

NOTICE

This manual is copyright, and no part of it may be
reproduced in any form without the written
permission of the publishers.

The facility for making backup copies of the
programs is included solely for the convenience of
legitimate purchasers. It is illegal to supply copies to
other people.

[This pdf doc by Steve Parry-Thomas]
[26 Jan 2005]

[For Sam Coupe Users Everywhere]

CONTENTS

Introduction ... 2

Making working backup copies .. 3

Sample files on 512K master disc ... 4

The Editor .. 5

The Assembler ... 15

The DOS commands ... 18

The Disassembler ... 21

Text Listing .. 22

Print information screen (256K version) 23

Testing assembled code .. 23

Clear source code banks .. 24

SC_Speclone .. 25

Appendix 1 - Glossary of terms used .. 30

Appendix 2 - Technical information .. 33

Appendix 3 - For the beginner - examples 31

Index ... 43

Amendments and Changes ... 47

INTRODUCTION

Like many users, I graduated to MGT's Sam Coupe from the Sinclair
Spectrum. I had six years experience of writing machine code for the
Spectrum, and since 1988 had been selling software for the Spectrum and
PlusD disc drive - titles such as Plus D Hacker, Plus D Toolkit, and Plus
D Filer. I had used five Spectrum Assemblers at one time or another, but
when I came to program for the Sam Coupe with its vast memory, I found
that none of them could handle enough source and object code. Writing
large programs in 8K blocks of source code, assembling them and linking
the object code files together, was just too complicated a process.

So my first Sam project was to write this big capacity editor/assembler.
The 256K version of SC_Assembler accepts 10,000 lines of source code -
enough to assemble 20K of object code. The 512K version accepts a
massive 288K of source code which will assemble almost 64K of machine
code. A Monitor enhancement is in preparation for the 512K version.

I have deliberately set out to make SC_Assembler user friendly, simple
and practical. After all, I use it myself! It has a disassembler, facilities for
inspecting Sam's DOS and two ROMs, and it accepts the undocumented
codes which work on the Z80 chip but are not officially described by Zilog.
SC_Assembler is easy to use, but sophisticated in operation.

The free utility SC_Speclone goes beyond the official Sam Emulator in
achieving compatibility with 48K Spectrum programs. The Emulator can
handle programs which make no, or few, Spectrum ROM calls, but it could
never handle every possible ROM call unless the Emulator were a
Spectrum clone - a breach of copyright which would not have gone
unnoticed by Amstrad! Business and utility programs tend to use
numerous ROM calls in order to leave the maximum memory space free for
user's files.

SC_Speclone uses a copy of the Spectrum ROM, modified so that it will
recognise the extra Sam keys like DELETE and the function keys. It
enables you to switch between Spectrum and Sam modes, load Plus D
snapshots, load tape software in Spectrum mode and save the whole
Spectrum memory to Sam disc. You can print through Sam's printer port
from Spectrum mode. For legal reasons, you must make the copy of the
Spectrum ROM using your own Spectrum.

I hope you will enjoy using the programs. Any suggestions you have for
future improvements and enhancements will be welcome. S.J.N.

All instructions for SC_Assembler apply to both the 512K and
256K versions of the program, unless otherwise stated.

MAKING WORKING BACKUP COPIES
The master disc is valuable, and you should not risk damaging or
corrupting it by using it as a working copy. Write protect it, make backup
copies of the programs for everyday use, and then keep the master disc in
a safe place.

First, you need to prepare two newly formatted discs and copy the
SAMDOS system file onto each of them.

You will also need to make a copy of your Spectrum 48K ROM for use
with SC_Speclone. You must use your own Spectrum for this. It is illegal
either to get a copy of the ROM from a friend, or to borrow a Spectrum in
order to make a copy. Only those who have bought a Spectrum have the
right to copy the ROM in this way, and then only for their own use.

Use a 48K Spectrum, or if you have a 128K model, put it into 48K mode.
Even if you have a disc drive or microdrive, you must make the
copy onto tape, or you will save the drive operating system, not the ROM.

SAVE "specrom" CODE 0,16384.

Boot up your Sam and load the DOS. Place the master disc in drive 1 and
enter

LOAD 1

The first operation is to choose which of 32 different 64 column character
sets suits you best. This is a very individual choice - some people will find
one type of font easier to read, others will prefer another. The ENTER key
will allow you to view the fonts available. When you return to the main
instruction screen, enter the font number of your choice, or press ENTER
again to re-view the fonts.

You will then be asked to specify the colours you prefer for PAPER, INK
and cursor colour. Your choices will be demonstrated, and you should
confirm that they are acceptable, or choose other options.

You should then specify whether you prefer to work normally in decimal or
hex.

The choices of colour and numerical convention should be your usual
preferences. It will be possible to change any of them by using POKES (see
Appendix 2), and there are also commands to change hex/decimal output.

Finally, you will be asked whether you wish to have a line feed sent with
every carriage return to your printer. If your printer is set to send a line
feed automatically, reply "N". if your printer would always print on the
same line if the line feed is not sent from within a program, reply "Y".

Now follow the screen prompts which will tell you when to put the master
disc or your own disc in drive 1 to save the copy of SC_Assembler.

After SC_Assembler has been copied to your working disc, the program
will go on automatically to make a backup copy of SC_Speclone. You
should again follow the screen prompts, playing the Spectrum ROM tape
as instructed, but use your second disc for making the copy. Do not put
both programs on one disc because both boot up Sam, load the DOS and
auto-run when function key 9 is pressed.

512K Sam owners will find that there is a copy of the 256K version of
SC_Assembler on their master disc. There can be advantages in using the
256K version on a 512K machine when writing shorter programs,
particularly if you are likely to want to assemble code to memory pages 16
to 28, which are not used by the 256K version. To make a backup copy of
this version as well you will need a third formatted disc with a copy of
the system file on it. Enter

LOAD 'STARTUP-256"
and follow the same procedure as for backing up the 512K version.

SAMPLE FILES ON 512K MASTER DISC
512K users are provided with two SC_Assembler files on the master disc,
which may be loaded into SC_Assembler and printed out for reference.

Opcodes is a file of all the opcodes accepted by the program, including the
undocumented codes.

Routines is a file of useful machine code routines which you may use in
your own programs. They include a 64-col. screen printing routine, screen
scrolling, keyscan and others. The file includes a full description of each
routine.

THE EDITOR
Reset Sam, place your working disc in drive 1 and press key F9. On
loading, you will be at the Editor working screen. On the right of the screen
is the bank indicator.

Increases bank number (When last bank reac
bank 1)

Key F6
Decreases bank number (When bank 1 reach
bank)

Bn1 (as B3a/ENTER)
Switches to the bank number given, clears th
page of source code in the bank.

Bn1 I (as B3a/ENTER)
Switches to the bank number given without c

The same line numbers may be present in m
commands affect only the current bank. It c
to divide the various elements between differ
structure routines in one bank, subrouti
another, variables and data in a third. 512K
to screens and graphics.

Cursor
The cursor, a short line in your chosen colou
screen.

The memory map in Appendix 2
shows in detail how Sam's memory is
used by SC-Assembler, but briefly,
source code is entered into memory
banks holding 32K per bank The bank
indicator shows the number of the
current bank at the top, and the
proportions of the current bank used
and free at the bottom. As source
code is entered, the scale grows
upward, and when it reaches the
"full" line you must select the next

bank. 512K version has 9 banks, 256K
has 3.

To change banks
Key F9
hed, a further press selects

ed, a further press selects last

e screen and lists the first

learing the screen.

ore than one bank, and Editor
an be helpful in programming
ent banks - the program main
nes and library routines in
 users may also assign banks

r, is at the top left of the

Command syntax
The program commands are very short, mostly one or two characters.
They many be entered in upper or lower case and should be followed by
ENTER. A command written out in full (as list instead of 1), will generate
the error message
missing number

Exit to BASIC
b or q or x

Line numbers
Like BASIC programs, each source code line must have a line number,
which may be between 0 and 65534. Numbers may be typed in, or
produced automatically by the program.

Auto line numbers
i
The program will generate automatic line numbers starting at 10 in steps
of 10. (as 00010, 00020, 00030 etc.)

i nl (as i 2000)
The program will generate automatic line numbers starting at the number
given, and in steps of 10 (as 02000, 02010, 02020 etc.)

i n1 n2 (as i 100 5)
The program will generate automatic line numbers starting at the first
number given and in steps of the second number given (as 00100, 00105,
00110 etc.)

