important to every machine language programmer is a solid understanding
of the operating system. This allows him/her to create shorter programs in
the least amount of time. He/she simply takes prepared routines, instead of
writing them. We don't want to write 4 second COMMODORE-128

INTERNALS, but we'll choose some popular routines and show you how
to use them.

There are several jump commands with powerful routines included in both
the BASIC interpreter and the operating systems of the C-128 . Let's go to
the most important and best known routines first:

11.2.1 KERNAL

The C-128, like every other Commodore computer, has a Kernal jump table

at the end of the ROM. It provides easy access to important kernal routines
und allows quick program conversions to other Ccmmodore computers.

This table is greatly extended compared to the C-64 or VIC-20. We want to
introduce the section of the table from $FF4D-$FF7F.

There are some routines designed exclusively for the C-128. There is, for

example, the C-64-mode routine that turns the C-128 into a C-64. There are
also some routines to read different memory banks.

267

R T T

First Publishing Tricks and Tips for the C-123

Another interesting aspect is that Commodore has assigned a byte with the
value zero between the old and new kernal table ($FF80). This is the
number of the Kernal table. There is also a new address directly in front of
the addresses for NMI, Reset and the IRQ. This address, at $FFF8/$FFF9,
points to address $E224 and is called C-128 mode. Let's examine ...
secrets of the new jump table.

Kernal-address;
Name:

$FF4D (65357)
C64MODE
$E24B (57931)

Transforms the C-128 into the C-64

Real jump-address:
Function:

The name of this function is self-explanatory.

Kernal address: $FF50 (65360)

Name: DMA-CALL
Real jump address: $F7AS (63397)
Function: access to the DMA-controller

You can control the DMA-controller (Direct Memory Access) with
this routine. This routine becomes interesting with versions of the
C-128 with more than 128K RAM, because it works only with the
extended RAM.

263

Fi]‘st Publishi“g ITICKS ana 1P Ul WIC Lriso FYE Ty STV ETTTTTT S

AL QML ll‘lb AUE lade VTl

Kernal-address: $FF53 (65363) It returns with a set Carry-Flag if the file number was not found.
Name: BOOT-CALL Otherwise this Flag is reset. This routine uses a different routine at
Real jump-address: $F890 (63632) ; $F202. This routine looks to see if a given file number already cxists
Function: Load and start program from disk _ in the X-Register. It returns with a reset Zero-Flag if the file number

already exists. Otherwise the Zero-Flag is set.
With this routine you can load and start a program immediately from

the disk. It is possible to start programs after turning on the Kernal-address: $FF5C (65372)
computer, because this routine is called with a reset. Name: LKUPSA
Real jump-address: $F786 (63366)
Kernal-address: $FF56 (65366) Function: Look up secondury-address
Name: PHOENIX ' -
Real jump-address: F867 (63591) ; This function is comparable to the last one. But the
Function: Start external-ROM's secondary-address is in the Y-Register. This routine does not look for
| several equal files with the same secondary-address. It looks up the
You can start external ROM's (cartridges) with this routine. } entry of the first found file belonging to the secondary-address Afier
Immediately after PHOENIX is done, it jumps to the BOOT-CALL | the return, all three registers contain the same values as the routine
routine. This routine is also called with a reset. before:
Kernal-address: $FF59 (65369) : Accumulator: File number
Name: LKUPLA X-Register : Device address
Real jump-address: $F79D (63389) Y-Register : Secondary address
Function: Gets entry for file number

The flags are set the same way.

4
If you call this routine you enter the file number in the accumulator

and you get back: |
Accumulator: File number

X-Register: Device address

Y-Register: Secondary address

264 § _ 265

First Publishing

Tricks and Tips for the C-128

Kernal address:
Name:
Real jump-address:

Function:

$FF5F (65375)
SWAPPER
$CO2A (49194)

Switch between 80/ 40 column-screen

First Publishing

Tricks and Tips for the C-123%

{

The screen is switched if you execute this routine. If you were in the
40 column mode and this routine is called, your input now appears on
the 80-column-screen. We will now have a closer look at this routine.
Beginning with address $FF5F it jumps to address $CD2E (why
make it easy if you can make it complicated?) At $CD2E the
following is executed:

CD2E LDX #S$1A
CD30 LDY $0A40,X
CD33 LDA $EO,X

CD35 STA $50A40,X
CD38 TYA
CD39 STA SEO0,X

CD3B DEX

CD3C BPL $CD30
CD3E LDX #$0D
CD40 LDY $0A60,X
CD43 LDA $0354,X
CD46 STA $0A60,X
CD49 TYA

CD4A STA $0354,X
CD4D DEX

CD4E . BPL $CD40
CD50 LDA $D7
CD52 EOR #580
CD54 STA $D7
CD56 RTS

In the first section (up to $CD3D) the memory-blocks $EO-$FA and
$0A40-$0A5A are exchanged. In locations $0A40 to $OASA are

266

stored the screen-values for the screen not currently being used
(cursor position, insert-mode-flag, quote-mode-flag, etc.). The
routine continues in the same manner when you leave the current
screen to switch back to the other screen. Try it out. Get in the
quote-mode by entering a quotation mark. Press the cursor keys a
few times. Now enter ESC+X (press slowly, one after the other) and
enter something on the other screen. Now change back to the other
screen and press the cursor keys a few times. As you can see, you are
still in the quote-mode. Change to the other screen and enter:

POKE DEC ("0A54"),0

Go back to other screen and press a cursor key; no control-character
is printed, but the cursor moves. Why? Because the above POKE sets
the quote-mode-flag to zero. This register was copied when you
switched back to the other screen and the quote-mode was gone.
Therefore, you can predetermine with POKEs how your other screcn
will look after you switch back. Also, have a look at the addresses in
the description of the zero page ($E0-$FA). We'll give you a formula
to calculate an address on the closed screen in relation to the one in
use:

new address=o0ld address +4200 (fantasticisn'tit?)

Let's go back to the SWAPPER routine. The next eight communds
exchange two more blocks.

a) $0354 - $035E (Tab -Stops) with $0A60-$0A6A
b) $035F - $0361 (Line-links) with $0A6B-$A6D

267

First Publishing Tricks and Tips for the C-128

Between the addresses $CDS0-$CDS5 the screen is changed.
Therefore bit 2 of $D7 is inverted and this ends the routine.

Kemal-address: $FF62 (65378)

Name: DLCHR

Real jump-address: $C027 (49191)

Function: Initialize the VDC character-generator

This routine copies the VDC's character-generators for 40 column to
that for a 80 column. The character-generator of the VDC doubles its
size (to 8K) because it copies eight zero-bytes between each
character.

The next seven routines are the most important routines for accessing
different banks.

Kemal-address: $FF68 (65384)
Name: SETBAK
Real jump-address: $F73F (63295)

Function: Verify the bank for SAVE / LOAD / VERIFY

This routine has only 3 commands:

$SF73F STA $C6 ;.
SF741 STX $C7
$F743 RTS

bank number, where the program is located.

bank number, where the file name is located.

Vector $BB / $BC contain the address of the file names.

AayTET

First Publishing Tricks and Tips for the C-128

Kemal-address:
Name:

$FF6B (65387)
GETCFG
$FTEC (63468)

Get configuration number.

Real jump-address:
Function:

You have to load the X-register with the number of the desired bunk
(0-15) before you jump to th’is routine. You get back a byte in the
accumulator. This byte corresponds to the assignment of the MMU's
configuration register, so that the desired bank can be chosen. You
only have to store it in the address $D500 ($FF00). The chapter about
the MMU tells you which memory configurations follow the single

bank numbers.
Kernal-address: $FFGE (65390)
Name: JSRFAR -
Real jump-address: $02CD (717)
Function: Starting a subprogram in any bank

This function lets you call a subprogram in any bank. The computer
returns to the bank that originally called the routine after it finishes the
subprogram. Before calling (you must use JSR) you have to load the

following memory locations and registers with the corresponding

contents:

$0002: Number of the desired bank

$0003: High-byte of the desired address

$0004: Low-byte of the desired address

$0005: Desired status-register (to turn off the IRQ),

turning on the decimal -modes, etc.)

A0

I ——————

First Publishing Tricks and Tips for the C-128 First Publishing Tricks und Tips for .o C-124

$0006: Desired accu $0005: Desired status-register
$0007: Desired X-register $0006: Desired accu
$0008: Desired Y-register $0007: Desired X-register
$0009: Number of the calling bank $0008: Desired Y-register
The following addresses contain the new register contents after the Here the call has to be made with the JMP command.
retumn:
Kernal-address: $FF74 (65369)
$0005: Status Name: INDFET
$0006: Accu Real jump-address: $F7Dp (63440)
$0007: X-register Function: Get a byte from any bank
$0008: Y-register
$0009: Stack-pointer With this routine you can get the contents of any bank. Call tlc

routine as follows:

What you do with these values is up to you. You also can load the

memory location $0006 into the X-register and save a $02B9: Low-byte of the vector pointing to the desired memory
transfer-command. ; location. The vector has to be initialized (it has to contain the
desired address split in Low-and High-byte). This vector
Kemal-address: $FF71 (65393) must be in the zero page. ~
Name: JMPFAR ‘ Accu: Byte, where you want to enter the desired address
Real jump-address: $02E3 (739) X-Reg: Number of the desired bunk
Function: Jump to a bank Y-Reg: Offset that is eventually added to the address (normally zero,

if you don't ask for an index).