To quit autoline mode
SHIFT/ESC or SS/ESC

Renumbering
r
Renumber from start in steps of 10, making the first line number 00010

r n1 (as r 100)
Renumber from start in steps of 10, making first line number the number
given (as 00010 00020 becomes 00100 00110 etc)

r n1 n2 (as r 5000 5)
Renumber from start in steps of n2, making the first line number n1 (as
00010 00020 becomes 05000 05005 etc)

r nl n2 n3 (as r 30 400 2)
Renumber from line n1, in steps of n3, numbering the lines from n2 (as
00010 00020 00030 00040 becomes 00010 00020 00400 00402 etc)

Line deletion
 nl (as d 20)
Delete a single line (as 00010 00020 00030 becomes 00010 00030 etc)

d n1 n2 (as d 20 40)
Delete the block of lines from n1 to n2 inclusive (as 00010 00020) 00030
00040 00050 becomes 00010 00050 etc)

If d is entered alone, or if any of the numbers following it do not exist in
the source code listing, the following error message is generated
missing number

Entering source code
Lines may be command or comment lines. A command line will have a
line number, may include a label, and will include a standard Z80 opcode
or one of the undocumented codes and the necessary operands. No
remarks or notes may be included in a command line.

A comment line will have a line number followed by a semicolon ; Lines
with only a semicolon may be used to break up the blocks of code for
clarity, or any notes or comments may be included on the line, but it must
not exceed 62 characters. A line which attempts to flow over into the next
screen line will generate the error message
text line too long

Labels
A label must not exceed 14 characters long, must not begin with a digit,
and must be separated from the opcodes by a colon : A label must not
stand alone on a line, but must be followed by opcodes The following
characters may not be used in labels

+ - *: ; , () % # “
The following error messages are generated by invalid labels
label too long (14 or less)
bad label (don't include +-*:;,()%#")
no opcode after label
Labels should not be duplicated, even in different banks.

Upper/lower case. Screen fields
Source code lines may be entered in upper or lower case and without

regard to tabbing to particular screen areas or fields. The program will
adjust the tabbing automatically, to place labels and opcodes in the correct
positions on screen for neat listing, and will change the case as follows:
Labels: changed to lower case
Opcodes and operands: changed to upper case
Comments: Unchanged - left exactly as you typed them.

The illustration shows the screen display of source code listing, including
comment lines, a command line with a label, and command lines without
labels.

Cursor movement
Arrow keys
The arrow keys move the cursor as you would expect. The cursor stops
moving when the right or left keys bring it to the screen edge. When using
the vertical movement keys, the screen scrolls to bring in another
line when the cursor reaches the top or bottom of the screen.

Quick cursor movement
Key F2
Moves the cursor to the end of the previous word to the left

Key F3
Moves the cursor to the beginning of the next word to the right

Key F0
Scrolls down 22 lines. Previous bottom line is moved to two lines from the
top

Key F1
Scrolls up 22 lines. Previous top line is moved to 2 lines from the bottom

EDIT
Move cursor to top left corner of screen

SHIFT/EDIT or SS/EDIT
Move cursor to bottom left corner of screen

n n1(as n 2570)
Display 24 lines on screen, with line n1 at the top

e n1 (as e 200)
Display line n1 at the cursor position.

Other Editor keys/commands
Key F5
Insert a blank line at the cursor position for writing on.
Additional source code lines need not be inserted into the listing in the
right place, provided they are given the correct line number. When the
source code is listed again, the line will have been placed in the correct
sequence. A blank line may also be used for entering other Editor
commands.

TAB
Toggle insert/overwrite mode.
A space is inserted at the cursor position and new characters may be
entered without overwriting those already there. The line will be adjusted
to accommodate them. If inserted letters cause the line to overflow,
characters will be lost from the right hand end Pressing TAB a second time
closes up the remaining extra space and reverts to overwrite mode.

DELETE
Delete character at cursor position leaving a space at cursor position

SS/DELETE
Delete character to right of cursor position and close up gap.

ESC
Clear screen

CAPS
Toggle caps lock on and off

In practice, caps lock is only useful in comment lines, because the case is
adjusted automatically in command lines.

Key F8
Delete the line at the cursor position from the screen display and scroll the
lines below up one line. NB. The line is only deleted from screen not from
memory. If the file is listed again, the line will still be present.

l list source code
List the source code to screen, starting from the first line and scrolling
continuously.

1 n1 (as l 100)
List the source code to screen, starting from line n1 and scrolling
continuously. If n1 is a non-existent line number listing will be from the
next valid line number. If n1 is greater than the last line number, the
following error message is generated
number not found

l n1 n2 (as 1 100 500)
List the source code block from line n1 to line n2 to screen, scrolling
continuously. If n2 is greater than n1 the following error message is
generated
end bigger than start

During screen listing, any key toggles scrolling pause, and ESC aborts
listing.

11 list to printer
List source code to printer
Line numbers may be added as for command 1 above.

SHIFT/KEY FO or SS/KEY FO
List the first 24 lines of the source file to screen without scrolling.

SHIFT/KEY F1 or SS/KEY Fl
List the last 24 lines of the source file to screen.

f find
Find strings or numbers in source file. Will not search for opcodes.
Searches all banks, and lists the bank number and each line number in
which the object of the search is found.

To edit a line displayed by the search
Place the cursor over the line's bank number and press ENTER The lines
in that bank may now be edited.

f label
Find label at place at which it is initialised.
NB. If the string of letters appears in a longer label, that too will be listed.
(as f end would find the labels blend end endgame etc.)

f:label
Find all calls and jumps to a label.
Same string conditions as above. (as f:end would find and list DJNZ end
JR NZ blend etc.)

f n1
Find whole decimal number

f #n1
Find whole hex number

f %n1
Find whole binary number

f “l
Find a single letter variable (as CP "1" or LD A,"1")

f "text
If two or more characters are listed after the inverted commas, only the
bytes after DM opcodes will be searched.

f ;text
Find the given string in comments lines only.

Symbol table
The following commands are available only after assembly.

s
List all labels to screen
List labels in order in which they are initialised in the program, giving hex
and decimal values. Pauses when screen full Any key clears screen and
lists next screenful.

sl
List all labels beginning with the letter specified. The labels will be listed in
the order in which they were initialised in the program, but this command
allows labels to be listed in rough alphabetical order by repeating the
command. (as sa sb sc etc).

s:
As

Th

ES
Ab

Nu
+d
All

+h
All

+d
Di

+h
Di

+b
Di

He
ch
he

The illustration shows the screen display of the symbol table

or s:l
 above, but list labels to printer.

e s commands will list the symbols found in all banks.

C
orts symbol table listing

mber convention and conversion

 future output to screen or printer to be decimal listing

 future output to screen or printer to be hex listing

nl
splay decimal number with its hex and binary equivalents

nl (without #)
splay hex number with its decimal and binary equivalents

n1 (without %)
splay binary number with its decimal and hex equivalents.

x numbers may only include the digits 0-9 and A-F. Any other
aracters will generate the error message
x error (0-9 A-F)

Binary numbers must always have eight digits. Any fewer will generate
the error message
too few bin (8 0's or 1's)

Decimal, hex and binary numbers may be entered in source code listing.
Numbers with no prefix will be taken to be decimal numbers.
Hex numbers must always be prefixed by #
Binary numbers must always be prefixed by %

Specially defined keys.
A number of keys have been predefined to give characters which are in
frequent use when writing source code.
F7 gives (
F4 gives)
INV gives #
CNTRL switches the Function keys to keypad mode. In this mode Keys
F0-F9 give the digits 0-9, and the full stop is converted to a comma. This
is to facilitate the entering of lists of data bytes separated by a comma.
While in keypad mode SHIFT or SS plus a function key will give its
normal use as described previously. Pressing CNTRL while in keypad mode
returns the function keys to their normal uses.

Opcodes
798 opcodes are recognised. They must be entered in the normally
accepted form In addition to error messages described previously, the
following syntax errors will generate error messages
LD HL, or LD A,

variable missing
LD A,256

number too big (0-255)
LD A,+7 or LD HL,7- or DB 7++5

+ or - in wrong place
DB 40, or LD A,(7 or LD A,)7)

() expected
DB "ap" or CP “a

letter bad/quotes expected
RST 100 or RST #49

rst bad only 8 are allowed
DJNZ 45

DJNZ must start with a label
10 "text"

missing DM
10 128

missing DB/DW/DS

When an error message is generated, use the UP arrow key. This will
delete the message and leave the cursor at the line to be corrected.

Take special care with the spacing of the following codes
 CPD CP D
 CPL CP L
 RLA RL A
 RLCA RLC A
 RLD RL D
 RRA RR A
 RRCA ARC A
 RRD RR D
Undocumented opcodes
There are 102 undocumented codes, most of which operate on the upper
or lower parts of the IX and IY registers. Typical syntax is
LD IXl,50 (load the lower element of the IX register with 50)
CP IYh Compare contents of high element of IY register with contents of A
register.

Pseudo-opcodes
The following pseudo-opcodes are recognised

DB (not DEFB)
Define an 8-bit byte (as DB 128, #C9, %00000001, label)
DW (not DEFW)
Define a 16 bit number to be held in consecutive bytes, with the LSB in the
first byte, the MSB in the second. (as DW 32768, #C000, label). When a
number lower than 256 follows a DW instruction, the first byte will hold
the number and the second will hold 0.
DM (not DEFM)
Define message text (as DM "message")
DS (not DEFS)
Define spaces (as DS 256 or DS label)
EQU
Define a label as an 8 or 16 bit value (as start:EQU 49152)
ORG
Define the address from which the code is to be run. ORG may be to any
address between 0 and 65535. If no ORG command is included, the
default address is 32768.
PUT
Define the address at which the object code is to be stored during
assembly. PUT may be to any address between 16384 and 65535. If no
PUT command is included the default address is 32768.

THE ASSEMBLER
a
This command invokes the two-pass assembler. The code in all banks is
assembled in bank order, starting with bank I. The line numbers in each
bank are only relevant in that each bank's source code is assembled in line
number order, but if the lines in bank I have higher numbers than those
in bank 2, they will still be assembled first.

Pass 1 tests for 5 serious errors, and the following error messages may be
generated.
PUT too low
PUT must not be below 32768.
PUT past >65535
The PUT value was too high for the size of code block being assembled,
and caused it to be poked beyond 65535.
label not found
A label referred to has not been defined (as loop:EQU start or DS start
when start has not been defined).
label defined twice
The same label name may not be used more than once, even in different
banks.
out of label space
The maximum number of labels permitted is 2048 in 512K version, 1024
in 256K version.

If an error is found, the assembly is aborted and the line or lines
containing the error displayed on screen for correction.

If pass 1 is completed successfully, the following information is displayed
on screen:
ORG start and end addresses and code block length in decimal and
hex PUT start and end addresses and code block length in decimal
and hex Number of labels used.

Pass 2 tests for 2 possible errors, and generates the following error
messages

JR/DJNZ out of range
JR and DJNZ offset must be between -126 and +129 bytes. When this
error is generated, change JR instructions to JP and DJNZ to DEC B
JP NZ.

An error message will abort the assembly and display the line containing
the error on screen for correction.

If pass 2 is completed successfully, the illustration below shows the screen
display.

As
Th
co

*re
Th
Th
th

*re
Re

*li
Du
co
co
de
th

*li
Re
ins

sembler commands
e following assembler commands may be entered as lines in the source
de listing.

port off
e assembly will no longer be halted by an error, but will be completed.
e total number of errors found will be shown in the final display, and all
e error lines displayed together.

port on
verts to the normal status, so that assembly will be halted by an error.

st on
ring assembly, from the line which contains this instruction, all object

de bytes, their running addresses, source code line numbers and source
de lines will be listed to screen. The hex/decimal convention will be
termined by the choice you made when setting up the working copy of
e program, but may be changed by the direct commands +d or +h.

st off
verts to assembly without listing from the line containing this
truction.

*printer on
Similar to *list on, but listing is sent to printer. The printer must be set to
more that 80 columns, by using elite or condensed type and setting the
right margin at column 96 or more.

*printer off
Stops listing to printer from the line containing the instruction.

During assembly with listing, any key toggles pause. ESC aborts the listing
and the assembly. Listing may be to screen and/or printer, but assembly
without any listing is much faster.

*print
Prints a label value, message, or reminder to screen during assembly. (as
*print start which will give the value of the label start in hex and
decimal at the end of pass 1, or *print "version 2" which will print the
text message when the line containing the instruction is reached in pass 2)
cn1 Bank paging
(as c19 entered as a direct command)
c, followed by a valid page number, causes the bank starting with the page
specified to be paged to the address 32768 and the object code will be
assembled to that bank. The new paging remains until another c command
changes it.

Banks normally reserved for source code may be used but there must be
no source code in the bank selected for assembly, and the PUT address
must then be specified as PUT 32770 or higher, because the first two
bytes of source banks are markers holding 255,255 and must not be
overwritten. The normal default address of 32768 would cause the object
code to overwrite the markers. In the 512K version c3 may be used to bring
the EXTRA memory, reserved for assembling code, into action and this
does not require the higher PUT address. See the memory maps in
Appendix 2 for the page numbers which may be used.

If using the 256K version on the 512K machine, the pages not normally
available on a 256K machine may be used in this way.

c1
Reverts to normal paging.

THE DOS COMMANDS

+s
Save source code file

T
S

In
c
c
u

T
u
ty

T
th

T
c
b
0
a
a

he illustration shows the screen when the +s command is entered. The
AVE information is displayed at the bottom left of the screen.

 the box next to SAVE is the file name, which can be changed. Move the
ursor to the first letter of the file name, and pressing any character will
lear the box. Type in the new name. The DELETE key is inoperative, so
se the left arrow key to move the cursor back and overwrite any errors.

o the right of the filename is the drive number. If this is to be changed
se the down arrow key to move the cursor to the drive number box and
pe in the drive number.

he display of source code numbers found in each bank is at the bottom of
e screen. Press ENTER to save all the source code in all of the banks.

o save part of the source code file, change the line numbers in any bank
ontaining blocks to be saved to the first and last lines required in that
ank. Change the line numbers in all banks which are not to be saved to
0000 00000. Use the arrow keys to move the cursor. The right and left
rrows move it only within each five-figure number. The down and up
rrows move to the next or previous number.

ENTER
save the source code blocks specified

SAVE errors
If the cursor is returned to the bank numbers display without saving the
files, an error has occurred. Either the lines specified for saving do not
exist, or a start number higher than an end number has been given.
Correct the error and press ENTER again.

The files saved will be a header file, plus one file for each bank saved.

+l
Load source code file

A box with LOAD, the filename and drive number is displayed. Follow the
same instructions for changing these as given for the +s command.
ENTER to load the file. All source code files already in memory will be
cleared and the new file loaded into the banks from which it was saved.

+m
merge source code files

The file name and drive number must be specified as usual, and the file
will then be loaded into memory and merged with the existing file. Two
errors are possible, generating the following error messages

Not enough room to merge BANK n1 Press any key
The file being loaded and merged contains too many lines in the bank
number given to be merged with the file already in memory. The merge
cannot be done unless part of the file in memory can be deleted.
Same lines exist in BANK n1 Press any Key
The file being merged has the same line numbers in the bank number
given as those used in that bank by the file already in memory. Renumber
the source code lines in the file already in memory in that bank, and enter
+m again, because the merge operation will not overwrite any existing
lines.

+e
Erase an SC Assembler file from disc
Give the filename and drive number as usual, and all the source code files
will be erased from the disc. Use only for SC_Assembler files.

ESC
In all disc operations, pressing ESC instead of ENTER will exit the mode
without performing the disc operation.

+c
Catalogue the disc

The illustration shows the disc catalogue screen.

On
ap
file
ove
on

Sa
Ob
ad
com

Ex

Us
ass

Us
pre

Lo
Ob
are
ad

ly Sam files are shown in the catalogue. Any Spectrum files an the disc
pear as gaps in the listing. The file type is displayed beside each
name, and any Sam files which have been erased and not yet
rwritten appear with ERA in the file type column. The display remains

 screen if any other disc operation is then selected.

ving object code
ject code must be saved from BASIC. After assembly, note the PUT
dress and file length displayed after pass 1. The paging set by the c

mand should be left as it was when the code was assembled.

it to BASIC and enter
SAVE "filename" CODE start,length

e the filename of your choice and the start address and file length noted from the
embler display.

e Key F4 to re-enter the assembler. The source code file in memory is
served, and the bank paged to 32768 is unchanged.

ading object code files
ject code files may be loaded from BASIC. If screens or other code files
 to be loaded into unused source code pages, ensure that the load

dress will not overwrite the first two bytes of the bank.

THE DISASSEMBLER
+z
Enter the disassembler

The disassembler has two modes, NORMAL and ROMS. On entering the
disassembler, the screen clears and a status box is displayed at the bottom
of the screen. Beside DISS is the address from which disassembly is to
take place, and will show 32768 on entry. This may be changed by typing
in any address between 0 and 65535, (*0 and #FFFF hex).

To the right of the address is the MODE. The down arrow key moves the
cursor to this box, and the up arrow may be used to toggle between modes.

On the extreme right is the box showing printer status. Use the down
arrow key to move the cursor to this box, and the up arrow to toggle
ON/OFF. When OFF shows, the disassembly output will be sent to the
screen. When ON shows, disassembly listings will be sent to the printer.

NORM mode
Memory 0-65535 is arranged as follows

00000-16383 ROM 0
16384-65535 Normal RAM as in Sam BASIC.

ROM 0 can be disassembled in this mode, and any other code files may be
loaded from BASIC to addresses between 16384 and 65535. Code files may
also be loaded into addresses in unused source code banks provided that
the first two bytes of the bank are not overwritten. The command c is used
to page the bank containing code to be inspected to address 32768.