With this routine a jump to any bank is executed. This routine is also
used by JSRFAR. Therefore the call is very similar:

$0002: Number of the desired bank
$0003: High-byte of the desired address
$0004.: Low-byte of the desired address

270 271

First Publishing Tricks and Tips for the C-128 IIFSL rubusing 101y LMW LD TUN NS U-iio
Kernal-address: $FF77 (65399) Kernal-address: $FFTD (65405)
Name: INDSTA Name: PRIMM
Real address jump: $F7DA (63450) Real jump-address: $FA17 (64023)
Function: Stores a byte in any bank Function: Print a string
This is the opposite of INDFET, To store a byte the following The old part of the Kernul containg a routing to print out o single
addresses and rcgistcrs have to be set: character (BSOUT). You can prlnt out a S[Ti.ng with this routine in a
simple but clever way. The characters to be printed are simply placed
Accu: Low-byte of the vector behind the call to the routine. This results in the following:
(it points to the desired address like INDFET).
X-Reg: Number of the desired bank JSR S$FF7D
~ Y-Reg: Offset (any text, a zero for an end mark.)
‘ RTS
Kernal-address: $FF7A (65402)
Name: INDCMP But how can this be? How does the computer reach the finisuing
Real jump-address: $F7E3 (63459) RTS? Let's have a look at the routine again:
Function: Compare accumulator and byte in any bank
FAl7 PHA
FAl8 TXA
This function compares the contents of an address with the contents FAl9 PHA
of the accumulator in any desired bank. The usual flags for g:ig gﬁg
comparing are set (Zero-Flag=1 if both are equal, etc.) The following FAlC LDY #$00
. o FALE TSX
memory locations have to be set before calling: FALF INC $0104,X
FA22 BNE $FA27
. - : FA24 INC $0105,X
$02C8: Yector low-byte pointing to the desired address FA27 LDA $0104 i X
Accu: Character to be compared with the contents of ~ § FA2A STA $CE
the addressed memory location. i:gg Is"gi zg;o SiX
X-Reg: Number of the desired bank FA31 LDA (SCE),Y
FA33 BEQ SFA3A
FA35 JSR SFFD2
FA38 BCC SFAI1F
272 273

First Publishing Tricks and Tips for the C-128 First Fublishing Uricks and Tips . Ca12y

FA3A PLA
FA3B TAY
FA3C PLA
FA3D TAX .
FA3E PLA $SO01FO Stack Pointer
FA3F RTS
First the contents of the accumulator and the X-Registers are stored
in the stack, then the Y-Register, which is later used with indirect
indexed address, as an offset, is stored in the X-Register.
) SO1FF
Now the important part of the routine begins. The stack pointer points

to the next free location on the stack. To understand what happens
you have to know how the stack is built as well as its position. In the
C-128 it is located in memory from $0139 to $01FF. The stack
pointer first points to $01FF and becomes smaller as more elements

Now the routine is started. First one number is placed on the stack,
for the hi-byte of address $2000. The program counter (this regisier
has the pointer, and the next tlnyte c‘>f the word) places the nexi word
are put on the stack. on the stack, first the hi-byte then the low byte. This results in the

following picture:

We'll simulate how the stack reacts when you call it with this routine.
Let's say the stack pointer contains the value $F0 and as a result
points to the address $01F0. The stack looks something like the
picture on the next page: , SO1EE Stack Pointer
i
§02
$20 -
SO01FF

274 i : 275

First Publishing Tricks and Tips for the C-128

Then the routine fills the next three memory registers and the stack
looks like this:

SO1lEB Stack Pointer

ACCU

$02

$O01FF| $20

At address $FA1F one byte of the stack is pointed to. But which one?
Let's calculate it. The stack pointer (and therefore the X-register)
contain the value $EB. When you add $0104 you get $01EF. The
low-byte of the return address is raised by one. The BRANCH
command checks if the low-byte is zero. In this case, the byte at
address $0105 + $EB=$01F0, (which is the high-byte of the return
address) is raised by one. The following four commands set the
vector $CE / $CF to the first byte of the string to print.