ROMS mode
Memory 0-65535 is arranged as follows

00000-16383 ROM 0
16384-32767 DOS
32768-49151 Normal RAM as in Sam
BASIC 49152-65535 ROM 1

This mode makes it easy to inspect Sam's two ROMs, and the DOS Other
code files may be loaded to 32768, but only one page is available for
normal RAM in this mode.

ENTER
Starts disassembly listing
All listing will be in hex or decimal according to your choice when the program was
set up, unless +d or +h have been used to change the convention. The Disasmbler
will not recognise blocks of data bytes, and will interpret them as instructions.

Any key except SPACE or ESC
Pauses listing.
Press key again to continue listing

SPACE
Abort listing
Stays in disassembly mode and returns to the status box for change of address,
mode or printer status.

ESC
Abort listing and exit disassembler.
Returns to Editor mode.

TEXT LISTING
+t
Enter text listing.

The s

The illustration shows the text listing screen.

ame NORM and ROMS modes and printer status are available as with

as with the Disassembler, and they are changed in the same way. ENTER,
SPACE and ESC operate as they do in the Disassembler. The text listing
gives a double memory dump, to screen or printer. Decimal or hex listings
will be determined as described for the Disassembler.

The four columns on the left of the text listing display list single
addresses, the contents of each address in decimal and hex, and the
ASCII equivalents for bytes between 32 and 127 decimal Bytes outside the
ASCII printable character range are represented by a full stop.

The remaining columns list an address, its contents and the contents of
the following 7 bytes in hex or decimal depending on which is the current
mode, and the ASCII equivalents of the B bytes.

Although the two sides of the split screen start the listing at the same
address, the right hand display moves much faster through memory than
the left and the two displays are very soon showing different areas of
memory. Use the right hand display to search quickly for large blocks of
code, messages etc. and the left for detailed examination of sequences.

PRINT INFORMATION SCREEN
256K VERSION ONLY

+p
Call up information screen. [256K only]
The command clears the screen and calls up an information screen which
lists the most commonly used Sam Coupe parts. Where the significance of
a number read from or written to a port lies in the individual bits rather
than the whole number, the use of each bit is explained.
[NOTE: This was crossed out in my manual so the command might not work. – SPT 22-Jan 2005]

The information screen is not available in the 512K version. The command
+p is not rejected by the 512K program, but no operation is performed if it
is entered.

TESTING ASSEMBLED CODE

After assembly, machine code routines may be CALLed from BASIC for
testing, provided that the ORG and PUT addresses are the same. See
Appendix 2 for information on the Intelligent Block Transfer which may be
used if ORG and PUT are different. It is prudent to save both source and
object code to disc before calling untested machine code, in case the
program crashes.

CLEAR SOURCE CODE BANKS
512K
Exit to BASIC
Enter RUN
1100

256K
Exit to BASIC
Enter RUN 1010

The entire source code file will be cleared from all memory banks. Object
code will not be erased, even if it has been assembled to a bank normally
reserved for source code.

SC_SPECLONE

SC_Speclone is a bonus utility program supplied tree with SC Assembler. It allows
a wide range of Spectrum 48K programs to run on Sam, even business and utility
programs which use a printer.

Plus D disc snapshot files can be converted for use with Sam, and Spectrum 48K
tape programs can be loaded and the whole Spectrum memory saved to disc to be
re-loaded for future use. Only snapshots can be used from Plus D discs, not
program files. So if you have a disc based Spectrum 48K program which you wish
to use with Sam, and have no tape version, make a 48K snapshot using the Plus D.
128K programs and snapshots cannot be used with SC_Speclone.

Appendix 2 contains technical information about the working of this utility. On

loading, the program goes to the main menu, illustrated below.

Me
Re

Se
file

In
All

TA
CN
ES

nu option 1
turn to Spectrum

lecting this option will switch to Spectrum mode. If there is a Spectrum
 in memory, this will be preserved.

 Spectrum mode
 keys are scanned, but the following Sam keys have serial uses:

B Graphics mode - equivalent CS/9
TRL E-mode - equivalent CS/SS
C BREAK - equivalent CS/SPACE

FUNCTION KEYS 0-9 Keypad returning the digits 0-9
INV hash mark #

Printing from Spectrum mode
LPRINT sends ASCII characters to the printer, with tokens unexpanded.
For example, LPRINT 'Testing" will work LliST also sends only ASCII
characters and unexpanded tokens, so it is not possible to LLIST a
Spectrum program, because the keyword codes will not be converted to
spell out the keywords.

Linefeeds
The program is set up to send a linefeed after each carriage return. If your
printer already sends a linefeed automatically, the result will be
permanent double line spacing. To correct this, the Spectrum ROM file on
the SC_Speclone disc must be modified.
Reset Sam, after saving the Spectrum memory if necessary. Put the
SC_Speclone disc in drive 1, and enter the following lines as direct
commands

CLEAR 32167
LOAD "ram" CODE
POKE 80324,195
SAVE OVER "rom" CODE 65536,16364

Printing to #3
Most Spectrum utilities do not use LPRINT, but send the bytes to be
printed to be output to *3 via a printer driver routine. SC_Speclone has a
suitable printer driver at Spectrum addresses 14793-14826 (34 bytes)
(Sam addresses 80329-80362). This routine should be copied to the
address at which the Spectrum program's own printer driver routine
resides, overwriting the program's routine.

Spectrum addresses from Sam BASIC
From Sam BASIC, all Spectrum addresses reside 65536 bytes higher than
their normal Spectrum address. (See memory map in Appendix 2).

Switching to Sam from Spectrum mode
NEW
The Spectrum keyword NEW returns to Sam. If Spectrum address 23296
holds 0, the return will be to the main menu. If 23296 holds any other
value, the return will be to Sam BASIC line 1000

NMI button.
If the Spectrum program does not permit you to exit to BASIC, the NMI

button can be used to return to Sam BASIC, but Sam's NMI button has a
fault which needs a hardware modification. It will exit to Sam BASIC, but
you should not rely upon being able to return to the Spectrum program at
the point from which you left it.

To NEW the Spectrum memory.
The keyword NEW cannot be used in the usual way, because it is used to
switch to SAM mode.

PRINT USR 14888
Mimics NEW. BASIC programs are cleared from memory, but code stored
above a CLEAR address is preserved.

PRINT USR 0
Besets Spectrum, clearing all programs and code from memory.

Saving and loading from Spectrum mode
In Spectrum mode, SAVE and LOAD will normally be to tape, and the
program compensates automatically for tape loading speed. Disc and
microdrive syntax are not accepted. Disc saving and loading of code blocks
must be done by storing variables such as file start and length in
Spectrum memory, switching to Sam, retrieving the variables and saving
the code block from Sam BASIC.

Example of conversion of Spectrum program for file saving to disc.
 The Spectrum variable 23296, which controls the method of returning to
Sam BASIC, will hold 0 if the return is to the main menu. If it holds any
other number, the return will be to Sam line 1000. In Sam BASIC,
Spectrum addresses lie 65536 above their working Spectrum address, and
so the contents of this variable can be retrieved from Sam BASIC by
PEEK(65536+23296).

A typical Spectrum microdrive SAVE routine is

5000 GOSUB 6000:SAVE * "M';D;F$ CODE start,length:RETURN
6000 LET D=PEEK 32768:LET start=PEEK 32769+256*PEEK
32770:LET length=PEEK 32771+256*PEEK 32772:LET F$=””:FOR
A=0 TO 9:LET F$=F$+CHR$ PEEK(32773+A):NEXT A:RETURN

To convert this to saving from Sam, the Spectrum BASIC must be

5000 POKE 23296,1:NEW:RETURN
delete line 6000

23296 holding 1 will force the jump to Sam line 1000 when NEW switches
to Sam. The Sam command GO TO 1 will return to Spectrum mode to
execute the instruction immediately following NEW. 23296 could be made
to hold 1 for SAVE, 2 for LOAD, 3 for DIR, 4 for ERASE and so on. The
necessary Sam BASIC will be

1000 LET N=PEEK(65536+23296)
1010 IF N=1 THEN SAVER: ELSE IF N=2 THEN LOADER: ELSE IF N=3
THEN DIR:ELSE IF N=4 THEN ERASE:END IF
5000 LABEL SAVER: GOSUB 6000: SAVE "D"+CHR$(D+48)+":"+F$ CODE
start+65536,length:GO TO 1
6000 LET D=PEEK (32768+65536): LET start=DPEEK(32769+65536):LET
length=DPEEK(32771+65536):LET F$=MEM$(32773+65536 TO
32773+9+65536):Return

Line 1000 will fetch the contents of the Spectrum variable 23296, and line
1010 will call the appropriate Sam subroutine to perform the correct disc
operation. 23296 holding 1 would call the save routine at line 5000. Line
6000 mimics the Spectrum line 6000, but peeks addresses 65536 above
the Spectrum ones and uses Sam's more economical syntax. After calling
line 6000, line 5000 saves the required code block to disc and GO TO l
returns to Spectrum mode to execute the RETURN which follows NEW in
Spectrum line 5000.