Now a character is read, checked for zero and printed out if it is not a
zero. With the following BRANCH command all characters are
printed. The register-contents are carried back when the loop is
finished. The result is depicted on the next page:

274

First Publishing Tricks and Tips for the C-128
SO1EB Stack Pointer
LOW
HIGH
SO1FF

Finally the processor reaches the RTS command and gets the return
address from the stack. This address is incremented with every
character read so that now it points to the last byte of the string, the

end mark zero. Now the processor increments the program-counter
and continues on.

The programmers had some good ideas, as you can see. The routine
has important advantages. It doesn't require you to load the registers
with pointers to the desired string, as is normal. This makes the
program shorter,faster and requires less memory. Increasing the

speed and reducing the memory requirements is always the goal of a
£00 systems programmer.

Those were the routines of the Kernal. We continue with the next section.

277

First Publishing Tricks and Tips for the C-128

11.2.2. YECTOR-LOAD-TABLE

There is a table from $42CE-$4309 in the BASIC-interpreter with which
you can easily get memory-locations, defined by vectors. You use these
routines as follows: You enter the desired address into the vector and then
call the routine belonging to the vector. But this index has some

disadvantages:

1. You cannot use every vector, those you can use are
listed in the index below.

2. You can not get a byte from any bank.

3. Itis not always returned to the original bank.

Look at the index below to see if you can get a byte from a certain bank and
return to the same bank! If not you must use the kernal-routine INDFET

($FF74).
Address Vector Byte-of After the return

$42CE $50/$51 Bank 1 Bank 14 (RAM-Bank 1)
$42D3 $3F/$40 Bank 1 Bank 14 (RAM-Bank!)
$42D8 $52/$53 Bank 1 Bank 14 (RAM-Bank 1)
$42DD $5CI$5D Bank 0 Bank 14

‘$42E2 $5C/$5D Bank 1 Bank 14 (RAM-Bank 1)
$42E7 $66/$67 Bank 1 Bank 14 (RAM-Bank 1)
$42EC $61/$62 Bank O Bank 14
$42F1 $70/$71 Bank 0 Bank 14
$42F6 $70/871 Bank 1 Bank 14 (RAM-Bank 1)
$42FB $50/851° Bank 1 Bank 14 (RAM-Bank 1)
$4300 $61/$62 Bank 1 Bank 14 (RAM-Bank 1)
$4305 $24/$25 Bank O Bank 14

“Bank 14 (RAM-bank 1)" means: The memory shows the configuration as
bank 14 after the switch is over. But RAM-bank 1 is turned on instead of

278

First Publishing Tricks and Tips for the C-i2¥

RAM-bank 0. These routines switch RAM und ROM only; the contents of
the RAM-bank are never changed.

11.2.3 KERNAL CALLS

This index is found in the BASIC-interpreter also. Some kernal routines are
called here, but Bank 15 is turned on first (the one exception is $928D; i1
turns on Bank 14).

Address Kemal-Routine

$9251 Get status ($FFB7)

$9257 Set ($FFBA)

$925D Set filename parameter ($FFBD)
$9263 BASIN ($FFCF)

$9269 BSOUT ($FFD2)

$926F CLRCH ($FFCC)

$9275 CLOSE ($FFC3)

$927B CLALL ($FFE7)

$9281 PRIMM ($FFE7)

$9287 SETBNK ($FF68)

$928D set/get ($FFFO)

$9293 Requests stop-key ($FFE1)

279

First Publishing Tricks and Tips for the C-128

11.3. FREE MEMORY

'

When using machine language programs you have to store them so they are
not destroyed by BASIC or the operating system. The BASIC-RAM can be
used only if you don't want to enter a BASIC program in the memory (or
you set the start-of-BASIC higher, or the end-of-BASIC lower). It is
important to know which addresses you can use in zero page. Some
addressing modes are only available with pointers in the zero page. These
free areas will be shown here. Let's first talk about the zero page.

11.3.1 FREE ZERO PAGE MEMORY

The addresses $FA-$FE in the zero page are always available, as well as the
addresses $4E/$4F. These latter two addresses are used only by the

boot-call routine (see chapter 10.1).

These are all the free addresses in the zero page. But six addresses are better
than none. Other pages used by the operating-system also have free
addresses. But using them really makes no sense because you also can use

every other address in the memory.

780

First Publishing Tricks and Tips for the C-12,

11.3.2 USABLE MEMORY FOR MACHINE LANGUACY

The C-64 often used two memory locations: the cassetie buffer for shart
programs and the area $C000-$CFFF. A machine language program was

usually not placed at the end-of-BASIC or even at the start of BASIC. The
C-128 has more possibilities. First there is the cassette buffer, from

$0B00-$0BFF. Directly behind the tape buffer are the two buffers for the
RS232 interface:

1. $0CO00 - $O0CFF = RS232 input buffer
2. $0DOO0 - $0DFF = RS232 gutput buffer

This area is used by very few C-128 users. It offers 768 bytes of storage
for machine language programs ($0B00 - $0DFF).

But that's not all. Under normal circumstances the area from $1300 to
$1BFF {s uvailable. This is nine puges or 2304 bytes of RAM! This arca
was originally meant for ROM-cartridges.

There is another possibility: put your programs in the RAM-bank 1. This is
meant for variables only. You no doubt realize that 64K for variables 1s u
little much; you can use some of this for machine language programs.

')

The next chapter will show you how to make use of this memory. Th
C-128 offers many possibilities to arrange your programs in the memory. It
is also useful to know that you can do graphics without using your RAM,
because the VDC has its own 16K of RAM-memory.

First Publishing Tricks and Tips for the C-128

CHANGING THE OPERATING SYSTEM

Because the C-128 is also a C-64, there are routines to switch it into the
C-64 mode. BASIC 7.0 has the command GO 64. The new kernal jump
table has a routine called "C64 MODE". Let's have a closer look at this
routine,

E24B LDA #SE3
E24D STA $01
E24F LDA #S$S2F
E251 STA $00
E253 LDX #508
E255 LDA $E262,X
E258 STA $01,X
E25A DEX

E25B BNE SE255
E25D STX $D030
E260 JMP $0002

E268 JMP (SFFFC)

The first four commands switch the processor-port. The next five
commands are a loop. First the nddresses $13263 - $HE26A to $0002 - $0000
are copied. The command in address $E25D changes the clock speed to 1
MHz. Therefore zero is stored in register 48 of the new VIC (the X-register
was set to zero by the loop before). Row by row, the commands copied by
the loop are executed. The switching is now made with the first tw:

commands. The memory-location $D505 belongs to the MMU and has the
following significance. i

A

First Publishing Tricks and Tips for the C-128

Bit-number : FunctionatQ.: Function at 1

0 Z-80 : 6502 on
1&2 . not used now --

3 : FSDIR control bit (for disk)
4 : C-64 : C-128

5 . C-64 : C-128

6 C-128 : C-64

7 40-column : 80-column

Bits 3 and 4 are read only. The mode is not changed by writing to these
bits. These bits represent only the polarity of two pins at the expansion port:

Bit4: GAME
Bit 5 : EXROM

These pins are checked every reset. If one of them returns a logic zero, then
the C-64 mode is activated. Therefore the C-64 mode is activated
immediately if the C-64 cartridges are connected. You also can build a
special push button to activate the C-64 mode when desired.

Bit 7 is also read only. This bit gives you the status of the
<40/80-DISPLAY> key. When this key is depressed, this bit will be 1.
This bit does not show you the actual mode; it is not altered if you change
the mode with <ESC+X>. The most important bit is bit 6. The C-128 goes
into the C-64 mode if this bit is set (1). Now we can understand the two
commands in the C-64 mode routine. The hexadecimal value $F7 is binary
11110111. Bit 6 is set.

The last command finally does the reset. After the switching, before the
reset, all ROMs of the C-128 are turned off and those of the C-64 are turned
on. If the last three commands were not in RAM Bank 0, but in either ROM

286

First Publishing Tricks and Tips for the C-128

or RAM Bank 1, the computer would lock up. Try it, jump to the routine at
$E263. The commands are in the RAM and the processor (now a 6510)

continues at address $0007 and docs a reset (the program counter stayed as
it was, of course).

We want to make sure that the RAM Bank 0 is really used by both
processors. Let's enter the following:

. POKE 8192 , 170 : POKE 8193 , 85

GO 614 {and then Y for Yes, of coursan)
PRINT PEEK(8192);PEEK(8193)

You get back the values entered on the screen! If the memory is not ¢rased,
then you should be able to transfer complete programs to the C-(1! Indeed
this works. Try entering a small program, and changing the mod. with the
command GO 64. Now enter the following POKE's:

POKE 43, 1: POKE 44, 28 -

Your program appears back on the screen. You can even execute it.
However, commands that the C-64 cannot execute are not allowed in these
programs.