Similar subroutines could be written to perform the other disc operations.
Note that Sam labels cannot be keywords such as SAVE or DiR - another
letter must be added. See also Appendix 3.

Menu option 2
RANDOMIZE USR 0 SPECTRUM

This option returns to Spectrum mode and clears the Spectrum memory.
It should be used the first time a jump is made to Spectrum mode, unless
a Spectrum program has already been loaded.

Menu option 3
LOAD PLUS D SNAPSHOT FILE

This option should only be used to load Plus D snapshots which have
previously been converted using option 4.

If, when a converted snapshot is loaded, there is no response to the
keyboard on returning to Spectrum mode, use the NMI button to return to

the Sam mode menu and follow this procedure

Press ESC - goes to Sam BASIC.
Enter POKE 80290,195
Enter GO TO 10 - returns to the SC_Speclone menu
Use option 3 and re-load the snapshot.

Most snapshots are compatible with the program, and this POKE will
enable the keyboard response for the majority. If you have a snapshot
which requires this POKE, in future exit to Sam BASIC and do the POKE
before loading the snapshot.

Menu option 4
CONVERT PLUS D SNAP FILES

This option must be used before a snapshot can be run under
SC_Speclone. If the POKE described above has been used to enable the
keyscan of another snapshot, it must be restored before using this option.

Press ESC to go to BASIC.
Enter POKE 80290,226
Enter GO TO 10 to return to menu.

Put the disc containing the Plus D snapshot into drive I and select option
4. The catalogue will be displayed, and you will be prompted for the file
number of the program to be converted. After a brief pause while the
conversion is made, you will be prompted for the filename under which it is
to be saved. Put the disc on which you wish to save it in drive 1 and give
the filename. After saving, the program returns to the main menu. Option
3 may be used to load the converted snapshot.

Menu option 5
SAVE SPECTRUM MEMORY

The complete Spectrum memory, from Spectrum addresses 0-65535 is
saved to disc.

Menu option 6
LOAD SPECTRUM MEMORY

Loads files saved under option 5. After loading, select menu option 1 to
return to Spectrum BASIC with the memory preserved.

APPENDIX 1
GLOSSARY OF TERMS USED

ASCII
American standard code for information interchange.
The standard used to ensure that computer programs all use the same
codes for printable characters.

ASSEMBLE
Convert source code file to the block of code which is needed for a machine
code program.

BANK
A block of memory assigned for a particular purpose. In SC_Assembler a
bank is usually a block of 32768 bytes.

BINARY
System of arithmetical notation using only 2 digits - 0 and 1. If the binary
form of a number is used with SC_Assembler it must be entered as 8
digits preceded by % as
%00000011 (binary equivalent of 3)

BIT
BInary digiT
There are 8 bits in a byte.

BYTE
Unit of computer memory. Each computer memory address can store one
byte - usually a number between 0 and 255.

CURSOR
Marker used on screen to show the current printing position.

DATA
Figures in a computer program which are not to be interpreted as
instructions. They may be variables, message character codes, printer
codes etc.

DECIMAL
Familiar system of arithmetical notation using 10 digits 0-9.

DISASSEMBLE
Examine code block and convert the bytes to opcodes as used in source

code listing. Does not produce perfect source code because data bytes are
not recognised and will be mistakenly converted to opcodes. Data byte
sequences are usually easily recognisable because the sequence of
opcodes is nonsensical.

DOS
Disc Operating System
Computer system routines which control the disc drive. The routines will
switch on the drive motors and move the drive heads as necessary and
will perform operations such as SAVE, LOAD, CATALOGUE, ERASE,
READ, WRITE, VERIFY.

HEX
System of numerical notation using 16 digits, the numbers 0-9 and the
letters A-F, frequently used in computer programming. In Sam BASIC hex
numbers are introduced by &, in SC_Assembler by # as
 &C02F #C02F (hex equivalent of 49199)

LABEL
Distinctive name used to mark a particular point in a program and given
a value which identifies that point. In source code and in Sam BASIC,
reference to the point in the program may be made by referring to the
label

MACHINE CODE
Computer program consisting only of the sequence of numbers needed to
cause the computer to perform the required actions. Machine code
programs are very fast in execution, because the computer spends no
time interpreting the instructions.

OBJECT CODE
Block of bytes - the machine code program - produced by an assembler
after converting source code.

OPERAND
Number which follows an opcode in source code listing.
In LD A,4 LD A, is the opcode, 4 the operand.

OPCODES
Standardized list of mnemonics used when writing machine code programs
in source code.

PAGE
Block of 16384 bytes. The Z80 processor can address only 65536 bytes at

any one time, so Sam's memory is divided into pages, any 4 of which can
be addressed by the processor at a time. The pages addressable by the
processor are said to be ‘paged in’. There are 32 pages in a 512K Sam, 16
pages in a 256K machine.

PSEUDO-OPCODES
Opcodes which instruct the assembler to perform some action and will not
be converted to machine code instructions. They include
ORG - instructs the assembler to assemble the code to run from a
particular address
DM (define message) - instructs the assembler to insert the ASCII codes for
a text message.
EQU - instructs the assembler to assign a value to a label

RAM
Random Access Memory.
That part of memory which is available for variables, programs and
graphics, and whose bytes may be changed by the user. The bytes can be
PEEKed and POKEd.

ROM
Read Only Memory.
That part of the memory which contains the computer operating system
routines which cannot be changed by the user. The bytes may be PEEKed,
but cannot be POKEd.

SOURCE CODE
Listing of a machine code program using opcodes to represent the
instructions, so that the logic and operation of the program may be more
easily followed. May include notes and instructions to the assembler as
well as the opcodes which will be converted into program bytes. Must be
'assembled' - converted to a block of machine code bytes - before the
program can be run.

WORD
Two consecutive bytes holding a number over 255, in the following form
For a number n
byte 1 (the least significant byte or LSB) holds n-(256*INT(n/256))
byte 2 (The most significant byte or MSB) holds INT(n/256)

APPENDIX 2
TECHNICAL INFORMATION

SC_ASSEMBLER
Memory maps and useful addresses to poke
The 512K version memory map

PAGE

0

Type

LOW

Memory loc.

16384-32767 Normal Sam RAM 16384-16883

1/2 HIGH 32768-65535
contains Assembler Code
Normal Sam RAM Area reserved

3/4 EXTRA 65536-9M3
to assemble to
Extra area reserved to assemble

5/6 SOURCE1 98304-131071
to
32K source bank 1

7/8 SOURCE2 131072-162839 32K source bank 2
9/10 SOURCES 163840-1%607 32K source bank 3

11/12 SOURCE4 196608-229375 32K source bank 4
13/14 SOURCES 229376-262143 32K source bank 5
15/16 SOURCE6 262144-294911 32K source bank 6
17/18 SOURCE7 294912-327679 32K source bank 7
19/20 SOURCES 327680-360447 32K source bank 8
21/22 SOURCE9 360448.393215 32K source bank 9
23/24 LABEL 393216-425983 32K Symbol table label store

25/26/27 CODE 425984-475135
2048 labels max.
48K Assembler/Disassembler

28 MONITOR 475136-491519
program code
16K Area reserved for future

29 SYSTEMDO 491529-507903
Monitor program upgrade
16K System DOS

30/31 SCREEN 507904- 32K Normal Sam screen area
0-16383

512K version keyscan variables
The program keyscan has variables which may be POKEd to change the
keyscan response to suit personal preference.

442545 (equivalent to Sam SVAR 521 REPDEL) Holds number of 50ths
of second delay before a key repeats - 33 normally.

442572 (equivalent to SAM SVAR 522 REPSPD) Holds number of 50ths
of a second between repeats

The 256K version memory map
PAGE

0

Type

LOW

Memory loc.

16384-32767 Normal Sam RAM 16384-16883

1/2 HIGH 32768-65535
contains Assembler Code
Normal Sam RAM Area reserved

3/4 CODE 65536-98303
to assemble to
32K Assemble/Editor part 1

5/6 SOURCE1 98304-131071 32K source bank 1
7/8 SOURCE2 131072-162839 32K source bank 2

9/10 SOURCE3 163840-196607 32K source bank 3
11 LABEL 196608-212991 16K Symbol table label store

12 CODE 212992-229375
1024 labels max.
48K Assembler Editor code part

2
13 SYSTEMDOS 229376-245759 16K System DOS

14/15 SCREEN 245760-2621538 32K Normal Sam screen area
0-16383

256K version keyscan variables
The program keyscan has variables which may be POKEd to change the
keyscan response to suit personal preference.

82097 (equivalent to Sam SVAR 521 REPDEL) Holds number of 50ths
of second delay before a key repeats - 33 normally.

82124 (equivalent to Sam SVAR 527 REPSPD) Holds number of 50ths
of a second between repeats.