It is even possible to continue a program started in the C-128 mode in the
C-64 mode without a break. It's necessary to do the largest part of the
reset-routine first. Otherwise a lot would go wrong: the IRQ-Vector is not

defined, the screens would not be set to normal values, etc...

An example:

2IR7

rIrst ruoiisning

‘Aricks and ‘l1ips for the C-1Z2Y¥

2000
2002
2005
2007
2008
2009
200Aa
200D
2010
2013
2016
2019
201Aa
201d

Now call the routine with the command SYS DEC ("2000"). After a

A9
8D
A2
18
9A
D8
8E
20
20
20
20
58
EE
4C

F7
05
FF

16
A3
50
15
5B

20
1A

D5

DO
FD
FD
FD
FF

DO
20

LDA
STA
LDX
SEI
TXS
CLD
STX
JSR
JSR
JSR
JSR
CLI
INC
JMP

#SF7
$D505
#SEE

$D016
SFDA3
SFD50
SFD15
SFF5B

$D020
$201a

W Wme ™we e W W, Wy

Switch

to 64-mode
Reset-routine

Up to jump

To BASIC-cold start
and test at ROM in
$8000

Raise bkgnd color
once again

moment you get a colorful screen--in the C-64 mode.

None of this is easy with BASIC programs. Try it once!

288

SHaEReS

“

F_'- F ;@l{‘ m.'li
‘I;i Geald L E l) \L})

First Publishing Tricks and Tips for the C-128

THE C-64 MODE ON THE COMMODORE 128

-

One real advantage of the C-128 is its compatibility with the C-64. When
you switch to the C-64-mode, you're able to use any and all software
available for the C-64.

The Commodore people had to take care that all C-64 programs could really
be run on the C-128 in the C-64-mode. Therefore they switched the
complete system configuration of the C-128 to the C-64. The C-64-mode
offers you only the normal BASIC V2.0., thus eliminating the bunk
switching and the Z-80 processor features. But some features of the C-12¥
can still be used in C-64 mode.

13.1 HIGUH-SPEED ON THE C-64

The C-128 has a video controller, VIC 8564, for the 40-column screen. The
Commodore 64 had a VIC 6564. The new VIC is upward compatible to the
C-64's VIC 6564. This means it accomplishes the same tasks as the old
6564. There are two new registers added and these registers can also be
modified in the C-64 mode! Register 48 plays a special role.

13.1.1 Register 48: Processor-clock

As with the C-64, the 128's cluck controls the entire computer. With
register 48 you can double the speed of the C-128 from 1 MHz to 2 Mllz.

L1103 Fubidilng ATICAD LU 15Pd UL LUT L =4&0

The great thing is that you can double the speed in C-64 mode as well.

This means that all of your "old" C-64 programs can run twice as fast. It
also speeds up time consuming routines like the garbage collection. But

there is one catch: The VIC uses clock gaps in the system to get a character
out of the video RAM to refresh the screen. With the doubled clock speed

these gaps are only half size, too short a time for the VIC to refresh the
screen. You'll get a lot of strange things on the screen, instead of the normal
display. Therefore, you should use the double clock only if the screen
content does not matter to you. The routine is done like this:

POKE 53296,1 (2 MHz, fast)
POKE 53296,0 (1 MHz, normal)

To see what this looks like, enter the following program:

10 TIS$="000000"
20 :
30 FOR X=1 TO 10000

40 NEXT X
50 :

60 PRINT TIS

This program needs 14 seconds to complete the loop. It works faster with
the following lines added:

20 POKE 53296 , 1 : REM FAST
50 POKE 53296 , 0 : REM NORMAL

The same loop now takes only 7 seconds!

292

21231 3 uuusuung

A8 sveny mesns mepr s seee — =

13.2 80-COLUMN CONTROLLER ACCESS

Yes, you now can access the 80-column controller in the C-64 moce.

Finally, a full 80 characters per line. The operating system of the C-64 iy
not prepared for this controller, but it should not be a problem to copy theos

routines out of the C-128.

Any examples of this would be beyond the scope of this book. But here are
a few suggestions. How about a graphic extension to get access to the
80-character screen in the '64 mode? Or an operating system expansion (
the IRQ) that will be able to write on the 80-character-screen?

| g
Y ’)

First Publishing Tricks and Tips for the C-128

13.3 NUMERIC KEYPAD ON THE C-64

This is more of a suggestion than a tip. We'll activate the numeric keypad
with a single POKE command in the C-64 mode. Unfortunately, you'll sce
that the characters don't fit the keys. We didn't have enough time to figure

this out before press time. Maybe you can activate the numeric keypad

completely! WW‘MWWA s AT B SR
Here's the POKE: : . T -Qn.m — o,
: TR ".i._. : ; wdataich “" /
@-_J‘ut KA B £ ey
POKE 53295, 248 :
Q"w e ¥

The memory location 53295 corresponds to register 47 of the new VIC
8564--one of the new registers. Here you enter the same value as in the
C-128 mode.

v'irst Publishing Tricks and Tips for the C-124

TOKEN TABLE

BASIC commands are not stored as a character sequence in the
BASIC-RAM, but turned into TOKENSs. A special routine compares the
entered BASIC line with commands stored in the BASIC-interpreter. If the
command is found, the BASIC-interpreter gives a special churacter
sequence ipstead. The bytes for RUN--82, 85, and 78--are transferred 1o
the byte 138 ($8A).

-
Try entering NEW and then the line 10 RUN. Now enter the monitor and
type in M1COO. You get the beginning section of the BASIC-RAM. Bui
where is the RUN? If you look closely you'll find the value $8A in the sixth
position, which is the token for RUN.

Tokens save a lot of memory for BASIC programs. Take the command for
DIRECTORY. Stored character by character it would use 9 bytes. Changed
into a token it only uses one.

It follows that tokens also make programs run faster. There is only one bytc
to compare instead of 9. The transfer does not waste any time, because the
computer is in input waiting loops for most of the time you're entering
BASIC program text.

The tokens start at $80 (128); this lets the computer quickly check if the
characters read are BASIC commands or simply text characters. But this
layout has one disadvantage--only 128 BASIC commands are available.

First Publishing Tricks and Tips for the C-128 First Publishing Tricks and Tips for the C-(2y

BASIC-Command Value (hex.) Value (dec.)

Many TOKENS not used on the C-64; the C-128 uses them all. But this still
wus not enough for the new set of BASIC 7.0. communds. The 128'%

. LIST $9B 155
programmers had a simple solution for using some TOKENs twice. They CLR $9C 156
gave these TOKENS a second byte. The command BANK has the tokens (S:I;lg zgg ig;
$FE and $02 now. With this method you can store a lot more commands., OPEN SOF 159
CLOSE SA0 160

Now the token table: GET $a¥ ' 161
NEW SA2 162

. TAB ($A3 163

BASIC-Command Value (hex.) Value (dec.) TO SA4 164
—EE === ====C=—C===S===S==S=S=S=SS=S=S=S=S===S=%=%3==5 FN SAS 165
SPC(SA6 166

END $80 128 THEN SA7 167

FOR $81 129 NOT SA8 168
NEXT $82 130 STEP SA9 169
INPUT# $84 132 | - SAB 171
INPUT $85 133 * SAC 172

DIM $86 134 / $SAD 173
READ $87 135 ~ SAE 174

Ley =F: 1) 136 | AND SAF 176
GOTO $89 137 OR $BO 176

RUN $8a 138 > <B1 177

IF $8B 139 Z B2 178
RESTORE $8C 140 < $B3 179
GOSUB $8D 141 SGN $B4 180
RETURN $8E 142 INT $B5 181

REM S8F 143 ABS S$SB6 182
STOP $90 144 USR SB7 183

ON $91 145 FRE SB8 184
WAIT $92 146 POS $B9 185
LOAD $93 147 SQR SBA 186
SAVE $94 148 RND SBB 187
VERIFY $95 149 ' LOG $BC 188

DEF $96 150 EXP $BD 189
POKE $97 151 COS $BE 130
PRINT# $98 152 SIN SBF 191
PRINT $99 153 TAN $Co 192

CONT S9A 154 ATN S$C1 193
PEEK s$C2 194

708 299

First Publishing Tricks and Tips for the C-128 First Publishing Tricks and Tips for the C-124