Pokes to change Editor screen colours and hex/decimal listing -
BOTH VERSIONS

16440 holds PAPER colour (0-127)
16441 holds INK (PEN) colour (0-127)
16442 holds 0 for decimal output, 1 for hex output
16443 is unused
16444 holds cursor colour (0-127)

These may be changed temporarily. Exit to BASIC and POKE the
appropriate variables with the new values. If you wish to make the
changes permanent, do the POKES and
 SAVE OVER "page" CODE 16384,500

Intelligent block transfer

When source code has been ambled, the machine code program can
normally only be tested by a CALL from SC_Assembler BASIC if the ORG
and PUT addresses used were the same, or if they were omitted so that
both defaulted to 32768. Code can be assembled to any address between
32768 and 65535, so the problem only arises for code which will normally
run from an address below 32768.

A facility is provided in SC_Assembler BASIC for transferring an object
code block to its ORG address for testing, but, because the Assembler
code resides in the lower addresses, the lowest ORG address which may
be used in this transfer is 29000.

It is important that source code and object code files should be saved to
disc before testing. If the program has a fault and crashes, the computer
may reset itself or have to be reset because there is no response to the
keyboard, and the files in memory would be lost.

After assembly, make a note of the ORG and PUT addresses and file
length displayed after pass 1, and exit to BASIC.

512K
Line 200 is a DATA line which holds

200 PUT address, ORG address (29000 or higher), file length.

Change the line to the appropriate address o and file length. The letter m
entered as a direct command will transfer the block, which may then be
tested by a CALL to the ORG address.

256K
Line 99 is a DATA line which holds

99 PUT address, ORG address (29000 or higher), file length.

Change the line to the appropriate addresses and file length. The letter m
entered as a direct command will transfer the block, which may then be
tested by a CALL to the ORG address.

SC_Speclone
Memory map

Page Sam addresses Used for

0 16384-32767 Sam memory
1 32768-49151 Sam memory
2 49152-65535 Sam memory
3 65536-81919 Spectrum 48K ROM 0-16384
4 81920-98303 Spectrum memory 16384-32767 includes

5 98304-114687
Spectrum screen
Spectrum memory 32768-49151

6 114688-131071 Spectrum memory 49152-65535

How SC_Speclone works
The Spectrum 48K ROM is modified to scan for the extra Sam keys such
as DELETE and the function keys. This code is placed in a free area of
Spectum memory between 14446 and 15615. Bytes 11446-14893 are
used for the keyscan and other essential code. All Sam keys are scanned.
See pages 25-26 for the special uses assigned to some of the keys.

A printer driver routine is proved at Spectrum addresses 14793 to 14826.
(34 bytes). This enables the LPRINT command. LliST mimics LPRINT
because tokens are not expanded by this routine. The printer driver
sends a linefeed after every carriage return. Instructions for disabling the
linefeed are on p.26.

An OUT instruction is used to page the Spectrum ROM to Sam address 0
and to use screen MODE 1, the Spectrum compatible mode, at Spectrum
address 16384 when switching to Spectrum mode.

The Spectrum NEW command is used as a switch to return to Sam
mode, paging out the Spectrum ROM and paging in the Sam ROM and
setting screen 1, MODE 4, at the normal Sam screen pages, the last two
pages in memory. RANDOMIZE USR 14888 mimics the normal Spectrum
NEW while in Spectrum mode.

In Sam mode all Spectrum addresses reside 65536 above their normal
Spectrum address, and so a Spectrum address n may be POKEd from
Sam BASIC at address n+65536.

In Sam BASIC GO TO 10 returns to the main menu.
GO TO 1 returns to Spectrum mode without resetting Spectrum memory.

APPENDIX 3
FOR THE BEGINNER — EXAMPLES

If you have never before used an assembler, working through the following
short examples will help you.

Example 1
A short program to change the border colour to yellow.

1)Put your SC_Assembler working disc in drive 1 and press key F9 to load
it. On loading, you will be at the Editor screen with the cursor at the top
left corner.

2)Type
10border:lda,6 and press Enter.
The line will be reprinted on screen as
00010 border:LD A,6
The program has inserted spaces and placed the various elements of the
line in their correct places on screen. You have no need to worry about
spacing or using capital letters for the opcodes.

3)Type
20out(254),a Enter
30ret Enter
Your program will appear as
00010 border.LD A,6
00020 OUT (254),
00030 RET

4)Type +s Enter
The SAVE SOURCE mode is entered. Bank 1 is shown as holding lines
00010 to 00030, all other banks as 00000 to 00000. We wish to save the
whole file, so change the filename to
bordr.src
and press Enter. The code will be saved to disc.

5)Type a Enter
The file will be assembled, and the following information displayed.
ORG 32768-32772 (00005) #8000-#8004 (#0005)
PUT 32768-32772 (00005) #8000-#8004 (#0006)
LAB 00001

** pass 1 **

** pass 2 complete with no errors.

As this is a program which could run from anywhere in memory, we did
not enter ORG or PUT addresses and the program used 32768 for both.
The program is 5 bytes long and there is 1 label.

6)Type +z Enter
You will enter the Disassembler. If you press Enter, to disassemble from
the default address of 32768, you will see the opcodes for our program
listed, confirming that it has been properly assembled. Press ESC to stop
the listing and return to the Editor.

7)Type b Enter
The program will exit to BASIC.
Enter SAVE "bordr.cod" CODE
32768,5 to save the machine code to
disc.

8)Type CALL 32768 Enter
The border colour will change to yellow, because our program loaded the
A register with 6, Sam's number for the colour banana.

9)Press key F4 to re-enter the Editor.

10)Add the following line to the program - you need not enter it in the
correct sequence.
5 *list on

11)Type l Enter
The program will be listed to screen, with the new line 00005 in its correct
place. If you typed
 ll
the program would be listed on the printer

12)Type a Enter
The program will be assembled again, but the assembly listing will be sent
to screen. If you changed line 00005 to
 *s printer on
the listing would be sent to the printer.

13)Type d 5 30 Enter
The program will be deleted.

Example 2
Using several banks

1)Type in the following lines
00100 LD A,13
00110 CALL outputa

2)Type b2 Enter
The bank number on the indicator will change to 2.

3)Type i 1000 Enter
The line 01000 will appear on screen and every time you press Enter when
you complete a line, the next line number will be presented. The blank
lines which break up the listing are produced by pressing Enter without
typing in any characters.

4)
Type in the following lines
01000 outputa:PUSH BC
01010 PUSH AF
01020 LD BC,(outvar)
01030
01040 outloop:IN A,(C)
01050 RRCA
01060 JR C,outloop
01070
01080 DEC C
01090 POP AF
01100 OUT (C),A
01110
01120 INC C
01130 OUT (C),B
01140
01150 DEC B
01160 OUT (C),B
01170
01180 POP BC
01190 RET

5)Press SS/ESC or SH1FT/ESC to escape from autoline mode

6)Type b3 Enter
Change to bank 3

7)Type i 1000 Enter
Enters autoline mode

8)Type in the following lines
01000 ;output a send A register to printer
01010 ; A=0 to 255
01020 ;
01030 ; No registers corrupted
01040 outvar:EQU #5A10

9)Press SHIFT/ESC or SS/ESC to exit autoline.

The three banks now each contain specific parts of the program. Bank 1
contains the main program routine, which calls a subroutine. Bank 2
contains the subroutine, which could become a library routine, since it is a
procedure which is likely to be needed in many different programs. Bank 3
contains notes in comment lines, which begin with a semicolon, and one
line, 01040, which sets up a variable.

Note that the same line numbers appear in banks 2 and a This would
have no effect when the program is assembled, because banks are
assembled in sequence, 1,2,3, and the line numbers are only significant
within each bank If bank 3 is used for explanatory notes, using line
numbers which match those for the routine being described can be helpful.

To save only the subroutine and explanatory notes to disc, proceed as
follows

1)Type +s Enter

Change the line numbers in the display under the filename box as follows
Bank 1 00000 00000
Bank 2 01000 01190
Bank 3 01000 01030

2) Change the filename to one of your choice

3) Press Enter.
Nothing will be saved from bank 1, because that is the main routine which
calls the subroutine. The whole of bank 2 is saved, and from bank 3, only
the comment lines describing the routine are saved, and not the variable
which would be applicable only to the main program.

SC_SPECLONE EXAMPLE
PCG's DTP PACK conversion

If you have a disc-based or microdrive version of Spectrum DTP PACK, you
must first make a tape copy of the "WM" code block. Reset the Spectrum.
Enter CLEAR 24733: LOAD *"m";1; "WM" CODE 54174. When the code
block has loaded, enter SAVE "WM" CODE 54174,11362 and save the
code block to tape. Prepare a newly formatted disc with only the SAMDOS
file on it.

Now, using Sam, load the SC_Speclone utility and select menu option 2 -
RANDOMIZE USR 0 SPECTRUM. In Spectrum mode, enter CLEAR
24733:LOAD "WM" CODE and play the tape to load the code block.

Type in the following lines of Spectrum BASIC.
10 LET D=NOT PI:LET S=D:LET L=D-LET X=D:LET A$=" ":RANDOMIZE
USR 63315
20 POKE 23296,1:GO SUB 60:NEW:RANDOMIZE USR X
30 POKE 23296,2:GO SUB 60:NEW:RAND0MIZE USR X
40 POKE 23296,3:GO SUB 60:NEW:RAND0MIZE USR X
50 POKE 23296,4:NEW:RAND0MIZE USR X
60 LET V=INT (S/256):P0KE 23297,S-(256*V):P0KE 23298,V
70 LET V=INT (L/256):POKE 23299,L-(256*V):POKE 23300,V
80 FOR A=l TO 10:P0KE 23300+A,C0DE A$(A):NEXT A
90 RETURN
100 POKE 23296,5:NEW:RUN
200 POKE 23296,0.NEW:RUN
300 POKE 65532,158:P0KE 65533,96:RUN

In line 10, there are 10 spaces in A$. Lines 20 to 50 POKE a code into
23296, to tell Sam BASIC which DOS operation to perform, and they
replace the LOAD, SAVE, ERASE and CAT lines of the original Wordmaster
BASIC. The subroutine at 60 pokes the file start and length and filename
into variables from which Sam BASIC can retrieve them. Line 100 is a line
which will return to Sam BASIC, and line 200 to the SC_Speclone menu.
Line 300 will clear all files from Wordmaster's memory, and return you to
the program, providing a quick way of deleting multiple files. The DOS
commands are called normally, from the program's options. To use lines
100-300 you must exit from the program to Spectrum BASIC.

Now enter GO TO 2111, put the prepared disc in drive 1, and select option
5 - SAVE SPECTRUM MEMORY. Give the file name "WM" when prompted.
When the Spectrum memory has been saved, press ESC to return you to
Sam BASIC.

Type in the following lines of Sam BASIC.
1000 LET A=PEEK (23296+65536) :ON A:GO TO LOADER:GO TO
SAVER:GO TO ERASER:GO TO CATTER:STOP
1200 DEF PROC GETVARS
1210 LET S=256*PEEK (65536+23298)+PEEK (65536+23297)
1220 LET L=256*PEEK (65536+23300)+PEEK
(65536+23299) 1230 DIM A$(10)
1240 FOR A=l TO 10:L.ET A$(A)=CHR$ PEEK
(65536+23300+A):NEXT A 1250 END PROC
1500 LABEL LOADER
1510 GETVARS:LOAD A$ CODE S+65536,L:GO TO 1
1600 LABEL SAVER
1610 GETVARS:SAVE A$ CODE S+65536,L:GO TO 1
1700 LABEL ERASER
1710 GETVARS:ERASE A$:GO TO 1
1800 LABEL CATTER
1810 CLS:DIR 1:PAUSE 0:GO TO 1
8000 OPEN#5; "b": PRINT #5;CHR$ 27; "C";CHR$ 70;:CLOSE #5:RETURN

Lines 1000 to 1810 perform the DOS operations. Line 1000 PEEKs the
variable to discover which operation is required and directs the program to
the correct subroutine. Each operation ends in GO TO 1, which returns to
the Spectrum program at the command after NEW, which switched to Sam
mode. The procedure at 1200 sets up the variables. Line 8000 contains
any codes you may wish to send to the printer. The ones given set up A4
paper length, but they may be changed to any you wish to use. If you use
the line to send printer codes, the printer must be on line when you load
the program

Now alter line 9000 to read
9000 CLS #:PALETTE#:CLS #:CLEAR 29999:LOAD "rom" CODE:LOAD
"high" CODE:LOAD "low"CODE:LOAD "WM" CODE:DPOKE
(23730+65536),247330: GO SUB 8000:POKE 88832,0:RUN 1.
You have added commands to load the Spectrum memory, POKE the
Spectrum RAMTOP and call the printer codes subroutine, and changed the
RUN address to 1.You can now save the Sam BASIC to your prepared disc.
 SAVE "AUTOWORD" LINE 9000.

Now enter POKE 80324,195 and SAVE "rom" CODE 65536,16384. Finally, you
must copy the "high", and "low" code blocks from your SC_Speclone disc to
your new disc. The program will autoload, and will be exactly like the
Spectrum version except that the tape load/save operations are unuseable.
PlusD disc files may be used, but if you have the tape version of DTP
PACK, you must copy all the extension programs, fonts, etc. to Sam discs.

INDEX

 DTP PACK under
SC_Speclone41,42

+e - erase source code file....19
E mode25
e n1 - Display line n 1 at

cursor position9
EDIT - SHIFT/EDIT - cursor

to bottom le f t 9
EDIT - SS/EDIT - cursor

to bottom le f t 9
EDIT - cursor to top left9
Edit displayed lines10
Editor5
Editor screen8
Editor screen colours
 - POKEs34
ERASE19
error messages —.6,7,10,12

 13,15,16,19
error messages
− escaping from14

ESC - SHIFT/ESC
− quit autoline6

ESC - SS/ESC
− quit autoline6

ESC - abort l ist ing10
ESC - abort symbol table

listing12
ESC - break25
ESC - clear screen9
ESC - exit DOS commands19
ESC - exit disassembler22
ESC - exit text list ing23
example programs37,38,39,

40,41,42
f - find10
f "l - find single letter variable11
f "text - find string after DM —1l
f Zn - find binary number11
f # n 1 - find hex

number11
f label - find label where

initialised11
f n1 - find decimal

number11
f:label - find label where

called11
f;text - find string in

comments11
fields, screen7
Function keys5,8,9

10,13,20,2
F0 - SHIFT/F0 - list f i r s t

24 lines10
F0 - SS/F0 - l i s t f i r s t
 24 lines10
F0 - scroll down 22 lines8
arrow keys8,21
ASCII30
ASCII dump22,23
assemble30
Assembler15,16
autoline mode6
b - exit to BASIC6
b n1 - select bank n 1 5
b n1 1 - select bank

without CLS5
+b n1 - display binary number

with decimal/hex...12
bank30
bank indicator5
banks5,17,18,21,39,40
banks - clear24
binary30
binary digits13
binary numbers11,12,13
bit30
block transfer35
break25
byte30
+c - catalogue disc20
c n1 - assemble to
 bank n117,21
CALL code23,35
CAPS - toggle caps
 lock ..9
caps lock9
clear screen9
clear source banks24
CNTRL - E mode25
CNTRL - toggle function
keypad13
command lines....7
command syntax6
comment lines7
cursor5,30
cursor movement8,9
+d - change to decimal

listing12,22
d n1 - delete line7
+d n1 - display decimal number

with hex/binary12
d n1 n2 - delete block7,24
data ...30
decimal
 numbers11,12,13,30,34
DELETE - delete character at

cursor position9
DELETE - SS/DELETE - delete

character to right9
deletion7,9,10,24
disassemble21,30
disassemble - l is t to

printer21
disassemble - start l ist ing22
DOS31
DOS commands18,19,20,27,28

F1 - SHIFT/Fl - list last 24 lines 10
F1 - SS/F1 - list last
 24 lines10
Fl - scroll up 22 lines9
F2 - move cursor to end
 of previous word8
F3 - move cursor to start
 of next word8
F4 -)13
F4 - re-enter Assembler from
 BASIC —.20
F5 - insert blank line9
F6 - select previous
 bank5
F7 - (....13
F8 - delete line from screen ..10
F9 - select next bank5
glossary30
graphics mode25
+h - change to hex
 listing12,22
+h n1 - list hex number with
 binary/decimal ...12
hash mark # .13
hex digits12
hex numbers11,12,13,30,34
i - autolines from
 line 106
i n1 - autolines from
 line n16
i n1 n2 - autolines from
 line n1 step n26
information screen23
insert mode9
intelligent block
 transfer35
INV - #13
keypad13,26
keyscan variables33,34
1 - list to screen10
+1 - load source code
 file19
1 n1 - list from
 line n110
1 n1 n2 - list block10
labels7,11,12,15,30
line numbers6
linefeeds26
*list off - cease listing
assembly to screen16
*list on - list assembly to
 screen16
listing10,16
11 - list to printer10
ll n1 - print list from
 line n110
ll n1 n2 - print source
 code block10
LOAD19,20,27,28,29
load object code20
lower case7
m - perform block
transfer35

+m - merge source code files
....19

machine code30,37 memory
banks —.5,17,18,21,

39,40
memory dump22,23
memory map -

SC Assembler33,34
memory map -

SC Speclone36
MERGE19
n n1 - display 24 lines from

n 1 9
NEW - select Sam mode26 NEW
Spectrum memory27
NMI button - select Sam

mode26,27,28,29
NORM mode21,22
number conversion12
object code31
object code - loading20 object
code - save to
 disc ..20
opcodes13,14,30
opcodes - pseudo-opcodes14 opcodes -
undocumented14 operand31
ORG14,15,23,35 overwrite
mode9
+p - print information

screen23
page31
pause l ist ing2
Plus D snapshots25,27,28
Plus D snapshots - no keyboard response

....29
ports23
*pr int - print value/message

to screen17
PRINT USR 0 - reset Spectrum memory

....27
PRINT USR 14888 - NEW
Spectrum memory27
printer driver26,36
*printer off - cease listing

to printer17
*printer on - l ist ing to

printer17
printing10,17,21,22,26
printing to #326
pseudo-opcodes .14,32
PUT14,15,17 23,35
q - exit to BASIC6
r- renumber

line 10 f i r s t 6
r n1 - renumber

line n 1 f i r s t 6
r n1 n2 n3 - renumber

from n1, f i r s t
line n2, step n37

RAM32

Text, design and layout by CAROL BROOKSBANK
from technical description by S.J. NUTTING

using SPECTRUM DTP PACK by P.C.G.