BASIC-Command Value (hex.) Value (dec.) BASIC-Command Value (hex.) Value (dec.)
LEN SC3 185 DO SEB 235
STRS 6C4 196 LOOP SEC 236
VAL $C5H 197 EXIT SED 237
ASC $C6 198 DIRECTORY SEE 238
CHRS sC7 199 DSAVE SEF 239
LEFTS $C8 200 1 DLOAD SFO 240
RIGHTS $C9 201 : HEADER SF1 241
MIDS$ SCA 202 SCRATCH SF2 242
GO $CB 203 ! COLLECT $F3 243
RGK $CC 204 CoPrPY SF4 244
RCLR $CD 205 RENAME SF5 245
Two-byte token SCE BACKUP SE6 246
JOY SCF 207 : DELETE SE7 247
RDOT $DO 208 RENUMBER SF8 248
DEC $D1 209 KEY SF9 249
HEXS $D2 210 MONITOR SFA 250
ERRS $D3 211 USING SFB 251
INSTR $D4 212 UNTIL SFC 252
ELSE $D5 213) WHILE SFD 253
RESUME 5D6 214 Two-byte token SFE
TRAP $D7 215 Tt (Pi) SFF 255
TRON $D8 216
ggggg ?,B 2 g“ig Next is the Index for dauble byto TOKINE, They huve two preceding
VOL SDB 219 values: $CE and $FE. Index for commands with $CE as the first TOXEN:
AUTO $LC 220 '

PUDEF $DD 221
GRAPHIC $DE 222 BASIC-Command First byte Value (hex.) Value (dec.)
PAINT $DF 223 ———:—::::—:::::::===========:======—
CHAR SEOQ P
BOX 7E1 225 POT SCE $02 2
CIRCLE SE2 226
BUMP $SCE $03 3
GSHAPE SE3 227
) PEN SCE $04 4
SSHAPE SE4 228
RSPPOS SCE $05 5
DRAW SES 229
RSPRITE SCE 506 6
LOCATE SE6 230
RSPCOLOR SCE $07 7
ggiigp‘ SE8 232 RWINDOW SCE $09 9
SE9 233 POINTER $SCE $OA 10
HELP SEA 234

nn . 301

First Publishing Tricks and Tips for the C-128

index for commands with $FE as the first TOKEN:

BASIC-Command First byte Value (hex.) Value (dec.)
BANK SFE $02 2
FILTER SFE $03 3
PLAY SFE $04 4
TEMPO SFE $05 5
MOVSPFR arg 806 6
SPRITE SFE $07 7
SPRCOLOR SFE $08 8
RREG SFE $09 9
ENVELOPE SFE $0A 10
SLEEP SFE SO0B 11
CATALOG SFE $0C 12
DOPEN SFE $0D 13
APPEND SFE SOE 14
DCLOSE SFE SOF 15
BSAVE SFE $10 16
BLOAD SFE $11 17
RECORD SFE $12 18
CONCAT SFE 513 19
DVERIFY SFE $14 20
DCLEAR SFE $15 21
SPRSAV SFE 516 22
COLLISION SFE $17 23
BEGIN SFE $18 24
BEND SFE $19 25
WINDOW SFE $1A 26
BOOT SFE $1B 27
WIDTH SFE $1C 28
SPRDEF SFE $1D 29
QUIT SFE $S1E 30
STASH SFE S$1F 31
FETCH SFE $21 33
SWAP SFE 523 35
OFF SFE $24 36
FAST SFE 525 37
SLOW SFE $26 38

302

)

First Publishing Tricks and Tips for the C-124

P

Optional Diskette

R LR S o r . i & = |
C128 Tricks & Tips
Optional disketts

For your convenience, the program listings contained in this book are
available on a 1541 formatted floppy disk. You should order the diskette if

you want to use the programs, but don't want to type them in from the
listings in the book.

All programs on the diskette have been fully tested. You can change the

programs for your particular needs. The diskette is available for £5.00+
£0.50 (£1.50 foreign) for postage and handling.

When ordering, please give your name and shipping address. Enclo
check, money order or credit card information. Mail your order to:

First Publishing Ltd
20B Horseshoe Park
Horseshoe Rd.
Pangbourne, Berks.
Tel: 07357 5244

303

R S

Tricks and Tips
for the C-128

Tricks and Tips for the C-128 is a tremendous treasure trove of program
ming techmgues and ‘tricks™ for every C-128 owner. This book not only
comtains plenty of example programs, but also explains 1n a simple to
understand manner the operation and programming of the computer

Contents include:

Sprite handling

Cuslom character sets
Autostart

The 80 column contraller
Modified INPUT

Line insertion

Banking

Kernal routines

Key pad in C-64 mode
C-64 mode of the C-128

Graphics on the C-128

Working with more than cone screen
Graphics with the 80 column screen
Simulating multiple windows

Listing Converter

Soltware protection on the C-128
Changing the keyboard

The MMU {Memory Management Unit)
fmportant memory locations

Chanaing the operating system

Other titles in this series:
1. THE ANATOMY OF THE COMMODORE 128
2 ANATOMY OF THE 1567 1 DISK DRIVE

-