RANDOMIZE USR 0 Spectrum
....26
renumbering6,7
*report off - continue to

assemble past error15
*report on - halt assembly

at error16
reset Spectrum memory27
ROM32
ROMS mode21,22
s - list labels to

screen11
+s - save source

code fi le 18
s - print labels l is t 12
s:l - print labels starting
 with letter (s:a
 s:b s:c etc.) 12
Sam mode26,27,36
sample files4
SAVE18,19,20,27,29
save object code20
SC_Speclone25,36,41,42
screen colours34
screen fields7
search10,11
sl - l is t labels starting
 with letter (sa

 sb sc etc.)11
source code - … 3 2
source code banks —.5,17,18,

 21,39,40
source code banks -
 clear24

source code listing8
SPACE - abort

disassembly22
SPACE - abort

text listing23
Spectrum 48K

programs25,27,28
Spectrum 48K ROM3
Spectrum addresses26,36
Spectrum memory - load29
Spectrum memory - save29
Spectrum mode25,26,27,

28,36
Spectrum program

conversion27,28
symbol table11,12
+t - text listing22
TAB graphics mode25
TAB - toggle insert/ overwrite

....9
tabbing7
testing code23 35
text l isting22,23
undocumented codes14
upper case7
word ..32
WORDMASTER under

SC _Speclone41,42
working copies of disc3
x - exit to BASIC6
+z - enter disassembler20

AMENDMENTS AND CHANGES

The key scanning on SC_ASSEMBLER is now done through the Sam
Rom, with the advantage the 8 character buffer, so now matter
how fast you type the editor will always keep up with you. The
keyscan variables are now at 23561 for REPDEL and 23562 for REPSPD

During scrolling of the screen (Dissasemble, Text and source
listing etc) keys P=Pause, O=Unpause

If you have a 256K source file and would like to load it into
the 512K Assembler then there is a file on Disc called CONVERTOR
this simple converts the 256K Source file into the 512K source
file format.

There are 4 source files on Disc they are :-

opcodes256 and opcodes512 load them in depending which
 routine256 and routine512 version of SC_ASSEMBLER you have

You may have some Lerm Sam Assembler source files you would
like to use on SC_ASSEMBLER, if so follow the below instructions:-

Load in SAM ASSEMBLER Version 2.0 or Version 3.0 (256K
Version), If you have any other version give me a ring and I may be able
to help you with other versions.
Now load in a Sam Assembler Source file in at the first Bank (Ram
pages 3/4),then QUIT to Basic and then load in from my Disc either
lerm2 or lerm3 depending on which version of Sam Assembler you are
using. Then on Sam Assemblers editor press P and Return if using
Version 2 or PR if using Version 3, then type LIST, once all
source is listed to the Screen type QUIT to return Back to Basic.
The Converting will now take place, if there is any syntax my
Assembler would not except then you will be prompted with the
error message and you will need to type out the offending bad line
note type the line numbers, labels, opcodes in there respective
tab column positions. Once conversion is complete you will be
prompted to save the source to Disc. To reload the source into my
Assembler use the following Addresses to load the source into which
bank, you can load multiple converted source into as many banks as you
like:-
Bank 1 98304 Bank 4 196608 Bank 7 294912
Bank 2 131072 Bank 5 229376 Bank 8 327680
Bank 3 163840 Bank 6 262144 Bank 9 360448

Note that lerm sauce must be tabbed in it's right fields :-
Column
0to 4 6 to 22 24 upwards
00010 labels Opcodes ;any remarks are not convey
But remarks in a line only can e.g 00010 ;remark

	Dtpzx
	SC_Assembler%20&%20SC_Speclone
	INTRODUCTION
	MAKING WORKING BACKUP COPIES
	SAMPLE FILES ON 512K MASTER DISC
	THE EDITOR
	Cursor
	Command syntax
	Exit to BASIC
	Auto line numbers
	Renumbering
	Line deletion
	Entering source code
	Labels
	Upper/lower case. Screen fields
	Cursor movement
	Arrow keys
	Quick cursor movement
	Key F2
	Key F3
	Key F0
	Key F1
	EDIT
	SHIFT/EDIT or SS/EDIT

	Other Editor keys/commands
	Key F5
	TAB
	DELETE
	SS/DELETE
	ESC
	CAPS
	Key F8
	l list source code
	11 list to printer
	f find
	To edit a line displayed by the search
	f label
	f:label
	f n1
	f #n1
	f %n1
	f “l
	f "text
	f ;text

	Symbol table
	s
	sl
	s: or s:l
	ESC

	Number convention and conversion
	+d
	+h
	+dnl
	+hnl (without #)
	+bn1 (without %)
	hex error (0-9 A-F)

	Specially defined keys.
	Opcodes
	Undocumented opcodes
	Pseudo-opcodes

	THE ASSEMBLER
	a
	PUT too low
	PUT past >65535
	label not found
	label defined twice
	out of label space
	JR/DJNZ out of range
	Assembler commands
	*report off
	*report on
	*list on
	*list off
	*printer on
	*printer off
	*print
	cn1 Bank paging

	THE DOS COMMANDS
	+s�Save source code file
	ENTER
	SAVE errors
	+l�Load source code file
	+m �merge source code files
	Not enough room to merge BANK n1 Press any key
	Same lines exist in BANK n1 Press any Key

	+e �Erase an SC Assembler file from disc
	ESC
	+c �Catalogue the disc
	Saving object code
	Loading object code files

	THE DISASSEMBLER
	+z �Enter the disassembler
	NORM mode
	ROMS mode
	ENTER �Starts disassembly listing
	Any key except SPACE or ESC�Pauses listing.
	SPACE �Abort listing
	ESC

	TEXT LISTING
	+t�Enter text listing.

	PRINT INFORMATION SCREEN�256K VERSION ONLY
	+p �Call up information screen. [256K only]

	TESTING ASSEMBLED CODE
	CLEAR SOURCE CODE BANKS
	SC_SPECLONE
	Menu option 1
	Return to Spectrum
	In Spectrum mode
	Printing from Spectrum mode
	Linefeeds
	Printing to #3
	Spectrum addresses from Sam BASIC
	Switching to Sam from Spectrum mode
	NMI button.
	To NEW the Spectrum memory.
	PRINT USR 14888
	PRINT USR 0
	Saving and loading from Spectrum mode
	Example of conversion of Spectrum program for file saving to disc.

	Menu option 2
	RANDOMIZE USR 0 SPECTRUM

	Menu option 3
	LOAD PLUS D SNAPSHOT FILE

	Menu option 4
	CONVERT PLUS D SNAP FILES

	Menu option 5
	SAVE SPECTRUM MEMORY

	Menu option 6
	LOAD SPECTRUM MEMORY

	APPENDIX 1�GLOSSARY OF TERMS USED
	ASCII
	ASSEMBLE
	BANK
	BINARY
	BIT
	BYTE
	CURSOR
	DATA
	DECIMAL
	DISASSEMBLE
	DOS
	HEX
	LABEL
	MACHINE CODE
	OBJECT CODE
	OPERAND
	OPCODES
	PAGE
	PSEUDO-OPCODES
	RAM
	ROM
	SOURCE CODE
	WORD

	APPENDIX 2�TECHNICAL INFORMATION
	SC_ASSEMBLER�Memory maps and useful addresses to poke
	The 512K version memory map�
	512K version keyscan variables

	The 256K version memory map
	256K version keyscan variables

	Pokes to change Editor screen colours and hex/decimal listing -�BOTH VERSIONS
	Intelligent block transfer
	SC_Speclone
	Memory map
	How SC_Speclone works

	APPENDIX 3�FOR THE BEGINNER — EXAMPLES
	Example 1
	Example 2

	INDEX
	AMENDMENTS AND CHANGES

